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Abstract

The problem of water wave scattering by a thin circular-are-shaped plate submerged in infinitely deep
water 15 investigated by linear theory. The circular-are is not necessarily symmetric about the vertical through
its center. The problem is formulated in terms of a hypersingular integral equation for a discontinuity of
the potential function across the plate. The mtegral equation is solved approximately using a finite seres
involving Chebyshev polynomials of the second kind. The unknown constants in the finite series are detennined
numerically by using the collocation and the Galerkin methods. Both the methods ultimately produce very
accurate numencal estimates for the reflection coefficient. The numerical results are depicted graphically against
the wave number for a variety of configurations of the arc. Some results are compared with known results
available in the literature and good agreement 15 achieved. The suitability of using a circular-are-shaped plate
as an clement of a water wave lens has also been discussed on the basis of the present numerical results.
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1. Introduction

A water wave lens can be constructed from a system of submerged bodies, called elements, to
focus waves for the purpose of extracting wave energy from them (Mclver and Urka, 1995). The
wave focussing mechanism is similar to what governs the focussing of light waves. The system is
designed in such a way that incident wave trains experience phase shifts without much reflection as
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they pass over it and are transformed by the lens into converging wave trains. Thus, each element
of the wave lens should be such that an incoming surface wave train experiences little reflection by
it. It is well known that a circular cylinder with horizontal axis is transparent to normally incident
waves of all frequencies when submerged in water of infinite depth (Dean, 1948; Ursell, 1950) and
it can be used as an ideal element of a wave lens. However, there are some practical difficulties in
using it as a lens element and other bodies such as thin horizontal plates, chevron shaped plates, etc.
have been employed (Mclver and Urka, 1995). Mclver (1985) considered a submerged horizontal
flat plate moored to the seabed to study the feasibility of its use as a lens element. There are
instances of total transmission of normally incident waves past submerged obstacles at isolated
frequencies. Examples of such obstacles include submerged long two-dimensional bodies, bottom
mounted submerged rectangular barriers, submerged rectangular blocks (Kanoria et al.,, 1999), and
submerged thin inclined plates (Parsons and Martin, 1992). Thus, study of water wave scattering
problems involving submerged obstacles of different geometrical shapes has significant relevance
in the construction of wave lens to use them as its elements. Fortunately, such study is being
made in the water wave literature for the last few decades by linear theory by using a variety of
mathematical techniques which essentially depend on the geometrical configurations of the obstacles.
Mention may be made about the study of water wave scattering problems involving thin vertical or
horizontal barriers submerged in infinitely deep or finite-depth water by many investigators { Dean
1945; Ursell, 1947; Evans, 1970; Porter, 1972; Heins, 1950; Burke, 1964; Mandal and Dolai, 1994;
Porter and Evans, 1995; and others).

The case of a surface piercing thin plate inclined at an angle {”1;”“ (n being a nonnegative inte-
ger) with the vertical was considered by John { 1948) by using complex variable theory for explicit
solutions. However, the method is unwieldy for # = 2. For arbitrary inclination of the thin plate
Parsons and Martin (1992) devised a hypersingular integral equation formulation of the problem for
the case when the plate is submerged in infinitely deep water to obtain very accurate numerical
estimates for the reflection and transmission coefficients. The surface piercing inclined plate problem
was also investigated by Parsons and Martin (1994) by the same technique with some appropri-
ate modifications. This technique of hypersingular integral equation can also be applied for a thin
curved plate and Parsons and Martin (1994 ) used this technique to study the case of a submerged
circular-arc-shaped thin plate submerged in deep water, the plate being convex upwards and sym-
metric about the vertical passing through the centre of the arc. For studying the feasibility of using a
circular-arc-shaped plate as a wave lens element Mclver and Urka (1995) investigated the symmetric
circular-arc-shaped plate problem of Parsons and Martin (1994) by two methods, one based on the
method of matched series expansions and the other based on Schwinger variational approximation.
They found that there is very little reflection for plates which occupy half a circle or more, and
such plates are good candidates for use as lens elements.

In the present paper, we consider a submerged circular-arc-shaped plate placed arbitrarily, i.e. the
plate is, in general, not symmetric with respect to the vertical through its centre and not necessarily
convex upwards, and study its reflective properties for the purpose of its feasibility to use as a
lens element. As in Parsons and Martin { 1994), a hypersingular integral equation formulation of the
problem is derived. The integral equation contains a discontinuity of the velocity potential across the
plate. It is solved numerically by approximating the discontinuity in terms of a finite series involving
Chebyshev polynomials of the second kind. The unknown constants appearing as coefficients in the
finite series are determined numerically by using two methods. The first one is based on collocation
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as has been used by Parsons and Martin ( 1994). The second is a Galerkin method based on utilization
of the orthogonal property of the Chebyshev polynomials. Both the methods produce very accurate
numerical estimates for the reflection coeflicient, which are depicted graphically against the wave
number for various configurations of the circular-arc plate. Some results are compared with those
obtained by Mclver and Urka ( 1995). A good agreement is seen to be achieved. When the circular-arc
approaches a full circle, the reflection coeflicient is almost zero, which agrees with the classical result
concerning a circular cylinder mentioned above. Again, when the position of the circular-arc plate is
reversed with respect to the vertical through the centre of the circle, the reflection coeflicient remains
unchanged. This is in accordance with the principle of complementarity theorem.

Numerical results for the reflection coeflicient show that when the arc length of the plate is more
than half {or less than quarter) of a circle, then its upward (or downward) convex configuration is a
good candidate for use as a lens element. A semi-circular-arc-shaped plate with horizontal diameter
can also be used as lens element for the low- (or high) frequency range when it is convex downward

{or upward ).

2. Formulation

Let a circular-arc-shaped thin plate I be submerged in infinitely deep water and its configuration
be described by using Cartesian co-ordinates with x- and z-axis lying on the mean free surface and
y-axis directed vertically downwards and passing through the centre of the circular-arc. The vertical
section of the plate is in the form of an arc of a circle of radius b with centre at depth  + b below
the mean free surface and let = and fi{ = 2) be the angles made with the upward vertical by the
radii at two end points of the arc (see Fig. 1).

Fig. 1. Configuration of a circular-arc-shaped thin plate,
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Thus, a point (x, ) on the plate I" has the parametric representation

o fi
x=hsin@, v=d+b—beos@| - st< — |,
Y ] ]
where & = f§ — =«
With the usual assumptions that water waves are linear phenomena, the fluid is incompressible
and inviscid, and its motion is irrotational, there exists a velocity potential which can be written
as Re{_—';ﬁ”qﬁ{x,y}e"“}, where b, is the amplitude of the incoming surface wave train of angular

frequency ¢ and described by .’i‘.f*{%qb.n{:r~ yle i L with
'?l-}n{:_‘:,,“I y} bty E_K""_iﬁ.. {2_] }

g being the acceleration due to gravity, t the time and K = a?/g. It is assumed that the incoming
wave train propagates along a direction normal to the axis of the cylinder whose cross section is
the circle, a part of which is I', so that the problem is two-dimensional and independent of z. Then,
the function ¢{x, v) satisfies, in the fluid region, that

V=10, (2.2)
where V7 is the two-dimensional Laplace operator with the free surface condition
¢
B 22 o oy (2.3)
dy
and the condition on the plate
9. g wwr (2.4)
on

where d/cn denotes the normal derivative at a point on I'. The edge conditions are given by
r'*W ¢ is bounded as r — 0, (2.5)
where r is the distance from the submerged edges of I', the infinite-depth condition by

vq&—r{] as Y — 0o, {26}
and the condition at infinity by
Tepy(x, v) as x — oo,
Plx, y) — (2.7
polx, ¥) + Rpo(—x, y) as x — —oc,

where R and T denote, respectively, the reflection and transmission coefficients, and are to be
determined.

3. Method of solution

In order to obtain a representation of the function ¢(x, y) satisfying (2.2), (23), (2.6) and (2.7)
we need the source potential Gix, v; &)y = 0) which satisfies

V3G =0 in the fluid region except at (&, n).
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G—Inrasr={x- 5}1 o s 31}2}""2 Y

e
KG+—=0 on y=1,
cy
VG —0 as y— oo,

—K{ v+ +iK|r—£|

G(x,v; €,4) — conste as |x— & — oc.

Then G is given by (cf. Mandal and Chakrabarti, 2000, p. 28)
—k{ w4+

cosk(x — &)dk, LN |
X (x—¢) (3.1)

Guyem=mZ-2 [ &
¥ e k—
where r,” ={(x— ¥ +(yFn)}'?, and C denotes a path along the positive real axis in the complex
k-plane indented below the pole at k=K.

We now apply the Green integral theorem to the functions ¢(x, v) — ¢(x, v) and G(x, v; &) in
the region bounded by the lines y =0, - X <x =X, x=X 0= ysV;y=Y, ¥ =sx<X,a
closed curve enclosing I” and a circle of small radius & with centre at (Z,5), and ultimately make
X — oo, ¥ — oo, and the two sides of the closed curve enclosing I’ shrinking almost to 17 and
& — 0. Then, we obtain

A

: s ] &G
¢C.) = dolSn) — = f F{q} {v ¥ Gn)ds,, (3.2)

where ¢ = (x, ¥) is a point on I, F(q) denotes the discontinuity of ¢(x, y) across I' and d/dn, the
normal derivative at the point g. It should be noted that the unknown function F(g) vanishes at the
end points of I" while its derivative has square root singularity there.
Use of boundary conditions (2.4) rewritten as
e

in

=0 on I,

where _n = (&,n) is another point on I leads to the integro-differential equation

ji{w——w;ﬂm —mr¢

0
{a ny (pel) (3.3)

oy
where F(g) vanishes at the end points c:f I'. The order of differentiation and integration in (3.3)
can be interchanged provided the integral is interpreted as a Hadamard finite part integral, and this
leads to the hypersingular integral equation

T ey

(i iy
j( F(g)——— (g; p)ds, =2n
: i i, i

(pel’) (3.4)

where the cross in the integral sign indicates a Hadamard finite part integral.
To obtain the actual expression of the kernel in (3.4), we note that the unit normals n, and n, at
the points p and ¢ on I' are given by

n, = (sin Gu, —cos Gu), n, =(sin Bt —cos 1), (3.5)
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where u and ¢ denote the parametric co-ordinates of p and g, respectively. Using (3.5), we find that

with

1
RO~ 17

7

— A (1) (%

+cosEu—1) [ L

+sin Eu—1t) [

1
AR §n? B(u—1)

_x?

ReNu— 1)

2KY

TS

XY

xXT+y?
2KX

XZy72g ©

X = X(u,t)=h{sin @t — sin &u),

TSN

Y =¥ut)=2(d + b) — blcos @t + cos G ).
Following Yu and Ursell (1961), the integrals in (3.7) can be expanded as

where 7 =0.5772. ..

J

e—.'Hr'

k—K

m=1

is Euler’s constant, r; = (X?* 4+ ¥?)?

Also, the right-hand side of (3.4) can be expressed as

where

h(u) =

f

%

Thus, (3.4) becomes

where

e

I

golt

}__

gol 1) [

1
(u—1y

_bn F(r)

il Ke—ﬁ.’lr{u WK S+ Ea)
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+b1&#.x"{u.r}] dt = — 2k @*h(u) (% <u<

{u~1{£)~
&)

.-

‘{_

cos ) cos sin
( ) ur) dk=—e”{{anr| —i?r+",'}( ) KX) + i (
sin sin cos

{— ﬁrl i 1 cos
E: ( E+3+ +E)( ‘

—5in

and fl; = tan—'(X/Y).
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s0 that gg(¢) may vanish at the end points ¢ = 2/@, }/@ of the interval (2/@,[1/8).
Replacing ¢ and u by

2

(

x+p
&

+I) and

2

(

a+ fi
(]

)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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respectively, we can reduce (3.11) to the hypersingular integral equation of standard form in the
interval (—1.1) as

"l
j!_| (1) [{u _] 7+ .Jf'.{mr}] di =hi(u) (=1 <u=<1), (3.13)

where

H",{uJ}zlhli_’-}z.X (“Jrﬁ ’ gtJ”q+2)~

2 2&
f;|{r}—gn( )

.{u;.__mlm( mﬂg) (3.14)

and (1) satisfies the end conditions
a(£1)=0. (3.15)

To solve (3.13) we approximate ¢,(¢) as

N
@)= =72 " a,Udr), (3.16)

where N is an integer,[/,(#) is the nth order Chebyshev polynomial of the second kind, and a, (n=
0.1,....N) are unknown complex constants. The square root factor in (3.16) ensures that g,(1),
or rather F(g), has the correct behaviour at the ends of the plate. The unknown constants a,(n =
0,1,....,N) will be determined by using the collocation and the Galerkin methods.

Substitution of (3.16) into (3.13) leads to

N
> apdu(u) =hu) (=1 <u<l), (3.17)
=0
where
|
An{u}=—rr{n+l}m{u}+f (1 — )25 (u, 1) U(2) dt. (3.18)
]

The collocation points are chosen as
F+1

ij = COS i
' N+2

Putting u=u; (j =0,1,....N) in (3.17), we obtain a system of linear equations,

(=10, LNy (3.19)

N
> andiu)=h(w) (j=0.1.....N) (320)
n=0

for the determination of the constants a, (n=0,1...., N). We use the Gauss Jordan method to solve

(3.20) numerically.
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The orthogonal properties of the Chebyshev polynomials are used in the Galerkin method. We
multiply both sides of (3.17) by (1 — )2 U (u) (m=0,1,..., N) and integrate with respect to u
over —1 to 1 to obtain another system of linear equations

Y a P =dn (m=0,1,...,N), (321)
n=0

where

2 | |
P =—%{n+l}r‘i"m+ f {1— ul}'-"lifm{u}{f H (1 — rl}'-’lum{r}dz} du
= -1

and

1
dn = f (1 — ?)" 2 Uy () due. (322)
=1

Linear equations {3.21) are also solved by the Gauss Jordan method.

MNow the reflection and transmission coeflicients R and T are obtained by taking the limits { — Foc
in (3.2 for ¢ £, ). For this purpose, we require the asymptotic result {see Mandal and Chakrabarti,
2000, p. 28)

— K p+qEif{f—x)

Glx, v; E,q) — —2mie as £ — +no. (323)

Making ¢ — —oc in (3.2) after using (3.23) and noting (2.7) with (x, v) replaced by (&, ), we find
that

R=iK f gn{q}ﬂ—ﬁ_ﬁ'—iﬁi—iﬂr dS:J.
r

. -y Y
IKb& : ; : a5 2 :
o, T ay [ {] _ EZ}I-ZLﬂr{I}E—R{h—:F—hcm& V(& sin @+ G ]df.. {324}
of —1

n=0
with ¢’ = (2 + /2@ + ¢/2. Similarly, the limit { — oc leads to

iKhE
PR Za”/‘ {] _# }lj[ﬁr{f}ﬂ_ﬂ{h +d —heos @1 )—i{ Kb sin @+ E”:di' {325}

n=i

Thus, once a, (n=10,1...., N) are found numerically by solving linear system (3.20) or (3.21),
|R| and |T| can be computed from (3.24) and (3.25), respectively. Here, the integrals in (3.24) and
(3.25) are evaluated numerically by (Gauss quadrature. The relation

IR + |TP =1 (3.26)

is used as a partial check on the correctness of the numerical results.

4. Numerical results

For a particular set of values of the depth parameter /b= 0.1, wave number Kb =02 and angles
o= m/4, i = 3n/2, the numerical results of |R| are compared for different values of the truncation
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Table 1
Reflection coefficient |R| (d/b= 01,2 =n/d, f=3n/2:Kb=02)

N Collocation method Galerkin method
0 0.240%6 0.18433

| 0.13232 0.12150

2 0.12353 0.12612

K] 0.12644 0.12627

4 0.12636 0.12634

3 0.12633

[ 0.12634

T 0.12634

Table 2

Reflection and transmission coefficient [R| and |T| {4/ =012 =n/6, f=n/2)

Kb R| 7| IR+ |72
1.0 0.25213 0.967649 1.00000
1.6 0.26491 096536 1.00000
2.2 0.22521 0.97431 100000

size N between the Galerkin and the collocation methods in Table 1. It is seen that slightly smaller
N is sufficient for the Galerkin method compared to the collocation method to obtain numerical
estimates for |R| correct upto 4-5 decimal places. However, more computational time is needed
for the Galerkin method compared to the collocation method because we have to compute a double
integral at every stage in the former while a single integral in the latter. Thus the collocation method
is advantageous. The Galerkin method may be used to check the correctness of the results computed
by using the collocation method. It should be mentioned here that the truncation size N which gives
the same accuracy is different depending upon the arc length, depth parameter and the wave number.
For all the data presented here, NV is chosen in such a way that the result is correct upto 4 -5 decimal
places.

Table 2 shows a representative set of values of |R|,|T| and |R]> +|T]* for a=n/6.f=mn/2.d/h=0.]
and for three different values of Kb. It is observed that relation (3.26) is satisfied upto 5 decimal
places.

Since the main concern here is the reflective properties of the submerged circular-arc-shaped plate
for an incoming wave train, we depict |R| against the wave number for various configurations of the
plate. For each data point used in the plots of various graphs for |R|, the transmission coeflicient
|T| is computed so as to ensure energy equality (3.26). To visualize the dependence of the depth of
submergence of the plate, the reflection coeflicient || is depicted in Fig. 2 against the wave number
Kh for 2 =45, f = 1807 and the depth parameter /b= 0.1,0.3,0.5. It is observed that for a fixed
wave number, |R| decreases as /b increases, i.e. the more is the depth of the submergence of the
plate below the free surface the less is the reflection. This is plausible since less energy is reflected
by the plate if it is submerged more below the free surface.



326 M. Kanorig, BN, Mandal ! Fluid Dynamics Research 31 72002 ) 317 -331

0.3
0.25 R
CHEE o i

0.1 ™ ..

T
P
i

0.05

Fig. 2. Reflection coefficient vs, wave number, 2 = 45°, f = 180°.
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Fig. 3. Reflection coefficient vs. wave number, /b =10.1,2 =30°.

Again, to visualize the effect of the arc length of the plate, |R| is plotted in Fig. 3 against Kb for
a number of plates whose one end is kept fixed at x = 307 and its centre is kept at a fixed depth
(d/b=0.1). The arc lengths of the plates are taken as =907, 1807, 2707, 3307, 345", 360°,375" and
3897, As the arc length increases, the overall reflection coefficient initially increases (from fi = 90°
to 270° here), takes a maximum around f# = 330° and then decreases. For the case of an almost
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Fig. 4. Reflection coefficient vs. wave number, d/b =025 2 = —34° 1 = 547, - -, present: 0, Mclver and Urka (1995),

full circle (x = 30°, i = 389°%), the reflection is seen to be quite insignificant for all wave numbers.
This is in conformity with the classical result that a long horizontal circular cylinder submerged in
deep water experiences no reflection when an incoming wave train is normally incident on it. This
may also be regarded as another partial check on the correctness of the numerical method employed
here.

For the purpose of comparison with the results obtained by the present method and those obtained
by Mclver and Urka (1995) by employing the method of matched series solutions, |R| is depicted
in Fig. 4 for the symmetric configuration of the plate by choosing d/b =025 and x=—54°, i =34°.
The solid curve displays the present results and the circles the ones estimated from the Fig. 3 in
Mclver and Urka (1995). The agreement between the two is excellent. However, some differences
are observed if our results are compared with theirs obtained by using the method of variational
approximation and given also in Fig. 3 there (not shown here). This difference may be attributed to
the fact that the method of variational approximation produces good results only when the arc length
of the plate is shorter than the wavelength and the plate occupies a small fraction of a circle. It should
also be noted that the method of matched series expansion employed by them produces accurate
results but quite a large number of multipole potential functions are needed, e.g. 256 multipole
potentials are required to ensure numerical accuracy to two decimal places. In contrast, the present
method usually requires only 812 terms in the truncated series expansion (3.16) to get numerical
accuracy upto 4-—5 decimal places.

Fig. 5 depicts |R| against Kb for a number of configurations of the circular-arc plate. Some
configurations are symmetric and some are not, but the depth parameter /b = 0.1 is common to all
of them. The curve denoted by I shows |R| for an upward convex symmetric circular-arc in the form
of a quarter of a circle (z = —45°, f = 45%) while the curve denoted by II its reflection about the
horizontal diameter of the circle (x= 1357, f=225"). It is observed by comparing these two curves
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Fig. 5. Reflection coefficient vs. wave number, d/h=0.1, { 1) 2=—45", f=45, (1") a=—80" =80, (1l) x=135", F=225",
(I e = 100°, F =260°, (111} == 457, F = 1357 & = 225°, 1 = 315°, « estimated from Parsons and Martin for case (1),

that a symmetric upward convex circular-arc produces more reflection compared to a symmetric
downward convex circular-arc of the same arc length and having the same centre. This is expected
since the downward convex arc lying below the upward convex arc encounters less disturbances
due to the incident surface wave train. The curve 1’ and II' represent |R| for a symmetric upward
convex circular-arc plate of arc length greater than the quarter circle but less than the half circle
(. =—80°, 1 =80°) and its reflection about the horizontal diameter (x = 1007, = 260°). For these
plates also, the upward convex arc produces more reflection compared to the downward convex
arc. Curve III depicts |R| for a circular-arc which is convex towards positive x direction as well as
symmetric about a horizontal line passing through its centre (x = 457, 1 = 1357). The reversal of
the position of this arc with respect to the vertical through its centre (x = 2257, § = 315%) produces
the same curve III. The same is true for an arc which is almost a full circle with a small opening
facing an incoming wave train (x = —89°, f =269%) and for the reversed arc (x = 89°, fi = —2697).
In this case, the curves for |R| are very small for all wave numbers. This phenomenon follows from
the so-called complementarity theorem which states that if the scattering body is reversed but the
incident field is left unchanged, then the magnitudes of the reflection and transmission coeflicients
are unaltered.

Fig. 6a shows six different shapes of the circular-arc-shaped plate corresponding to (1) x=—45°, fi=
45°; (I1) 2=45° =315 (Il[) a=15°, =105 (IV) a=—135°, f=135°; (V) 2= 105", f =195°
and (V1) z = 1357, i = 225° Fig. 6b displays |R| against Kb for the shapes (I} to (VI1), shown
in Fig. 6a, with the same depth parameter /b = 02. It is observed that the reflection is much
reduced when the arc is convex upward compared to the case when it is convex downward and
the plate length is more than half a circle. For plates occupying less than half’ a circle, on the
other hand, the downward convex plate produces less reflection compared to the upward convex
plate with the same arc length. Thus circular-arc plates occupying more than half a circle are good
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Fig. 6. (a) Different shapes of the circular-arc-shaped plate. (= f): (1) {—457,45%), (1) {457, 3157), (11} {157, 1057,
IV (—1357 135%), (V) (1057, 1957%), (V1) 135°,225%; (b) Reflection coefficient vs. wave number, d/f = 0.2, shapes

(I}={IV}).

candidates for use as elements for a water wave lens when they are convex upward. This has also
been confirmed by Mclver and Urka (1995) for symmetric arcs. However, circular-arc plates occu-
pying less than half a circle and are convex downward, are also good candidates for use as lens
elements. Fig. 7 depicts |R| for two semi-circular-arcs with horizontal diameter, one is convex up-
ward (2= —90°, f =90) and the other is convex downward (x = 90°, § =270%) for d/h=02. It is
observed that the upward convex semi-circular plate produces more reflection in the low-frequency
range and less reflection in the complementary range compared to the downward convex semi-circular
plate. Thus their use as lens elements is dependent on the frequency range of the incoming wave

train.



330 M. Kanorig, BN, Mandal ! Fluid Dynamics Research 31 72002 ) 317 -331

04
03} = 30", 3 = 90°
= # AR R
T 02 3 S
i \.\‘
it %
o1} [/ b
i %,
/ .
M‘"‘-—..
4 . S S
0 0.5 1 15 2
Kb

Fig. 7. Reflection coefficient vs. wave number, J/f = 0.2.

5. Conclusion

The reflective properties of a circular-arc-shaped thin plate submerged in deep water due to the
incidence of a surface wave train are investigated here. A hypersingular integral equation formulation
involving a discontinuity of the potential function across the curve plate is employed. The integral
equation is solved approximately using finite series involving Chebyshev polynomials of the second
kind. The collocation and Galerkin methods are used to obtain unknown constants of the finite
series. Both the methods lead to very accurate numerical estimates for the reflection and transmission
coeflicients. Numerical results for the reflection coeflicient are depicted graphically for a number of
configurations of the circular-arc plate. For almost full circle the reflection coefficient is seen to be
almost zero for all wave numbers, which is consistent with the classical result that a long horizontal
circular cylinder submerged in deep water experiences no reflection for a normally incident train of
surface water waves.

For the purpose of using a circular-arc-shaped plate as an element of a wave lens, some op-
timum configurations of the plate, for which the reflection coeflicients remain small for all wave
numbers, are inferred from the graphs for |R| presented here. It is observed that the upward con-
vex circular-arc plates experience very little reflection compared to the downward convex plates
of same arc length and same depth of their centre if their arc length is more than half a cir-
cle, and are thus good candidates to be used as elements in the construction of a wave lens.
For plates whose arc lengths are less than half a circle, on the other hand, the downward con-
vex plates are more suitable than the upward convex plates for use as lens elements. Finally for
a semi-circular-arc plate, its downward convex configuration produces less reflection compared to
its upward configuration in the low-frequency range, and therefore the use of these plates as lens
elements depends on the frequency range of the incoming wave train. For low-frequency range
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downward convex semi-circular plate is preferable while it is the opposite in the high-frequency
range.

The mathematical analysis and numerical methods used here can easily be adapted, with appropri-
ate modification, to study the reflective properties of a pair of circular-arc-shaped plates of the same
or different radius submerged to the same or different depth below the free surface. Application to
an elliptic arc shaped plate is also straightforward.
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