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Maximum Nonlinearity of Symmetric Boolean Functions
on Odd Number of Variables

Subhamoy Maitra and Palash Sarkar

Abstract—In this correspondence, we establish that for odd , the max-
imum nonlinearity achievable by an -variable symmetric Boolean func-

tion is 2 2 and characterize the set of functions which achieve
this value of nonlinearity. In particular, we show that for each odd 3,
there are exactly four possible symmetric Boolean functions achieving the

nonlinearity 2 2 .

Index Terms—Algebraic normal form, nonlinearity, symmetric Boolean
function.

I. INTRODUCTION

An interesting subclass of Boolean functions is the set of symmetric
functions, where the output of the function depends only on the weight
of the input vector. Another combinatorially important class of Boolean
functions is the set of bent functions introduced by Rothaus [6]. An
n-variable bent function achieves the maximum possible nonlinearity
among alln-variable functions. Further, by its very definition [6], a
bent function can exist only ifn is even.

An n-variable symmetric Boolean functionf can be represented by
a bit array of lengthn+1, denoted byre(f)[0; . . . ; n] and defined in
the following manner:

re(f)[i] = f(X1; . . . ; Xn) (1)

where the weight ofX1; . . . ; Xn is i for 0 � i � n.
Let n � 3 be odd andf be ann-variable symmetric Boolean func-

tion. In this correspondence we show the following.

1) The maximum possible nonlinearity off is 2n�1 � 2
n�1

2 .

2) The following are equivalent.

a) The nonlinearity off is equal to2n�1 � 2
n�1

2 .
b) re(f) is a contiguous(n+1) length substring of(0011)�.
c) The Walsh transform forf is three-valued and takes the

values0; �2
n+1

2 .
d) f is a quadratic function, i.e., the algebraic degree off is2.

3) A consequence of either 2b) or 2d) is that there are exactly
four possible functionsf which achieve the nonlinearity

2n�1 � 2
n�1
2 .

For evenn, the set of symmetric bent functions has been completely
characterized in [7]. The characterization is very similar to the case for
oddn. More precisely, the characterization for evenn can be simply

obtained on replacing2
n�1
2 by 2

n�2
2 in the above, with the added

restriction that for bent functions, the Walsh transform is two valued
(�2

n

2 ).
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II. PRELIMINARIES

The set of alln-variable Boolean functions will be denoted by
n.
An n-variable Boolean functionf is a mapf : f0; 1gn ! f0; 1g. One
representation off is as a binary string of length2n.

Forn � 1, letTn be a2n � n matrix defined as follows:

Tn =
0

1
; for n = 1

Tn =

0
...
0

Tn�1

1
...
1

Tn�1

; for n > 1.

(2)

For 0 � i � 2n � 1, let ui denote theith row ofTn. The truth table
for ann-variable Boolean functionf , denoted byTn(f) is defined to
be the following matrix:

Tn(f) = Tn

f(u0)

f(u1)
...

f(u2 �1)

: (3)

Thus, the functionf can be uniquely represented by the following
binary string of length2n:

f(u0); f(u1); . . . ; f(u2 �1):

By fc (respectively,fr) we denote the function obtained by bitwise
complementing (respectively, reversing) the2n length binary string
representingf . The truth table representation for Boolean function
described earlier is conventionally used by electrical and electronics
engineers (see, for example, [4]).

Given twon-variable functionsf0; f1, byF = f0f1 we will denote
the (n + 1) variable function whose truth table is defined in the fol-
lowing manner:

Tn+1(F ) =
Tn(f0)

Tn(f1)
: (4)

Thus, the string representation ofF is simply formed by concatenating
the string representations off0 andf1.

Definitions (2), (3), and equation (4) suggest that the “new” variable
Xn+1 for the (n + 1)-variable functionF is “placed to the left” of
the old variablesXn; . . . ; X1. For this reason, we find it more intu-
itive to use the notationF (Xn+1; Xn; . . . ; X1) instead of the more
common notationF (X1; . . . ; Xn; Xn+1). However, this is really a
minor point and the actual choice of notation depends on the way one
feels comfortable in thinking about Boolean functions.

Another important representation of a Boolean function is by
a unique multivariate polynomial over GF(2). More precisely,
f(Xn; . . . ; X1) can be uniquely written as

f(Xn; . . . ; X1) = a0 �

i=n

i=1

aiXi �
1�i<j�n

aijXiXj

� � � � � a12���nX1X2 . . .Xn

where the coefficientsa0; aij ; . . . ; a12���n 2 f0; 1g. This representa-
tion of f is called the algebraic normal form (ANF) off . The number
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of variables in the highest degree monomial with a nonzero coefficient
is called the algebraic degree, or simply degree off . The ANF of the
functionF defined in (4) is as follows:

F (Xn+1; Xn; . . . ; X1) = (1�Xn+1)f0(Xn; . . . ; X1)

�Xn+1f1(Xn; . . . ; X1):

Functions of degree at most one are called affine functions. The non-
linearity of ann-variable functionf , denoted bynl(f), is defined as

nl(f) = min
g2L(n)

(d(f; g))

whereL(n) is the set of alln-variable affine functions andd(f; g) is
the Hamming distance between the two stringsf; g of length2n. Also,
by wt (s) we denote the weight (number of ones) of the binary string
s.

Let X = (Xn; . . . ; X1), ! = (!n; . . . ; !1) 2 f0; 1gn, and
hX; !i = Xn!n � � � � � X1!1. Let f(X) be a Boolean function
onn variables. The Walsh transform off(X) is a real-valued function
overf0; 1gn and is defined as (see [3], [1])

Wf (!) =

X2f0; 1g

(�1)f(X)�hX;!i
:

Let f; g be two n-variable functions. Bywd(f; g) we denote the
number of placesf andg are equal minus the number of places they
are unequal, i.e.,wd(f; g) = 2n � 2d(f; g). The quantityWf (!)
is related towd(�) by the following relation:Wf (!) = wd(f; l!),
wherel! is the linear function defined asl!(X) = hX; !i.

The set of alln-variable symmetric Boolean functions will be de-
noted byAn. Recall from (1) that ann-variable symmetric function
can be represented by a binary string of length(n+ 1) and is denoted
by re(f). Similarly, given a binary stringg of length(n+1), we define
the extension ofg, denoted byex(g), to be a symmetric functionf of
length2n as

f(Xn; . . . ; X1) = g[wt(Xn; . . . ; X1)]:

The mapsre(f) andex(g) are one-to-one correspondences between
n-variable symmetric Boolean functions and binary strings of length
(n + 1).

The notation(0011)� denotes the one way infinite string

001100110011 � � �

formed by repeatedly concatenating the string0011.

III. M AXIMUM NONLINEARITY FOR ODD n

One standard way to achieve highly nonlinear functions on odd
number variables is to concatenate two bent functions. The nonlin-
earity obtained by this process is2n�1 � 2

n�1
2 . We show that for

symmetric functions on odd number of variables, this is the maximum
nonlinearity achievable and further characterize the set of functions
which achieve this nonlinearity. Our proof is in two parts. In the first

part, we prove that the maximum nonlinearity is�2n�1 � 2
n�1
2

and in the second part we characterize the functions achieving this
nonlinearity. To prove the first part we require some preliminary
results.

Proposition 1: Let f1; f2 2 
n�1 andF = f1f2. If nl(F ) =
2n�1 � � for some� in 0 < � < 2n�2, then bothnl(f1); nl(f2) �
2n�2 � �. Moreover, iff1 = f2, thennl(f1) = nl(f2) = 2n�2 � �

2
.

Proof: Sincenl(F ) = 2n�1 � �, it follows that for any� in
L(n), we have

2n�1 � � � d(F; �) � 2n�1 + �: (5)

We prove

2n�2 � � � d(f1; l) � 2n�2 + �

for any l 2 L(n � 1). The proof is by contradiction. There are two
cases to consider.

Case 1: Let, if possible

d(f1; l) = 2n�2 � �� t < 2n�2 � �

for somet > 0. Sincell 2 L(n), from (5)

2n�1 � � � d(f1f2; ll) = d(f1; l) + d(f2; l) � 2n�1 + �: (6)

Usingd(f1; l) = 2n�2 � � � t, we get2n�2 + t � d(f2; l). Now,
d(f1; l

c) = 2n�2 + � + t. Also d(f1f2; lcl) = d(f1; l
c) + d(f2; l),

and hence we get

2n�1 + � + 2t � d(f1f2; l
c
l) = d(F; lcl):

Sincelcl 2 L(n), this contradicts (5). Thus,d(f1; l) � 2n�2 � �.
Case 2: Again assume, if possible

d(f1; l) = 2n�2 + �+ t > 2n�2 + �

for somet > 0. The functionF c = fc1f
c
2 has nonlinearity2n�1 � �

andd(fc1 ; l) = 2n�2 � � � t. This is not possible by Case 1. Thus,
d(f1; l) � 2n�2 + �.

Hence we getnl(f1) � 2n�2 � �. To see the last statement, note
that if f1 = f2, thennl(F ) = 2nl(f1).

We state the following simple result which will prove to be useful
later.

Lemma 1: Let f 2 An with re(f) = a0a1 � � � an�1an andf be
written asf = f0f1f2f3 where eachfi 2 An�2. Then

a) re(f0f1) = a0 � � � an�1 b) re(f2f3) = a1 � � � an
c) re(f0) = a0 � � � an�2 d) re(f1) = re(f2)

e) re(f3) = a2 � � � an: = a1� � � an�1:

Proof: First note that it is enough to prove a) and b). Letg0 =
f0f1 andg1 = f2f3. The functionsg0 andg1 are obtained fromf as
follows:

g0(Xn�1; . . . ; X1) = f(Xn = 0; Xn�1; . . . ; X1)

g1(Xn�1; . . . ; X1) = f(Xn = 1; Xn�1; . . . ; X1):

From the definition ofre() it is clear that for0 � i � n� 1, we have
re(f)[i] = 1 iff re(g0)[i]= 1 and for1� i�n, we havere(f)[i] = 1
iff re(g1)[i� 1] = 1. From this we get a) and b), respectively.

The following result establishes the maximum possible nonlinearity
for symmetric functions.

Theorem 1: Let n be odd andF 2 An. Then

nl(F ) � 2n�1 � 2
n�1
2 :

Proof: The proof is by induction on oddn.
The induction base isn = 1. For n = 1, there are four Boolean

functions and all of them are affine. Hence, the nonlinearity of any
function on one variable is0 and, thus, the statement of the result is
satisfied forn = 1.

Assume the result holds for some oddn�2, i.e., the maximum pos-
sible nonlinearity of(n � 2)-variable symmetric functions is2n�3 �

2
n�3
2 . We claim that this forces the maximum possible nonlinearity

for n-variable symmetric functions to be2n�1 � 2
n�1
2 . This claim

is proved by contradiction. Suppose the claim is false and there ex-

ists a functionF in An such thatnl(F ) > 2n�1 � 2
n�1
2 . We write

F = f0f1f2f3, where eachfi is inAn�2. From Lemma 1 d), we have
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re(f1) = re(f2) and hencef1 = f2. Thus,F is of the formf0fff3,
where

f0(Xn�2; . . . ; X1) =F (0; 0; Xn�2; . . . ; X1)

f(Xn�2; . . . ; X1) =F (0; 1; Xn�2; . . . ; X1)

=F (1; 0; Xn�2; . . . ; X1)

f3(Xn�2; . . . ; X1) =F (1; 1; Xn�2; . . . ; X1):

Define

G(Xn; Xn�1; Xn�2; . . . ; X1)

= F (Xn �Xn�1; 1�Xn�1; Xn�2; . . . ; X1):

Clearly,G can be obtained fromF by an affine transformation of
the variables and henceF andG have the same nonlinearity. Write
G = g0g1, whereg0; g1 aren � 1 variable functions. Then

g0(Xn�1; . . . ; X1) =G(0; Xn�1; . . . ; X1)

=F (Xn�1; 1�Xn�1; Xn�2; . . . ; X1);

g1(Xn�1; . . . ; X1) =G(1; Xn�1; . . . ; X1)

=F (1�Xn�1; 1�Xn�1; Xn�2; . . . ; X1):

Further

g0(0; Xn�2; . . . ; X1) =F (0; 1; Xn�2; . . . ; X1)

= f(Xn�2; . . . ; X1)

=F (1; 0; Xn�2; . . . ; X1)

= g0(1; Xn�2; . . . ; X1)

g1(0; Xn�2; . . . ; X1) =F (1; 1; Xn�2; . . . ; X1)

= f3(Xn�2; . . . ; X1);

g1(1; Xn�2; . . . ; X1) =F (0; 0; Xn�2; . . . ; X1)

= f0(Xn�2; . . . ; X1):

Therefore,g0 = ff andg1 = f3f0.
Using Proposition 1, we get

nl(ff) = nl(g0) > 2n�2 � 2
n�1
2 :

Sincenl(ff) = 2nl(f), we havenl(f) > 2n�3 � 2
n�3
2 . This con-

tradicts the induction hypothesis.

For an odd number of variables, the first characterization of functions
achieving maximum nonlinearity is described in the following result.

Theorem 2: Letn � 3 be odd andF 2 An. Then the following are
equivalent.

1) nl(F ) = 2n�1 � 2
n�1
2 .

2) re(F ) is a contiguousn + 1 length substring of(1100)�.

3) The Walsh transform ofF is three valued and takes the values

0; �2
n+1
2 .

A consequence of 2) is that there are exactly four possible functions in

An achieving the nonlinearity2n�1 � 2
n�1
2 .

Proof: The proof of 3))1) is obvious. The proof of 2))1) is
also easy and can be seen by the following argument. Letre(F ) =
a0 � � � an. We writeF asF = f1f2, wheref1; f2 2 An�1 and by
Lemma 1 a) and b),re(f1) = a0 � � � an�1, re(f2) = a1 � � � an. Then
re(f1); re(f2) are both contiguous length-n substrings of(0011)�.
Using the characterization in [7], it follows that bothf1 andf2 are

bent. Hence, bothf1 andf2 have nonlinearity2n�2� 2
n�3
2 . SinceF

is formed by concatenatingf1 andf2, the nonlinearity ofF is 2n�1�

2
n�1
2 .

We now prove 1))2) and 3). SinceF 2 An, we can writeF asF =
f0fff3, wheref0; f; f3 are symmetric functions ofn � 2 variables.
We show by induction on oddn � 3, thatF is a contiguousn + 1
length substring of(1100)� and also the Walsh transformWF of F

takes only the three distinct values:0; �2
n+1
2 .

We first show that

nl(f) = 2n�3 � 2
n�3
2 :

Sincenl(F ) = 2n�1 � 2
n�1
2 , using an argument similar to the proof

of Theorem 1, we have

nl(ff) � 2n�2 � 2
n�1
2 :

However,nl(ff) = 2nl(f)and sonl(f) � 2n�3�2
n�3
2 . Also, using

Theorem 1, the maximum possible nonlinearity for a(n� 2)-variable

symmetric function is2n�3 � 2
n�3
2 and sonl(f) = 2n�3 � 2

n�3
2 .

By the induction hypothesis we can assume thatre(f) is a con-
tiguousn � 1 length substring of(1100)� and the Walsh transform

values off are0; �2
n�1
2 . Thus, the possible forms ofre(f) are

1) g1 = 001100 � � � ;

2) g2 = 110011 � � � ;

3) g3 = 01100 � � � ;

4) g4 = 10011 � � � :

Let G = re(F ) = xgy, for somex; y 2 f0; 1g. Using Lemma 1,
we get thatg must be one ofg1; g2; g3; g4. We now show that the
following must hold:

A) If g = g1; thenx = 1 andy = b;

B) If g = g2; thenx = 0 andy = 1� b;

C) If g = g3; thenx = 0 andy = b;

D) If g = g4; thenx = 1 andy = 1� b;

whereb = (n�1)mod4
2

.
Note that it is sufficient to show A) and C). This is becauseg2 = gc1

andg4 = gc3 andex(xhy) andex(xchcyc) have the same nonlinearity
for anyn� 1 length bit stringh. Here, we prove only A), the proof of
C) being similar. We have to prove that the other combinations ofx and
y result in lower nonlinearities. Ifx andy have the values given in the
conditions then it is easy to check thatG is ann+1-length contiguous
substring of(1100)� and hence achieve the required nonlinearity.

Now we turn to the proof of A). We only prove for the condition
n � 1 � 0 mod 4, the casen � 1 � 2 mod 4 being similar. Since
n � 1 � 0 mod 4, we have

re(F ) = x00110011 � � � 0011y:

Let s0 = re(f0), s3 = re(f3) andt = re(f). Therefore,

t =00110011 � � � 0011

s0 =x00110011 � � � 001

s3 =0110011 � � � 0011y:

Let s = 100110011 � � � 11001 (of lengthn� 1) andl be a linear func-
tion such thatwd(ex(s); l) = a. We now rule out the three possible
options except the casex = 1; y = 0. In the rest of the proof, by#(�)
we denote the number of times a Boolean event� is true.

Case 1:x=y=0: Let#(ex(s)= l)=a1 and#(ex(s) 6= l)=a2.
Thena= a1�a2.

Now#(ex(s0) = l) = a1+1 and#(ex(s0) 6= l) = a2�1 and so

wd(f0; l) = wd(ex(s0); l) = a+ 2:

Also,

wd(f2; l) = wd(ex(s3); l) = �a
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sinces3 = sc wheny = 0. By the induction hypothesis, the Walsh

transform values off are0; �2
n�1

2 . Let l be such thatwd(f; l) =

2
n�1

2 . Then

wd(F; llll) = wd(f0; l) + 2wd(f; l) + wd(f3; l) = 2 + 2
n+1

2 :

Hence

d(F; llll) = 2n�1 � 2
n�1

2 � 1 < 2n�1 � 2
n�1

2

which contradictsnl(F ) = 2n�1 � 2
n�1

2 .
Case 2:x=0; y=1: In this cases3=(s0)

rc. Let l be a nondegen-
erate linear function on an odd number of variables and hencelr= lc.
Then

wd(f3; l) = wd(frc0 ; l) = wd(f0; l
rc) = wd(f0; l) = b

(say). Since there are exactly2n�3 linear functions such thatlr = lc, it
cannot be the case thatwd(f; l) = 0 for all such functions as otherwise
this would violate Parseval’s theorem. So, we can choosel such that

wd(f; l) = �2
n�1

2 . Now two cases arise

i) wd(f; l) = 2
n�1

2 . If b > 0, then consider

wd(F; llll) = 2
n+1

2 + 2b

and if b < 0, then consider

wd(F; lclllc) = 2
n+1

2 + 2b:

ii) wd(f; l) = �2
n�1

2 . If b > 0, then consider

wd(F; lclllc) = �2
n+1

2 � 2b

and if b < 0, then consider

wd(F; llll) = �2
n+1

2 � 2b:

Therefore either

d(F; llll) < 2n�1 � 2
n�1

2

or

d(F; lclllc) < 2n�1 � 2
n�1

2

and so

nl(F ) < 2n�1 � 2
n�1

2

which is a contradiction.
Case 3:x=y=1: In this casewd(f0; l)=a andwd(fc0 ; l)=�a.

Let l be such that the last bit ofl is 0, i.e., nondegenerate on an even
number of variables and hencelr = l. Thenwd(f3; l) = �a � 2.
Now combining the techniques of the above two cases we can show

thatnl(F ) < 2n�1 � 2
n�1

2 , which is a contradiction.
We now complete the induction step for the Walsh transform ofF .

We show thatWF is three valued and takes the values0; �2
n+1

2 . We
have proved thatre(F ) is a contiguous(n + 1) length substring of
(0011)�. Using Lemma 1, it is not difficult to see that this forcesre(f0)
andre(f3) to be bitwise complements of each other. Hencef0 = fc3 .

Let l 2 Ln. Thenl is one of the forms

l1l1l1l1; l1l
c
1l1l

c
1; l1l1l

c
1l
c
1; l1l

c
1l
c
1l1

for somel1 2 Ln�2. Sincef0 = fc3 we have

wd(f0; l1) = �wd(f3; l1):

SinceF = f0fff3, we have

wd(F; l) = 2wd(f0; l1) or 2wd(f; l1): (7)

Sincere(F ) is a contiguous(n+1)-length substring of(0011)�, both
re(f0) andre(f) are contiguous(n�1)-length substrings of(0011)�.

Hence by the induction hypothesis, the Walsh transforms of bothf0 and

f are three-valued and take the values0; �2
n�1
2 . Now using (7) we

complete the induction step for the Walsh transform ofF .

From Theorem 2, we get a characterization of the class of symmetric
functions with maximum nonlinearity for odd number of input vari-
ables. It is well known [1] that in a symmetric Boolean function ei-
ther all thekth-order terms are present or all are absent at the same
time. Thus, the algebraic normal form of a symmetric Boolean func-
tion f can also be represented by ann+1-length bit vectorra(f) (the
reduced algebraic normal form off ), wherera(f)[k] 2 f0; 1g and
ra(f)[k] = 0 (respectively,1) means that all thekth-order terms are
absent (respectively, present). Forf 2 An, the following result relates
the vectorsre(f) andra(f).

Theorem 3: Forf 2 An, let us considerg = re(f) andq = ra(f).
Then

g[i] =

i

k=0

q[k]
i

k
(mod 2);

where0 � i � n and0 � k � i.
Proof: Since all vectors of the same weight have the same output

value it is sufficient to consider an arbitrary input vector of weighti,
for 0 � i � n. We now compute the output value corresponding to
such a vector. All terms in the ANF having terms of length greater than
i must necessarily evaluate to0. Now consider terms of lengthk with
0 � k � i, andq[k] = 1. Then, exactly i

k
number ofk-length terms

(out of the total n
k

number ofk-length terms in the ANF) will evaluate
to 1. From this the proof follows.

This expression provides an algorithm to generate eitherg from q

or q from g. If q is known, it is easy to getg from direct calculation.
However, ifg is known, thenq needs to be generated recursively. That
is, for calculatingq[k], all the values ofq[0]; . . . ; q[k � 1] need to be
calculated. As example, ifg is known, theng[0] = q[0]. For the next
step

g[1] =

1

k=0

q[k]
1

k
(mod 2) = q[0] + q[1] mod 2

and sinceg[1]; q[0] are known,q[1] can be calculated. In this manner,
all the bits ofq can be calculated. Now we provide the algebraic normal
form of the symmetric functions on odd number of variables with max-
imum nonlinearity. We show that the algebraic degree of the sym-
metric functions in Theorem 2 is2 irrespective of the number of input
variables.

Theorem 4: Let F 2 An for oddn � 3. Then the following are
equivalent.

1) re(F ) is a contiguous(n+ 1) length substring of(0011)�.
2) The ANF ofF is given by

F (X1; . . . ; Xn) =
1�i<j�n

XiXj � b

n

i=1

Xi � c

where,b; c 2 f0; 1g.

Proof: Let g = re(F ) andq = ra(F ). We first note that it is
sufficient to prove thatg = 0011 � � � is a contiguous(n + 1) length
substring of(0011)� iff q[2] = 1 andq[i] = 0 for 0 � i � n and
i 6= 2. The reason for this is the following. The four possible contiguous
(n+1)-length substrings of(0011)� areg; gr; gc; andgrc. The func-
tions corresponding to these strings areF = ex(g), F r = ex(gr),
F c = ex(gc), andF rc = ex(grc). Since

F
r(Xn; . . . ; X1) = F (1�Xn; . . . ; 1�X1)
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the functionsF; F r; F c; andF rc all have the same degree. This shows
the claimed sufficiency. We now turn to proving thatg = 0011 � � � is
a contiguous(n + 1)-length substring of(0011)� iff q[2] = 1 and
q[i] = 0 for 0 � i � n andi 6= 2.

First assume thatq[2] = 1 andq[i] = 0 for 0 � i � n andi 6= 2.
From Theorem 3, we haveg[0] = 0; g[1] = 0; g[2] = 2

2
mod 2 = 1

andg[3] = 3

2
mod 2 = 1. Further, fori � 4, we have

g[i] =
i

2
mod 2 =

i(i� 1)

2
mod 2

=0; if i � 0; 1 mod 4

=1; if i � 2; 3 mod 4:

For the converse, assume thatg = 0011 � � � is an(n + 1) length sub-
string of (0011)�. Using Theorem 3, it is easy to verify thatq[0] =
q[1] = q[3] = 0 andq[2] = 1. We now show by induction onk that
for k � 3, q[k] = 0. The base for the induction is clearlyk = 3 and is
easy to see as mentioned before. The inductive step reduces to showing

q[4j] = q[4j + 1] = q[4j + 2] = q[4j + 3] = 0; for all j � 1:

We haveg[4i] = g[4i + 1] = 0 andg[4i + 2] = g[4i + 3] = 1 for
i � 1. Using Theorem 3 and the induction hypothesis, we have

g[4j] = 0 =

4j

k=0

q[k]
4j

k
mod 2

=
4j

2
q[2] + q[4j] mod 2:

Since 4j

2
mod 2 = 0 andg[4j] = 0, we haveq[4j] = 0. Similarly, it

can be shown thatq[4j + 1] = 0. The proofs thatq[4j + 2]; q[4j + 3]
are zero are similar and we only showq[4j + 2] = 0. Again, using
Theorem 3 and the induction hypothesis we have

g[4j + 2] = 0 =

4j+2

k=0

q[k]
4j + 2

k
mod 2

=
4j + 2

2
q[2] + q[4j + 2] mod 2:

Since 4j+2

2
mod 2=1 andq[2]=g[4j+2]=1, we haveq[4j+2]=0.

Thus, we get thatq[i] = 0 for 0 � i � n; i 6= 2 andq[2] = 1. Thus,
F is of the form(

1�i<j�nXiXj).

Combining Theorems 2 and 4 we obtain the following characteriza-
tion of symmetric functions on odd number of variables attaining the
maximum possible nonlinearity.

Theorem 5: Let n � 3 be odd andf be ann-variable symmetric
Boolean function. The following are equivalent.

1) The nonlinearity off is equal to2n�1 � 2
n�1
2 .

2) re(f) is a contiguous(n+ 1) length substring of(0011)�.

3) The Walsh transform forf is three valued and takes the values

0; �2 � 2
n�1
2 .

4) f is a quadratic function, i.e., the algebraic degree off is 2.

An important property of Boolean functions is its propagation char-
acteristics defined as follows. Ann-variable Boolean functionf is said
to satisfyPC(k) if f(X)�f(X��) is balanced for all1�wt (�)�k.

Theorem 6: Forn odd, there exists balancedF 2 An with nonlin-

earity2n�1 � 2
n�1
2 satisfyingPC(n� 1).

Proof: Forn = 4m+ 1 consider the4m+ 2-length stringg =
0(1100)m1 and letF = ex(g). ThenF is of the formffrc where
f is a symmetric bent function on4m variables. Thus,F is balanced.
Similarly, for n = 4m + 3 consider the4m + 4 length stringg =
00(1100)m11 and letF = ex(g). Then alsoF is of the formffrc

wheref is a symmetric bent function on4m+2 variables. Thus,F is
balanced. The nonlinearity is equal to the nonlinearity achieved by the
concatenation of two bent functions.

The functionf is a symmetric bent function. It is well known [3]
that bent functions of(n � 1) variables satisfyPC(n � 1). SinceF
is of the formffrc, it satisfies propagation characteristics with respect
to all then-bit vectors except the all one vector.
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