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SUMMARY. We show how a new condition, called Ces?ro uniform integrability, intro 

duced by Chandra (1989) can be used in many cases to prove Lp-convergence of w-V?? Sn where 

Sn 
= S Xt. 

1. Introduction 

Let (Xn : n > 1) be a sequence of random variables and let 

Sn = X1+...+Xn- Pyke and Root (1968) proved that if (Xn : n > 1) 
is an independent and identically distributed (i.i.d.) sequence and E^X^v) 

< oo for some 0 < p < 2, then n~xE(\ Sn?an\^)-^ 0 as n -> oo where 

an = 0 if 0 < p < 1 and an = ^(XJ if 1 < p< 2. Chatterjee (1969) 
extended this result by assuming only that (Xn : n > 1) is dominated in 

distribution by a random variable X such that E(\X\v) < oo and taking 

o?.= S ^(XjfclXi, ...?X^) if 1 < #< 2. Chow (1971) strengthened this 
k ?- 1 

result by replacing the domination condition by the condition of uniform 

integrability (UI) of (\Xn\P : n > 1). 

In a recent paper Chandra (1989), a new condition called "Ces?ro uni 

form integrability" (CUI) was introduced. This condition is weaker than 

the usual UI condition and yet was shown to be strong enough to derive 

Lj-convergence in the weak law of large numbers (WLLN). In this paper 
we establish ?^-convergence, 0 < p < 2, for several types of independent and 

dependent sequences under CUI. The dependent sequences include pairwise 

independent sequences, martingale differences and L^-mixingale differences. 
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It appears that this CUI condition will be useful in deriving strong law of 

large numbers (SLLN), more general than those known in the literature. See 

Chandra and Goswami (1992) for an account of the progress made in this 

direction. 

2. Preliminaries 

In this section we give the definition ar d basic properties of CUI sequences 

and introduce the concept of L^-mixingales. The latter generalizes the 

concepts of mixingales introduced by McLeish (1975) and its extension given 

by Andrews (1989). 

Definition 2.1. A sequence of real valued random variables (Xn : n > 1) 
on (Q, ji, P) is said to be Ces?ro uniformly integrable (CUI) if 

lim lim sup (rr1 2 JB7[|X*| JT(|X*| > 
a)]) 

= 0. 

Remark 2.2. In order that WLLN (or SLLN) holds for (Xn : n > 1), it 

should be possible to allow a few of the Xn's to take large values. The CUI 

condition is capable (at least to a certain extent) of allowing such sequences. 

In this connection see Chandra (1989). 

In the following lemma, we collect the basic facts we will require about 

the above condition. 

Lemma 2.3. Let (Xn : n > 1) and (Yn - n > 1) be two sequences of ran 

dom variables on (Cl, J?, P). 

(i) (Xn : n > 1) is CUI if and only if 
n 

(a) Urn sup n-1 S E(\X??\ ) < oo 
n ?=i 

and 

(b) given e > 0, there esists a S > 0 such that for any sequence of measur 

able sets 

n n 

(An : n > 1) with lim sup n'1 S P(Ak) < S, Urn sup n'1 S E[ | X* | I(Ak)] < e 
n fc=i n k=i 

(ii) If(\Xn\:n> 1) is CUI and \Yn\ < \Xn\ a.s.,then(\Yn\:n> 1) 
is CUI. 

(iii) If for some p>0, (\Xn\P : n > 1) and (| Yn\*: n > 1) are CUI, 
then so is (\Xn-\-Yn\V: n > 1). 

(iv) Let (<?n : n> 1) be a sequence of sub-sigma fields of J? and p > 0. 

If(\Xn\v :n> 1) is CUI, then so is (Yn = E(\Xn\P \&n),n> 1). 
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Proof, (i) is proved in Chandra (1989). (ii) is trivial, (iii) follows from 

the observation, 

E(\X*+Yk\Pl(\Xk+Yk\ >a)) 

<?B[[\Xh\n(\Xu\ 
> 

^)+&E[\Yk\n(\Yk\ >f-)]. 
To prove (iv), note that since I(\ Yk\ > a) is ̂ -measurable, 

lim sup ft"1 ? E[\Yk\I(\Yk\> a)] = lim su?n-1 2 E[\Xk|H(\ Yk\ > a)], 
n Jfe=i n k=i 

... (2.1) 

Note that as a ?> oo, 

lim sup nr1 2 P(\ Yk\ > a)< [lim sup nr1 2 E(\Xk\P)]a-P-> 0. 
n *=i ? n k=i J 

Thus using the alternative criteria of CUI established in (i), the term in (2.1) 
-? 0 as a-> oo since ( | Xk \ p : k > 1) is CUI 

Bemark 2.4. The following implications relate the concepts of UI and 

CUI. 

k 

(Xk) UI => (Xk) CUI => 
( 
Yk = k-1 s xA UI. 

The proof of this is easy using the criterion of Lemma 2.1 for for CUI and the 

similar criterion for UI. However, none of the reverse implications are true 

in general. To see this, let 

X2k 
= 

-X2k^^N(0,(2k-l)^), Jfe = 1, 2,... 

2n 
Then it is easy to see that (Yk : k > 1) is UI. However (2n)~* 2 E\Xk\ zznm 

as n-> oo. So (Xk : & > 1) is not CUI. For an example where CUI ^> UI 

see Chandra (1989). 

The concept of asymptotic martingales was introduced by McLeish 

(1975), who called them mixingales. Andrews (1989) extended this concept 

to what he called Z^-mixingales. We extend these concepts below through 

the following definitions. 

Let (Xn : n > 1) be a sequence of random variables on (Q, j?, P) such 

that E(\Xn\P) < oo for some p > 1 and for each n > 1. Let (&n : n = 

0,?1> ?2, 2, ...) be an increasing sequence of sub-sigma fields of ji. 

Let || . \\p denote the Lp-novm. 
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Definition 2.5. The pair {(Xn : n > 1), (&n : n = 0, ?1, ...)} is called 

an -Lp-mixingale difference sequence if there exist sequences of constants 

(cn : ft > 1) and (\?rm : m > 0) such that irm-+ 0 as m-> oo and 

(a) \\E(Xn\&n-m)\\p < cnfm 
and 

(b) \\Xn-E(Xn | <?n+m)\\p < cn i?fm+1. 
For some illuminating examples of Lx and L2 mixingale difference 

sequences in the above sense, see Hall and Heyde (1980) and Andrews (1989). 

In the next sections C stands for a generic constant and Sn will denote 
n kn kn 

S I(, 2 or 2 ank Xnk as the case may be. 
<-l fc-l ifc-1 

3. The main results 

In this section we prove various Lp-convergence results. Our first 

result is an extension of a Theorem of Chow (1971) who proves the following 
result with the assumption of UI of the sequence (Xn : n > 1) and deals 

with the case 0 < p < 1. 

Theorem 3.1. Let 0 < p< 1 and (\Xn\P :n> 1) be CUI. Then 

n-^EdSjP^O. 

Proof. For a > 0, defire 

Yn = 
XnI(\Xn\ <a),n>l 

Zn=Xn-Yn, n>l. 

Then n \p 
n-*E(\Sn\P) = n-iE ( 2 Zk + 2 Yk\ ) * k=l *=l I ' 

< n-1 El 2 ZJ ) +ft~x ? S rJ \ | *=1 I / \ I jfc=l ' / 

So 

< ft-1 2 J^IZfclP+tt-i+Po*. 
*=i 

lim sup n^EdSJP < lim sup ft-1 2 E\Zk\P 

lim sup ft-1 2 E\(Xk\Pl(\Xk\ >a)). 
n->? Jfc?l 

Now letting a-> oo and using the fact that ( | Xn I p ' ft > 1) is CUI, the result 
follows. 
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The following theorem deals with the case 1 < p < 2 and extends 

Theorem 2.22 of Hall and Heyde (1980) and Theorem 4 of Chandra (1989). 

Theorem 3.2. Let (Xn : n > 1) be a martingale difference sequence such 

that (\Xn\P : n > 1) is CUI for some 1 < p< 2. Then wr1^| #?|*) -> 0. 

Proof. Let Yn, Zn be defined as in Theorem 3.1. The case p 
= 1 is 

proved in Chandra (1989). We give below a simpler proof for this case. 

n^El I 2 Xk\ ) < n^El 2 (7*-i7(r*[*i, ..,?*-i)) \ I Jfc=2 I / J k=% 

+n-1? 2 Z* \+<nr1E\ 2 J^IX^ ..?X*^)! 
i fc=2 I *=2 

Since (7^?^(Fjfc|Xl5 ..., Xk_^), k > 2) is a bounded martingale difference 

sequence (with respect <?k = 
cr^. ..., Xk_x)) the first term above ?> 0 as 

7?~> oo (see for example Theorem 2.22 of Hall and Heyde (1980)). The last 
n 

two terms are dominated by 2n~~xE( 2 |Z*|). First letting n?? oo and 
jfc-i 

then a?> oo, this converges to 0 by CUI. 

We now look at the case 1 < p < 2. Let C denote a generic constant. 

By Burkholder's inequality (1966) (see Theorem 2.10 of Hall and Heyde, 1980), 

E(\Sn\P)<CE(\ ? X\\pi*) = CE(\ S (Zi+ri)|2>/2) 
*=i k=i 

<CE(\ S Z?\P'*)+CE(\ 2 7!|*/2)<C2 E(\ Zk\P)+C(na*)P<*. 
*-l ?=l *=1 

Thus lim sup nr^i|Sn\p) < G lim sup n"1 S E(\Zk\P). Now the result 

follows as in Theoreem 3.1.Q 

Corollary 3.3. If (\Xn\P :n > 1) is CUI for some l^p<2 then 

n-iE(\ 2 (Xk-~E(Xk\X1, ..., X^))^)-* 0. 
Jfc-2 

Proo/. Note that (Yk 
= 

Xk-E(Xk\Xv ..., Xk^), k > 2) is a martin 

gale difference sequence. Further \E(Xk\Xv ..., X*_i)|*) < ??(|X*|?>| 

Xv..., X*_i). So by applying Lemma 1 (ii), (iii) and (iv), (Yk : k > 2) is 

CUI and the corollary follows from Theorem 3.2. 
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We now turn to 2^,-mixingales and generalize Theorem 1 of Andrews 

(1989) in two directions. First, we prove Lp convergence for p > 1, 

whereas Andrews works withp 
= 1. Second, we reduce the assumption of 

UI to CUI. 

Theorem 3.4. Let {(Xn : ft > 1), (?u i = 0, ? 1, ? 2, ... 
)} be an 

Lp-mixingale difference sequence and (\Xn\P : ft> 1) be CUI for some 

1 < p < 2. Further assume that Km sup ft-1 [ 2 ct)p < oo. Then E(n-X n \?-i / 

\Sn\*)->0. 

Proof. For ft > 1 and i = 0, ? 1, ? 2, ... define 

For each i, ( Yn%, &n+i> ft > 1) is a martingale difference sequence. 

Further (| Yni\P:n^ 1) is CUI by Lemma 1. 

Define Sni 
= 2 7**. By Theorem 3.2, ft-1'* \\Snt\\P -> 0 as ft-? oo 

*-i 

for each i. Further 

n n m 

Sn = S (Xk-E(Xk I <?*+?)) + S ?(Z? I &k_m) + S ??. 

Thus 

n ? m 

||??||3,< 2 ||Z*-?(Z* 1^^)11,+ S||?(Z*|?^l)||p+ S HSn?lIp 
*-i *-i i?w+i 

Thus 

limsupft-1/?,||An||?><limsup(ft-1/3> 2 ck) i?rm+1+\im sup?ft-1^ 2 ck)ijrm 

Now using the condition on c% and the fact that i/rm?> 0 as m?> oo, the result 

follows. 

Remark. It is clear from the above proof that Theorem 3.4 continues 

to hold if the conditions (a), (b) in Definition 2.5 are replaced by 

(a)' lim sup lim sup (ft-1'* 2 ||JB(X*| ?%-?)M = 0 

(b)' lim sup lim sup ( 
n^'P S |tZ*-?(Z?| <9<*+?)b )=? 

0. 
?i ?> oo n ? oo * 

fc-1 
' 

In the following theorems, we show how normalization other than n 

may be used for Sn. 

A 1-3 
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Theorem 3.5. Let (Xn : n > 1) be a sequence of identically distributed 

random variables with E(Xn) 
= 0 which is either pairwise independent or is 

a martingale difference. Suppose that f is a function such that f(x) > 0 for 

x>0, x~xf(x) is nonincreasing as #??oo and x-xf\x) | oo and E\j~l( \ Xx | )]<oo. 

Then(f(n))^E(\Sn\)^0. 

Proof. First assume that (Xn : n > 1) is pairwise independent. Let 

rn; 
= 

x,/(|x,l </(ft)), j==i, ...,ft 

Znj 
= 

Xj?Ynj, j 
= 1, ...,ft 

1-1 

E(\Sn\) < E(\Tn\)+E([8n-Tn\)< [E{Tl)\v*+nE{\Znl\) 
= 

[V(Tn)+(E(T1,)))i]w+nE(\Znl\) 

< [ 
S 

V(Yn})+n*(E(\Znl\))*]m+nE(\Znl\) 

< \nE{Y\?+n\E{ \ Znl\ ))*y*+nE(\ Znl| ). 

Let V = f-\ | Zj | ). For large n, 

mZnl\) = E[\X1\I(\X1\>?n))] 
= ^[/(F)F-1 VI(f(V) >/(?))]< n-if(n)E[VI(V > ?)] 

-oin-ifin)). ... (3.1) 

As x~l f*{x)^> oo, there exists integers iVntoo such that iV^/^iVj = 

o(n-1/2(?)). To see this, define gr(a;) 
= 

x~1P(x), n0 
=~ 1, and given n0<n1< 

a(k) 
...< ?*_! define w* to be such that 7-7< 

ir1 Vw > ?* > ?jt_a. Now define 
Q\n) 

Thus 

#? 
= 1 if n0 < w < ?!?1 

= k if ?* < n < nk+1?1. 

= E[V-i f(V)Vi(V < #?)] 

+E[V~inV)VI(Nn < V < n)] 

= 
o(r1/2(?)). 

... (3.2) 
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Combining (3.1) and (3.2) we have the result when (Xn : n > 1) is pair 
wise independent. When (Xn : n > 1) is a martingale difference, the same 

proof works by replacing Znj and Tnj by Z'n? 
= 

Znj?E(Zrlj\X1, ..., X^) and 

rnj 
= 

Tn-E(Tn)\X1,...,X^1). D 

Choosing f(x) 
= xlfP, we have the following Corollary. 

Corollary 3.6. // (Xn : n > 1) is a sequence of pairmse independent 

identically distributed r.v.'s such that E(\XX\P) < oo for some 1 ̂  p < 2, ewd 

?(Zi) = 0, then E(\Sn\) 
= o(nl/P). 

Theorem 3.7. Let (Xn : n > 1) be a martingale difference sequence. Let 

f be a function and let 1 < p < 2 be such that f(x) is nondecreasing, x~~p f*(x) 
?>oo and 

lim lim sup (ftn))-1 2 E[ \ X) | p I( \ X) | > a)] = 0. 
a ? ? n ? oo ?=1 

^^(/(^-^(l/SJ^-^O. 

This is a more general version of Theorem 3.2 and the proof is omitted. 

The CUI condition can be adapted to prove Lp-convergence of weighted 
sums. Below, we give two such theorems for the case 1 ̂  p < 2. As was 

seen in Theorem 3.1, the case 0 < p < 1 is much easier to deal with. 

Theorem 3.8. Let (Xnk : 1 < k < kn, n > 1) be a triangular array of 
random variables such that (Xnlc : 1 ̂  k < kn) is pairwise independent for each 

n > 1 and EXnk 
= 0 and let (ank : 1 < k < kn, n > 1) be an array of real 

numbers such that 

n 
lim 2 alk = 0 

n-? #=i 

and 

lim lim sup 2 \a?k\E(\Xnk\I(\Xnk\> a)) = 0. 

TAera E( | 2 anfc Xn^ | )-? 0 as n-> oo. 

To prove the theorem, we need the following lemma. 

Lemma 3.9. Let (Xnk) (ank) be as in Theorem 3.8. Assume in addition 

that sup | Xnk | < A < oo for some constant A. Then the conclusions of Theorem 
n,k 

3.8 hold. 

Proof. ^(|Sa?|)<[^^ 
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Proof of Theorem 3.8. Fix a > 0 and define 

*? 
Sn 

= 2 ankXnk, ft > 1 

Tn= 2 an*Xw*I(|XwA| <a) 

Then we have 

Hence 

By Lemma 3.9 

Further, 

Y = S ~T . -t n ^n * n* 

\\Tn-ETn\\x-+?. ... (3.3) 

?rj|i< S \\an*XnkI(\Xnk\ >a\\1 

= S Ifl^KJ?IIZrtl/dZrtl <a)]} ... (3.4) 

\E(Tn-Sn)\ < S IHrtl?dZirtl/dZrtl <*) ... (3.5) 

Now the result follows by first letting ft-? oo and then a?? oo and using rela 

tions (3.3), (3.4) and (3.5). 

Theorem 3.10. Lei (Xnk : 1 < i < kn, n > 1) be a triangular array of 
random variables which is a martingale difference sequence for each n on the 

probability space (Qn, jin, Pnt9) for each OeK and let (ank : 1 < k < kn, 
ft > 1) be an array of real numbers such that 

*? 
2 ?nk"-> 0 and for some 1 < p < 2, 

Urn Km sup sup S | ank \ PEnte( \ Xnk \ pI( | Xnk | > a)) == 0. 
? -? ? n ?> ? 0e# *-i 

Thm*u*>EjL\Sn\P)->0. 
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Proof. Note that (ankXnk : 1 < k < kn, n > 1) is also a martingale 

difference sequence. By Burkholder's inequality, as in the proof of 

Theorem 3.2, defining Ynk 
= 

XnkI(\Xnk\ < a), Znk 
= 

Xnk-Ynk, 

En,9\Sn\P<CEnt0( 2n 
alkXlk)VI2 

= CEnA S alk(Ylk+Zlk)X 

< CEnt6 ( 
X alkY?V,\c ? \ank\PEnt9(\Znk\P) 

|3>/2 

< CaP 2* alk+C ? ?a^P Entg[\Xnk\Pl(\X^\ > a)]. 

First letting n?> oo and then letting a-+ oo, the result follows. 

Remark 3.11. As is evident the above theorems are more general than 

Theorem 3.2 and 3.5. It is also clear that a version of Theorem 3.10 

for 2/p-mixingales can be proved along the same lines as the proof of 

Theorem 3.4. 

In the following theorem, we generalize the classical WLLN of Markov 

(see e.g. Lo?ve, 1977, p. 287 and Parzen, 1960, p. 418) to martingale differ 

ences and pairwise independent random variables. 

Theorem 3.12. Let (Xk : k > 1) be a martingale difference sequence or 

a sequence of pairwise independent random variables satisfying Markov's 

S-condition, n-<1+? 2 E(\ Xk| 1+^)-> 0/or some 0 < <J<1. Thenn~xE(\Sn\ )->0. 
fc- i 

Proof. First assume that (Xk : k > 1) is a martingale difference 

sequence. Define 

Xnk = 
XkI(\Xk\ < n), k = 1, ...,n 

Xnk 
= 

Xk?Xnk, k = 
1, ..., n 

Ynk 
= 

E(Xnk\Xv ..., X*^), k = 1, ..., n 

Znk =* 
E(Xnk\Xv.., Xk_t) k = 1, ..., n 

n 
n-1 S Xk=n-i S (X?*-7w*)+?-? S (X'?h-Znk) ... (3.6) 

E j?-1 ? (X'nk-Zrf) I < 2w-<i+i> ? # | Xk 11+? -> 0. ... 0.7) 
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Note that (Xnk? Ynk : k = 1, ..., ft) is a martingale difference sequence. 

Further 

E(XnkYnk) 
= 

EY*k. 

Thus 

V (ft"1 2 
(Xnk-Ynk)) 

=ft-2 2 V(Xnk-Ynk) 
k=i ' *=i 

ft-2 2 ?^-f*)* 

ft-* 2 E(Xlk+Ylk-2XnkYnk) 

ft-2 2 A(Z??-7i) < ft-2 2 E(Xlk) 

< n-<1+*> 2 ?? | Xk | !+*-> 0 as ft-> oo. 

Further, 

^[Ift-1 
2 (Xnk-Ynk)^] < f??n-iS (Xwfc-rw^)]1/2. 

... (3.8) U k=i i ! L V *=i / J 

Combining (3.6), (3.7), and (3.8), the result follows for martingale differences. 

The same proof works when (Xk : k > 1) is pairwise independent by 

replacing Ynk and Znk by the unconditional expectations of Xnk and Xnk 

respectively. 

Remark 3.13. A version of Theorem 3.12 is true for mixingales and oan 

be proved by using arguments given in the proof of Theorem 3.4. 

Remark 3.14. Even though we have stated most of our definitions and 

results for sequences, it is easy to see that with appropriate changes every 

thing extends to triangular array of variables. 

4. Examples and counter-examples 

In this section we give examples to show that Z/p-convergence need not 

hold under weaker conditions. We also give some examples where our results 

can be applied. 
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Example 4.1. Theorem 3.2 need not hold if CUI of (|X*|i> : k > 1) 
is replaced by UI of (n^lSjP :n> 1). To see this let (Xn :n > 1) be 

independent N(0, n2^"1) variables. Then sup E(n-x\Sn\P)2 < oo and thus 

(ft""11Sn\P : w > I) is uniformly integrable. However 

^ISjI^oO. 

In fact, Theorem 3.2 is not even true under UI of in'1 2 |X<|2> : n > l) as 

the following example shows. 

Example 4.2. Let (Xn : n > 1) be independent such that Xn 
~ 

N(0, crj?) 
where vn 

= 
(l-{-n)yP if n = 2m for some m = 0, 1, ...and crn = 1 otherwise. 

Note that if X ~ iV(0, <r2) then J? | X | p = c^. Now 

?7 (n~l h\Xt\p) 
= n~2 [c2?> S <r*f+2 S c/M 1 

\ <=i / L i=i i<j 
3 

J 

< max (c2, c2?)) w"12 
o*?] 

< oo. 

Thus (ft-1 2 | X<| p : n > 1 ) is L2 bounded and hence UI. However, note 

that if 2m < n < 2 +\ we have 

Thus lim inf ?-* ?( 18n \ p) = lim inf n~x c?<r\+... +o*) > 0. 
n?> oo n ?> oo 

The following example shows that Markov's weak law is false if Markov's 

condition is assumed to hold with 8 > 1. 

Example 4.3. Let (Xn : w > 1) be independent iV(0, o*2) where <xn = n" 

and 
-g- < a < qTJ\? 

* > L Then 

w-a-n> s ^(|Xt|i+*) =<yr-<i+*> S ??<1+?> 

< cH,-<i+*)+?u-H>>-i--? o as n-> oo. 

Thus (Xn : w > 1) satisfies Markov's i-condition. 

Note that 

V(n~iSn) 
= 

(crl+...+<rl)ln* 

= n'2 2 ?2<3t ? cn2?"1-^ 0. 
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Since ft-1 Sn is a mean zero normal variable this implies that ft-1 Sn-f* 0. 

The next example shows that Markov's 8 condition does not imply the 

CUI condition. 

Example 4.4. Let Xk ~ N(0, erf) where ern 
= n* and 0 < a < 0/(1+0). 

Then it is easily seen that (Xk : k ^ 1) satisfies Markov's i-condition. Let 

X be a N(Q, 1) variable. Then for any a > 0, 

ft-1 X E(\Xk\I(\Xk\ >a)) 

= 
n^I,crkE[\X\I(\X\ > afa)] 

k=>l 

? 
-a/2<r? ft-1 2 ov 

- 
oo as ft?> oo. 

Example 4.5. Let (JTn : ft > 1) be a martingale difference sequence, 

such that (\Xn\P :n ^ 1) is uniformly integrable for some 1 < p < 2. 

Let (6n : ft > 1) be a sequence of real numbers such that 

lim lim ft-1 2 \bi\Pl(\bi\ > a) = 0. 

Thenft"1^ 
2 &,X* ).o. 

To see this, first note that there is a K > 0 such that 

sup 
n 

<K<oo. ft-1 2 \bt\P+E\Xn\P\ 
i=i J 

Given e > 0, choose ili such that sup E[\Xn\pI(\Xn\ > M) < e. 
n 

ft-1 ? EUbiXilPldXibil >a)] 
<=i 

< ft" 

-?SJk|^|X,|?l(|X,|>J?)/(|&i|<?) 

+?-1 S 16,|??[|X,|P]I(\bt\> a?M) 
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Thus ( \bnXn\P : n > 1) is Ces?ro uniformly integrable and the result follows 

from Theorem 2.2. 

Example 4.6. Let (Xn : 1 < i ̂  kn, n > 1) be a triangular array of 

Jf-dependent random variables. Then this array is an Z^-mixingale with 

y?rm = 0 for m > M and cni = 
||X?i1|p. If (\Xni\P :l<i<VO 1) 

is CUI, then k-1IS(\Sn\9)-+0. To see this, note that CUI of the array 

1 K i kn . v 

implies sup r- 2 jE | Xw< | 
^ < oo, which in turn implies sup &""1 ( 2 cn?i ) < oo 

and Theorem 3.4 applies. 

Example 4.7. (McLeish's mixingales) If (Xn : n > 1) is a mixingale 

in the sense of McLeish (1975) and lim sup ft-1 ( 2 cAp < oo and (\Xn\P : 
N? -1 ' 

ft > 1) is CUI then ft-1 ??\8n\9)->0 for 1 < 2? < 2. 

i 
Example 4.8. Let X< 

= 2 a^e^j, where (ay) are real numbers and (e<) 
i -1 

are random variables and Y0 
= 0 and X0 

= 0. Define 

n 

bnk 
= 2 attii-k) 

i~k 

Ynk 
= 

%&?*, 
1 < ? < ft, ft > 1. 

If (7^* : 1 < & < ft, ft > 1) is an L^-mixingale for some 1 ̂  p < 2, 

i?e?. 
= 0 and lim ft"1/ 2 

c?fc)^ 
< oo then n~xE(\Sn\v)->0 by an applica 

tion of the triangular version of Theorem 3.4. The above conditions are 

/ 
n 

\p 
satisfied if (et) itself is an 2^-mixingale with sup ft-1! ?> 

Ci) < oo and (bnk : 
n M ? 1 ' 

1 < ? < ft, ft > 1) is uniformly bounded. In particular this condition on 

(bjt) is satisfied for stationary ARMA processes of any finite order. 

Example 4.9. If we allow "infinite past" in Example 4.8, we have 

? n 0 

Xi 
= 2 a^ ei_? 

= 2 akbnk+ S e*&n* 
i=C k=l ??? 

where &w* is as defined in Example 4.8. So provided ft*1 JB / 2 ek bnk | ) 
-> 0, 

and conditions of Example 4.8 are satisfied, we have n"1 El 2 X$ )?> 0. 

AW 
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The above extra condition is satisfied when sup E\ek\P < oo and 

Example 4.10. Let Xt = 
^+ae?.1, ? > 1, e0 

= 0 be a moving average 

process. The method of moment estimator of a based on Xv ..., Xn is given 
n 

by an 
= ft-1 2 Xt Xt-V which yields, 

an-a 
= - 

2 (e?-.i)-_+n-1E e* e,^ 
ft <=i n ?=i 

+ --2 e*ef_2+ 
? 2 e^e^. ft ?=i ft ?=i 

Note that (\et e^* : ? > 1) is CUI if (ef : ? > 1) is CUI. Thus with suit 

able mixingale conditions on ef, et et_x and with Ee\ 
= 1, Ee^x t^ 

= 0, we 

have E\an?a\*->0. 

Example 4.11. The usual (least squares) estimator in an autoregressive 

prooess is much harder to deal with. Let Xt = 
ftX^+fy, t ̂  1 where 16 \ 

< 1, X0 
= 0. The least squares estimate of 6 is given by 6n 

= 
SX* Xf.-J 

n n SX2 
SX* This yields 0n-d 

= S XM e,/ 2 Xti- Hence *?fci(0 0)= 
t=i <-i w 

n 

nT12 Xt_x e?. Thus if (X^ et : t > 1) satisfies the conditions of Theorem 3.4 
f-i 

we have 

ft' -1 E 
f 

/ 2 X^x |0n-0| 
)*]-> 

0 as n-> oo. 

In particular if (et : t > 1) is a martingale difference sequence then so is 

(X^j e$ : t ;> 1) and one needs to check only the CUI condition. 

To conclude the convergence of E\dn? 0\, we proceed as follows : 

Define Yn 
= 

(dn-d), Zn 
= ^?? . Then 

n 

E\Yn\ =E[\Yn\I(\Z?\ <a?)]+i?[|rfl|/(|ZB| > aj] 

< [?( I y SI )]1/2 [P( I ̂? L< ?n)]1/a+^t I ̂?^? I ]/? 
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If (X$_j et :t > 1) satisfies conditions of Theorem 3.4 with p = 1 then for 

some sequence an?? 0, the second term above-? 0. To show that the first 

term-? 0, it is enough to show that sup E(Y%) < oo and P(Zn < an)-? 0 

EYl^E[(^X^etfJ IXU) ] 
r~ n?1 

< 2E 
(SZf.:)2 

>2 

+2E 
^?-l ei 

n 

If (e? : n > 1) is such that sup E(e* | ̂ n_t) < i? < oo then 

(A*?-)' 

*I5 < ? 
[(?iM*)7(**.)> 

However 

< 2|ep 
(Js Z^|?) +2 

('s IX^Xtl ) 

<(2|?|a+32)("s JT?) 

Hence sup 257$ < iT < oo. Now for large ?, 

P(?? < an)- P 
(B??)+??fcL2i 

_5 < a?(l-0*)-l) 

q.(l-fl?)-l'\ 
3 / 

+p( 

??=H > 
i=l 

Xn 6t 

<?1 ft 
Mi-6*)-i 

6 ) 

an(l-6*)-l 

^(^asi^tsj 

The second term-? 0 since E -*rL_! _> o. It is easily seen that the 
ft I 

? 
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n 
p 

third term-> 0. Thus, if further ft*"1 2 e2?> 1, the first term also -> 0. To 
?-i 

summarize, if (en, &n : ft > 1) is a martingale difference sequence such that 

sup E(e* | ?9?^) < \K < oo and ft"1 2 ?-> 1, 
n i=i 

then E(\dn?0|)-> 0. Note that the above conditions are satisfied if 

(et : t > 1) is i.i.d., jEtee = 0 and ??e? 
= 1. 
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