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SUMMARY. We show how a new condition, called Cesaro uniform integrability, intro-
duced by Chandra (1989) can be used in many cases to prove Ly-convergence of n-1/? S, where

n
S" = 2 X{.
t=l

1. INTRODUOTION

Let (Xa: mn>1) be a sequence of random variables and let
Spn = X;+...+Xy. Pyke and Root (1968) proved that if (Xn:n > 1)
is an independent and identically distributed (i.i.d.) sequence and E(|X,|?)
< oo for some 0< p <2, then n1E(|Sy—an|?)>> 0 as n— oo where
a,=0 if 0<p<1 and a, =nE(X,) if 1 < p < 2. Chatterjee (1969)
extended this result by assuming only that (X, :#n > 1) is dominated in
distribution; by a random variable X such that E(|X|?) < co and taking

an—, ilE(Xﬂxl, o Xe) if 1< p<2. Chow (1971) strengthened this

result by replacing the domination condition by the condition of uniform
integrability (UI) of (| Xy|? :n > 1).

In a recent paper Chandra (1989), a new condition called “Cesiro uni-
form integrability”’ (CUI) was introduced. This condition is weaker than
the usual Ul condition and yet was shown to be strong enough to derive
L,-convergence in, the weak law of large numbers (WLLN). In this paper
we establish Lj-convergence, 0 << p < 2, for several types of independent and
dependent sequences under CUL. The dependent sequences include pairwise
independent sequences, martingale differences and L,-mixingale differences.
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It appears that this CUI condition will be useful in deriving strong law of
large numbers (SLLN), more general than those known in the literature. See
Chandra and Goswami (1992) for an account of the progress made in this
direction.

2. PRELIMINARIES
In this section we give the definition ard basic properties of CUI sequences
and introduce the concept of Lp-mixingales. The latter generalizes the
concepts of mixingales introduced by McLeish (1975) and its extension given
by Andrews (1989).
Definition 2.1. A sequence of real valued random variables (Xp, : n > 1)
on (Q, A, P) is said to be Cesdro uniformly integrable (CUI) if

n
lim lim sup (n-! X B[| Xe| I(| Xz| > a)]) = 0.
k=1

@=Ppc® N—=)®

Remark 2.2. In order that WLLN (or SLLN) holds for (X, : n > 1), it
should be possible to allow a few of the Xy’s to take large values. The CUIL
condition is capable (at least to a certain extent) of allowing such sequences.
In this connection see Chandra (1989).

In the following lemma, we collect the basic fgcts we will require about
the above condition.

Lemma 2.3. Let (X,:n > 1) and (Yy :n > 1) be two sequences of ran-
dom variables on (Q, A, P)

(i) (Xp:m2>1)is CUI if and only if
(a) lim sup n! Z E(|Xk|) <o
n k=1

and
(b) given € > 0, there esists @ & > 0 such that for any sequence of measur-
able sets

(Ap :n > 1) with lim sup nt 2 P(4g) < 8, lim sup n—l Z E[lell(Ak)] <eé
k=1

() If(|Xnl:n>1)isCUIland |Y,| < |Xu| as.,then(|Yp|:n 2> 1)
is CUI.

(iii) If for some p > 0, (| Xyu|?:n 2 1) and (|Y,|?: n > 1)are CUI,
then so is (| Xp+Yn|?:n 2> 1).

(iv) Let(Fn:n> 1) be a sequence of sub-sigma fields of A and p > 0.
If (1 Xp|?:n > 1) is CUI, then so is (Yn = E(| Xn|? |&,),n > 1).
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Proof. (i) is proved in Chandra (1989). (i) is trivial. (iii) follows from
the observation,

E(| Xg+ Yi|21(| X+ Y| > a))

a a
< 22’E[[|X1,|1’I(]Xk| > ?]—1-21’147[ | Ye|21( | Ye| > 2~)]
To prove (iv), note that since I(] Y| > @) is Fg-measurable,

n n
lim sup »! Z E[| Yi|I(| Y| > a)] =limsupn~! ¥ E[|X|?I(] Y| > a)]
n k=1 n k=1

(2.1)
Note that as a — oo,

lim sup n! 3 P(| Yi| > a) < [lim sup n-! 3 E(|X,,|p)] a2 0.
n k=1 n k=1

Thus using the alternative criteria of CUI established in (i), the term in (2.1)
— 0 as ga—> o0 since (| Xg|?:k > 1) is CUL O

Remark 2.4. The following implications relate the concepts of UL and
CUL

k
(Xx) UI = (Xz) CUI = ( Ye=Fk1 X x,) Ul
i=1
The proof of this is easy using the criterion of Lemma 2.1 for for CUI and the
similar criterion for UI. However, none of the reverse implications are true
in general. To see this, let

Xop = —Xoty~ NO,2k—1)32), k= 1,2,...

2
Then it is easy to see that (Y : k > 1) is UL. However (2n)7? 2": B| Xy | =n3"
k=1

as n—> 0. S0 (Xz:k > 1) is not CUL. For an example where CUI 55 Ul
see Chandra (1989).

The concept of asymptotic martingales was introduced by McLeish
(1975), who called them mixingales. Andrews (1989) extended this concept
to what he called L,-mixingales. We extend these concepts below through
the following definitions.

Let (X5 :n > 1) be a sequence of random variables on (Q, ¢, P) such
that B(|X,|?) < oo for some p > 1 and for eachn > 1. Let (&F,:n =
0,41, 42, 2, ...) be an increasing sequence of sub-sigma fields of _#.
Let || . |lp denote the Lp-morm.
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Definition 2.5. The pair {(X,:n > 1), (&F,:n=0,+£1, ..)} is called
an Ljy-mixingale difference sequence if there exist sequences of constants
(cn:m 2> 1) and (¥ : m > 0) such that ¥p— 0 as m— oo and

() IB(Xn|Fn-m)lp < cn¥m
and

(b) X —E(Xn| Fnsm)llp < ¢0 Yms-

For some illuminating examples of L, and L, mixingale difference
sequences in the above sense, see Hall and Heyde (1980) and Andrews (1989).

In the next secbions C stands for a generic constant and S, will denote

E X4, Z or 2‘. ant Xak a8 the cagse may be.
f=1 kw1 k=1

3. THE MAIN RESULTS

In this section we prove various Lp-convergence results. Our first
result is an extension of a Theorem of Chow (1971) who proves the following
result with the assumption of UI of the sequence (X, :n 2> 1) and deals
with the case 0 < p < 1.

Theorem 3.1. Let 0<p<1l and (|X,|?:n2>1) be CUI. Then
n1E(|8,1?2)— 0.

Proof. For a > 0, defire
Y,=X,I(|X,| <a),n>1
Z,=X,—Y,, n > 1.

Then
wiB(8,19) =0 E (| £ 2ot § 1)
" E( ’él Zklp) tn~ B ( l:§1 Yk, )
<l S E|Zi|p 40t on,
k=1
So

llm sup n1E(]8,|? < lim sup n! Z E|\Zy|?

=lim sup n™?! )3 E](Xk]?I(lxkl > a)).
n-yee k=1

Now letting a— oo and using the fact that (| Xp|? : n > 1) is CUI, the result
follows. [
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The following theorem deals with the case 1 < »p <2 and extends
Theorem 2.22 of Hall and Heyde (1980) and Theorem 4 of Chandra (1989).

Theorem 3.2. Let (X :n > 1) be a martingale difference sequence such
that (| X,|? :n > 1) is CUI for some 1 < p < 2. Then nE(]|Su|?) — 0.

Proof. Let Yy, Z, be defined as in Theorem 3.1. The case p =1 is
proved in Chandra (1989). We give below a simpler proof for this case.

w8 ( éz X ]) < n—lE]k'iz_z(Yk—E(mxl, o X))

+n-E

n n
z Zk I +n_1EI z E(Zlel, ceny Xk__l)l
k=2 k=2

Since (Yr—E(Yg|X,, ..., Xk_y), k > 2) is a bounded martingale difference
sequence (with respect F = o(Xj, ..., Xr_;)) the first term above— 0 as
n—> oo (see for example Theorem 2.22 of Hall and Heyde (1980)). The last

n
two terms are dominated by 2nlE( £ |Zg|). First letting n— oo and
k=1

then a— oo, this converges to 0 by CUI

We now look at the case 1 < p < 2. Let C denote a generic constant.
By Burkholder’s inequality (1966) (see Theorem 2.10 of Hall and Heyde, 1980),

E(]8,17) < CE(| £ X3|»2) = CB(| % (23+¥D|»»)
k=1 k=1
<OB( ¥ ZHw+CB( 2 ¥i#) <O % B( Z|7)+C(mat)on.
k=1 k=1 k=1

Thus lim sup n~1B(| S, |?) < C lim sup n-! % B(|Z|?). Now the result
n—) n—) o k=1
follows as in Theoreem 3.1.[]
Corollary 3.3. If (|X,|?:n > 1) is CUI for some 1< p <2 then
n
nt ]Z’([kz2 (Xp—E(Xg| Xy, ..r Xp_y))|?) > 0.
Proof. Note that (Yi = Xp—E(Xg| Xy, ...s Xk—y), b > 2) is & martin-
gale difference sequence. Further |E(Xp|X, ..., Xp,)|?) < E(|X|?]

Xy Xk—y). So by applying Lemma 1 (ii), (iii) and (iv), (Yx: % > 2) is
CUI and the corollary follows from Theorem 3.2. []
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We now turn to Lp-mixingales and generalize Theorem 1 of Andrews
(1989) in two directions. First, we prove L, convergence for p > 1,
whereas Andrews works with p = 1. Second, we reduce the assumption of
UI to CUL

Theorem 3.4. Let {(Xp:n2>1), (%% t=0,4+1,42,...)} be an
Ly-mizingale difference sequence and (| X,|? : n 2 1) be CUI for some

1 < p <2 Further assume that lim sup n"1< f‘. c‘)f’ < 0. Then E(n—!
n fe=1
[ Sn|?)— 0.
Proof. Forn> 1landi=0,4 1, L+ 2,... define
Yot = B(Xs| Fp ) —E(X¢| Fnps-y).

For each 4, (Yp4, Fny,n > 1) is a martingale difference sequence.
Further (| Ypus|?:n > 1) is CUI by Lemma 1.

n
Define Sy = X Y. By Theorem 3.2, n=VP ||Syllp >0 as n—> oo
ka1

for each 4. Further
n n m
Sp = B (Xp—E(Xp| Fesm)+ 2 B Xk | Fem)+ T Sui.
k=1 k=1 f=—m+1
Thus
n n m
I8allp < 2 [ Xe—E(Xk| Frsmlllp + Z 1B Xk | Fe-m)lp + 2 [Snillp
k=1 k=1 {=—m-+1
Thus
7 n \
lim sup #=V2||8p|lp < lim sup( n~VP X ck) Umyr+1lim sup(n“l/P PN ck) Um
n n— k=1 n—ew k=1

Now using the condition on ¢¢ and the fact that Yym— 0 as m— oo, the result
follows. [

Remark. It is clear from the above proof that Theorem 3.4 continues
to hold if the conditions (a), (b) in Definition 2.5 are replaced by

n .
(8)’ lim sup lim su (n-l/P Z | B(Xx| 3k.m)||p) =0
m—) o L X k=1

n
(b) lim sup lim sup ( n VP I || Xg—E(Xk| Frimlp )=’ 0.
m-—y o n—> o k=1

In the following theorems, we show how normalization other than =
may be used for S,.

A l1-3
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Theorem 3.5. Let (X, :n > 1) be a sequence of identically distributed
random variables with E(X,) = 0 which is either pairwise independent or is
a martingale difference. Suppose that f is a function such that f(x) > 0 for
2> 0, z71 f(x) is nonincreasing as x—» oo and z~1 f¥(x) 1 o and E[f-1(| X, |)]< 0.
Then (f(n))~*E(] 8,])—> 0.

Proof. TFirst assume that (X, :n > 1) is pairwise independent. Let

Yﬂj=XfI(|Xf| <f(n))) j=1,...,n

Zpg = .Xj— Yaj, §=1,..,n
n

T” = z Y”j
J=1

E(18,1) < B(| T, )+E(| Sa—T,|) < (BT +nE(| Zyy |)
= [V(T,)+(E(T )12 +nE(| Z,,1|)

< [ B VT 4n B 2] 0B 2 )

< [E(Y 7)) +0XE(| Zy )12 40E(] Zps ])-

Let V =f-Y|X,|). For large =,
E(|Z, ) = B[| X, | I(1 X,] > f(n))]
= E[f(V)V VI(f(V) > f(=))I< n72 f(n) E[VI(V > n)]
= o(n~1 f(n)). .. (3.1)
As 27! f¥(x)—> o, there exists integers N,?Too such that N;'fYN,) =
o(n~1f%n)). To see this, define g(z) = 2~ f&(x), n, = 1, and given ny < 0, <

... < Mg, define ng to be such that g—((—%< k' xn 2> ng > ng—,. Now define

N,=1lifny<nn—1
=k if np < n < mpyy—1.

E(Y%) = BIXU(| X, | < fo)]
= B[V fHV)VI(V < m)]
= B[V AV)VI(V < N,)]
+E[VAAVVIN, <V < n)]
< N-L AN, )E(V)+nt fAn)E[VI(V > N,)]
= o(n~! f¥n)). e (3.2)

Thus
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Combining (3.1) and (3.2) we have the result when (X, :n > 1) is pair-
wise independent. When (X, :n > 1) is a martingale difference, the same
proof works by replacing Zys and Tny by Z,,; = Zpj—E(Zy;| Xy, ..., Xj_,) and
Tog =T, —E(Tns| Xy, ..., X59). O

Choosing f(x) = «V/?, we have the following Corollary.

Corollary 3.6. If (X,:n > 1) is a sequence of pairwise independent
tdentically distributed r.v.’s such that E(| X,|?) << oo for some 1 < p < 2, and
E(X,) =0, then E(|8,]) = o(nVp).

Theorem 3.7. Let (X, :n > 1) be a martingale difference sequence. Let
S be a function and let 1 < p < 2 be such that f(z) is nondecreasing, z—? f¥(x)
— 00 and

l_@_)m lim sup(f(n ) E B[ X5|? I(] Xy]| > a)] = 0.
a L J n—>
Then (f(n))=* E(| 8,|7)— 0.
This is a more general version of Theorem 3.2 and the proof is omitted. ]

The CUI condition can be adapted to prove Ly-convergence of weighted
sums. Below, we give two such theorems for the case 1 € p < 2. As was
seen in Theorem 3.1, the case 0 < p < 1 is much easier to deal with.

Theorem 3.8. Let (X,;:1< k< k, n>1) be a triangular array of
random variables such that (X, :1 < k < k,) is patrwise independent for each
n>land EX 3 =0 and let (a:1 < k<k,n>1) be an array of real
numbers such that

k”

lim Z a,z,,, =0
n-o k=1

and
lim Um sup Z Ia,,k|E’(|XM,|I(|X,,,,|> a)) = 0.
a—) o n—

k”
Then E(| Z anx Xpr|)— 0 as n— oo.
k=1

To prove the theorem, we need the following lemma.

Lemma 3.9. Let (Xpx) (anx) be as in Theorem 3.8. Assume in addition
that sup|Xne| < A < o0 for some constant A. Then the conclusions of Theorem
nk

3.8 hold.
Proof. B(|ZauXul) < [E(EanXmfi}* < [Za2 A% 0. [
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Proof of Theorem 3.8. TFix a > 0 and define

k

S, = % amXppn > 1
k=1

kﬂ
T,= kZIaMXnkI(IthI <a)
Y" == Sn-'T“-

Then we have
8,=7T,—ET,+Y,+ET,—8,).

Hence
18l < 1Ty — ET ol +HI Y alls+IE(T 5~ Sl
By Lemma 3.9
\7,—ET,|l;— 0. .. (3.3)
Further,

k”l
1Y ally € ¢21 lank XneI(| Xnx| > all

k”
=‘§1 | @nk | {BL| Xni | I(| Xn| <a)l} ... (3.4)
kﬂ
| E(T,—8,)| <k§1 | @t | B(| Xnie | I(| X | < @) e (3.8)

Now the result follows by first letting »— oo and then a— co and using rela-
tions (3.3), (8.4) and (3.5). [J

Theorem 3.10. Let (Xpx:1< k< k,, n > 1) be a triangular array of
random variables which is a martingale difference sequence for each n on the
probability space (Q,, A P,he) for each e K and let (ag: 1< k < ky,
n > 1) be an array of real numbers such that

kﬂ

Zla.,’i,,->0andforso'm,el<p<2,
k=

lim Uim sup sup kZ | ank |2, o(| Xk | 21(| X x| > a)) = 0.

a—>®o® n—peo @feK

Then::lg; E, o1 8,]2)— 0,
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Proof. Note that (anxX,:1< k< k, n>1)is also a martingale
difference sequence. By Burkholder’s inequality, as in the proof of
Theorem 3.2, deﬁning Yor = anI(IXnkl < a), an = Xnk—ynk,

k, 2 v D/2
Bog| 8,12 < OF,, ( X ohX3)
Ey 2 2 p/2
=CE,, [ kEl an( Yo+ 22,) ]
ky iz Fn
< CBop (X at¥h) 40 2 |am| 2B,y Zus]2)

k, k,
< Cap 2 agtC 2 |au|? Byl | Xok |PL(| Xy | > a)].

First letting n— oo and then letting a— oo, the result follows. []

Remark 3.11. As is evident the above theorems are more general than
Theorem 3.2 and 3.5. It is also clear that a version of Theorem 3.10
for Lp-mixingales can be proved along the same lines as the proof of
Theorem 3.4.

In the following theorem, we generalize the classical WLLN of Markov
(see ©.g. Lodve, 1977, p. 287 and Parzen, 1960, p. 418) to martingale differ-
ences and pairwise independent random variables.

Theorem 3.12. Let (Xi:k > 1) be a martingale difference sequence or
a sequence of pairwise independent random variables satisfying Markov’s

8-condition, =19 5 B(| Xi| ) 0 for some 0 < 8<1. Then n1 E(| 8, |)~0.
kel

Proof. First assume that (Xp:k> 1) is a martingale difference

sequence. Define
X = Xil(| Xx| < ), k=1,...,n

Xy = Xg—X 1, k=1,..n
Ynk = E(Xﬂlel, ooy Xk_l), k = l, ey N
Z”k == E(.X;EIX1¢‘-, Xk__l) k = 1, ceny n
1Y Xp =013 Xp—TYu)tn? 3 (Xp—Zm) ... (3.6)
k=1

k=1 k=1

B § Kuta| <2 § B0 G
- k=1 ‘ .
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Note that (Xpu—Y,: k= 1,..., n) is a martingale difference sequence.
Further
E(XpYm) = EYY.
Thus
V(0 3 X Yu) =0 8 V(Xu—Yo)
: k=1 k=1
=n2 3 B(Xy—Yp)?
k=1
=n-2 % E(X2+ Y2 —2Xuk Y ux)
k=1
—n? 3 BXL—Y%) < n 23 B(XY)
k=1 k=1
< @) 3 E|Xy|1*— 0 as n— co.
k=1
Further,

E[I n-1 k_ﬁ__l (Xni— Yai) ] < [E(n-l él(x,,,,— Y,,,,)z) ]1’2. .. (3.8)

Combining (3.6), (3.7), and (3.8), the result follows for martingale differences.

The same proof works when (Xj:k > 1) is pairwise independent by
replacing Y,r and Z, by the unconditional expectations of X, and X,
respectively. [

Remark 3.13. A version of Theorem 3.12 is true for mixingales and can
be proved by using arguments given in the proof of Theorem 3.4.

Remark 3.14. Even though we have stated most of our definitions and
results for sequences, it is easy to see that with appropriate changes every-
thing extends to triangular array of variables.

4. EXAMPLES AND COUNTER-EXAMPLES

In this section we give examples to show that Lp-convergence need not
hold under weaker conditions. We also give some examples where our results
can be applied.
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Example 4.1. Theorem 3.2 need not hold if CUIL of (|Xg|?:k > 1)
is replaced by UI of (n!|8,|?:n> 1). To see this let (X,:n > 1) be
indspendent N(0, n¥7-1) variables. Then sup E(n'|S,|?)? < o and thus

n>1
(n"1|8,|? : » > 1) is uniformly integrable. However
E(n1]8,|?)> ¢ > 0.
In fact, Theorem 3.2 is not even true under UI of (n‘l T | X¢|?2 :m > 1) as
i=1

the following example shows.

Example 4.2. Let (X, :n > 1) be independent such that X, ~ N(0, o2)
where o, = (1+n)¥? if n = 2m for some m = 0, 1, ...and o, = 1 otherwise.
Note that if X ~ N(0, 0?) then E|X|? = ¢po?. Now

B (ot B 1Xi|2) = [ £ o423 o007 ]
§=1 i=1 i<j

n 2
< max (¢, ¢yp) (n‘l ) 04;) < .

i=1
Thus (n—l‘Z | X¢|? :n > 1) is L, bounded and hence UI. However, note
-]

that if 2m < n < 2mt1, we have

o%+...+o2 o B
S 2w T > (

(41/p)m+1 1 1
41p—1 ) (4¥/pym

Thus lim inf =1 E(| S, |?) = lim inf 2~ ¢cy(o}+...+02) > 0.
n—> n—)

The following example shows that Markov’s weak law is false if Markov’s
condition is assumed to hold with & > 1.

Example 4.3. Let (X, :n > 1) be independent N(0, 02) where o, = n®

and—l<a<~ 6> 1. Then

6 —
2 a+o)
. E(| Xg|1¥) = cpn—t1+0 3 (o)
k=1 k=1
< en~HA+Ha1+8~1_5 ( 59 —> o0.
Thus (X, : n > 1) satisfies Markov’s d-condition.

Note that
Vint 8,) = (o3+...+02)[n?

n
=n2 X k*® = cn2 14 0.
k=1
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P
Since »~! S, is a mean zero normal variable this implies that n~1 8, 0.

The next example shows that Markov’s ¢ condition does not imply the
CUI condition.

Example 4.4. Let Xp~ N(0, 0%) where o, = n* and 0 < & < 8/(1+9).
Then it is easily seen that (X : k > 1) satisfies Markov’s d-condition. Let
X be a N(0, 1) variable. Then for any a > 0,

n1 2‘. E(lelI(lel a))
— n—lkfsl oWB[| X |I(| X | > afor)]

n —a/202
~n1Z oge 12y o6 a8 n— oo.
k=1

Example 4.5. Let (X,:n > 1) be a martingale difference sequence,
such that (| X,|?:n > 1) is uniformly integrable for somel < p < 2.
Let (b,:n>1) be a sequence of real numbers such that

lim lim n-! }3 |b¢|PI(|b¢| > a) = O.

a—»®o® n

?)—)0

To see this, first note that there is a K > 0 such that

2 bX,

i=1

Then -1 E(

sup | —12: 1667 +B| X, |?| < K < 0.
n
Given € > 0, choose M such that sup E[| X, |?2I(|X,| > M) <e.

n‘1‘§1 B[] b6X4|2I(| Xbs | > a)]
<nt B || 2BL| Xal 21| Xe) > I0I( [ B4] < )
=1
+n‘1‘§1 |b¢| PE[ | X¢| #)I(| b4| > a/M)

<eK+Ent % (el 21 180] > 7).



CESARO UNIFORM INTEGRABILITY AND L;-CONVERGENCE 25

Thus (|6,X,|?:n > 1) is Cesaro uniformly integrable and the result follows
from Theorem 2.2.

Example 4.6. Let (X, :1< i<k, n>1) be a triangular array of
M-dependent random variables. Then this array is an Ly,-mixingale with
Ym=0 for m>DM and c, = |Xplp. I (|Xpe|?: 1K< kp,n >1)
is CUI, then k-lE(IS |7)— 0. To see this, note that CUI of the array

4

implies sup ¢ k Z E|Xm|1’ < o0, which in turn 1mp11es sup k; 1< kg“; c,,,;) <
and Theorem 3.4 applies.

Example 4.1. (McLeish’s mixingales) If (X,:#n > 1) is a mixingale
in the sense of McLeish (1975) and lim sup n~* (‘gﬁlcg)P < oo and (| X,|?:
n > 1) is CUI then n E(|8,|?)—> 0 for 1 < p < 2.

i .
Example 4.8. Let X¢ = X ay€;5, where (ay) are real numbers and (g)
3 4o

are random variables and ¥, = 0 and X, = 0. Define
n
bpr = = @i, (4-k)
i=k

Ynk=€kbnk, 1kgnn> 1.

If (Yae: 1< k< > 1) is an Ly-mixingale for some 1 <_fp <2,

Ee¢y = 0 and lim n‘l( }3 c,,k)f’ < oo then n~1E(|S,|?)—> 0 by an appllca.-
n—> e k=1

tion of the triangular version of Theorem 3.4. The above conditions are
no\D
satisfied. if (e;) itsolf is an L-mixingale with sup n2( 2 ;)" < oo and (b :
n im1
1 <k n n>1) is uniformly bounded. In particular this condition on
(bqx) is satisfied for stationary ARMA processes of any finite order.

»”

Example 4.9. If we allow “infinite past” in Example 4.8, we have

@ n
Xi= 2 ay€ij= Z agbnrt+ Z €xbnk
j=¢ k=1

k=—o

0
where b is as defined in Exa.mple 4.8. So provided n! E( l 2 eg bakl

k=~

)?—+ 0

and conditions of Exa.mple 4, 8 are satisfied, we have n~* E( o X;l )—-) 0.

tm1

Al-4
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The above extra condition is satisfied when sup E|e|? < oo and
k0

0
nl T |bpk|?—0.

k=—cwx

Example 4.10. Let X; =etoag;, t > 1, ¢, =0 be a moving average
process. The method of moment estimator of & based on X, ..., X, is given

by a, =n"1 5 X X;_,, which yields,

fm—1
o n 2 oA 7
a,—a=— 2 (ej—1)——+n"1% €,
" n =1 n t=1

a n a2 n
+ = 2 ge,+— X €ty €t—g.
N =1 7 g=1

Note that (|e; €_,|?:¢ > 1) is CUL if (¢f? : ¢ > 1) is CUL. Thus with suit-
able mixingale conditions on €7, € ¢,_, and with Eet =1, Eegye.,=0, we
have E|a,—a|?— 0.

Example 4.11. The usual (least squares) estimator in an autoregressive
process is much harder to deal with. Let X; = 6X; ,+é€;, ¢ > 1 where 0]
<1, X, =0. The least squares estimate of § is given by 0 = XX X¢,f

RXL, This yields 0,—0 =% X, e/ Xt Hence ZX‘-I (0,—0)=
n1 i X¢ ;6. Thus if (X;; €:6 > 1) satlsﬁes the conditions of Theorem 3.4
feml

we have
n b4
n1E [(2X3_1|0,,—0|) ]—)Oa.sn—)oo.
t=1
In particular if (e :¢ > 1) is a martingale difference sequence then so is
(Xi—; € :t > 1) and one needs to check only the CUI condition.

To conclude the convergence of E|6,—6|, we proceed as follows :

Then

2
Define ¥, = (6,—0), Z, = ZLY;L;I

E|Y,| = B[|Y,|1(|Z,] < an+E[| YalI(|Z,] > ay)]
< [B(| YRDI2 [P(| Za| < @)V +EL| Y 020 )0
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If (X;_ e :t> 1)satisfies conditions of Theorem 3.4 with p =1 then for
some sequence a,—> 0, the second term above— 0. To show that the first
term—» 0, it is enough to show that sup Z(Y2) < co and P(Z, £ a,)— 0

n

5= B[( £ X ap/ E30,)']

n—1 2
(Z Xiye) X2 g2 -
2| =L 0 |+2B| i
(ZXI-I) (Z Xz )
=1 t—1

If (¢, : » > 1) is such that sup E(e2 | & ,_;) < K < oo then
n

EY? < 2 [(5 X, e,)'/ (‘g Xz, )’]
However

(% Xeae) <[B 1Xeal(16]1 el +1 Xe)

=1

<2001* (& Xoal?)+2(E 1K X))

<elor+e) (T 1)
t=1

Hence sup EY2 < K < 0. Now for large #,

X t—1 €t

P(Z, < a,) = -

+-26

( 2(6‘, 1)

<P

+P |

s P )

3 @)

=1 3

an(1—6%) — 1})

"z X6

=1 7

>

a,,(l—60’)—11 )

P (5>

“"(1'"301—J’ )

The second term—» 0 since E I ZX“I ,—-)0 It is easily seen that the
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third term— 0. Thus, if further n—1 X e?—I; 1, the first term also > 0. To
teml

summarize, if (¢,, &, : 7 > 1) is a martingale difference sequence such that

sup E(e? | &,-,) <K < o0 and n? ) e%i; 1,

n t=1
then E(|0,—0|)—> 0. Note that the above conditions are satisfied if
(e¢: t > 1) is iid., He =0 and Ee? = 1.
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