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Abstract

We explore the possibility of performing super dense coding with non-maximally
entangled states as a resource. Using this we find that one can send two classical bits
in a probabilistic mamner by sending a qubit. We generalize our scheme to higher
dimensions and show that one can communicate 2log, d classical bits by sending a
d-dimensional guantum state with a certain probability of success. The success prob-
ability in super dense coding is related to the success probability of distinguishing
non-orthogonal states. The optimal average success probabilities are explicitly cal-
culated. We consider the possibility of sending 2log, d classical bits with a shared
resource of a higher dimensional entangled state (D x D, D = d). It is found that
more entanglement does not necessarily lead to higher success probability. This also
answers the gquestion as to why we need logs d ebits to send 2 log, o classical bits in a
deterministic fashion.
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1 Introduction

It is by now, well demonstrated that entangled states are at the heart of quantum informa-
tion theory. One can do many surprising tasks using entangled states which are otherwise
impossible, e.g., super dense coding [1], quantum teleportation [2], remote state preparation
[3], quantum eryptography [4] and so on. In the case of super dense coding, Bennett and
Wisner have shown that it is possible to send two classical bits of information by sending
just a single qubit [1]. Ordinarily by sending a single qubit one would extract only one bit
of classical information. However, prior sharing of entangled state enhances the classical
communication capacity, hence the name super dense coding. In a similar fashion, if one
shares log, d ebits of entanglement then one can extract 2 log, d classical bits of information
by sending a d-level quantum system (a qudit ).

In recent years, super dense coding has been generalized in various directions. For
example, it is possible to generalize the super dense coding for multi-parties [5].  Also,
one can perform super dense coding not only with quantum states in finite dimensional
Hilbert spaces but also with quantum states in infinite dimensional Hilbert spaces [6, 7.
All these cases deal with maximally entangled (ME) states. But suppose Alice and Bob
share a non-maximally entangled (NME) state, then what can they do? This question was
first addressed by Barenco and Ekert [8]. However, their scheme is not a conclusive one.
It was shown hy Hausladen ef al [9] that if one has a non-maximally entangled state then
the classical capacity of dense coding scheme is not 2 log, d but equal to Hg + log, d bits
of information in the asvmptotic limit, where Hg is the entropy of entanglement of the
shared state. Here, ) < Hp < log,d. However, the above scheme is a deterministic one.
So this result tells us that deterministically we cannot send 2 log, d bits using NME states.
The super dense coding protocol has been generalized for mixed entangled states and the
classical capacity has been related to various measures of entanglement [10]. Very recently,
Mozes et al [11] have investigated the relationship between the entanglement of a given
NME state and the maximum mumber of alphabets which can be perfectly transmitted in a
deterministic fashion (this is called ‘not so super dense coding’).

All the previous work are primarily on deterministic super dense coding. If one does
not demand that the scheme works in a deterministic manner, then it should be possible
to send 2 log, d bits of information with certain probability of success by sending a qudit.
This is the aim of the present investigation. The paper is organized as follows. First, we
illustrate the protocol for exact but probabilistic super dense coding for qubits in section
2. In section 3 we generalize the scheme to higher dimensions. We find that the success
probability of performing super dense coding is exactly same as the success probability of
distinguishing a set of non-orthogonal states. It is indeed interesting to identify the problem
of probabilistic super dense coding with unambiguous state discrimination. Alternately,
one may think that this problem is related to unambiguous discrimination among unitary
operators with an entangled probe state. It has been shown that a set of unitary operators
can be unambiguously diseriminated iff they are linearly independent [12]. This is true
for any Hilbert space dimension. Furthermore, any probe state with maximum Schmidt
rank is sufficient to enable us to do the discrimination. Therefore, we can say that one
can do probabilistic dense coding with any maximum Schmidt rank pure entangled state
if you encode the information using a set of d* linearly independent unitary operators.
This shows that the ability to perform super dense coding is not only determined by the
amount of entanglement shared between the sender and the receiver but also depends on



the extent to which the states encoding the message can be distinguished. In section 4,
we investigate if the use of more prior entangled state can enhance the success probability
of performing dense coding. In particular, we have asked if by sharing a (D x D. D = d)
entangled state and by encoding d® messages in a D-state system, one can send 2log, d
classical bits in a deterministic fashion? The answer to this can be negative sometimes.
We find that more entanglement may not be useful in the sense that it may or may not
enhance the success probability of performing dense coding. On the contrary, if we use
a (D x DD > d) maximally entangled state and try to send 2log, d classical bits, then
surprisingly the success probability decreases with increasing D). When D = d, then the
optimal probability of performing the dense coding is exactly unity, which is the standard
case. This also helps us to understand why we need log, d ebits to send 2 log, d classical
hits in a deterministic fsahion. We end the paper with discussions, conclusions and some
future directions in section 5.

2 Probabilistic dense coding with a qubit

In this section we describe how to send two classical bits (2log, 2) of information in a
probabilistic manner using a partially entangled state. First we give the most general set
of basis vectors for two qubit Hilbert space. This was introduced in [13] in the context of
probabilistic teleportation. We can define a set of mutually orthogonal NME basis vectors

(|0} }i = 1,2,3,4) € H? @ H? as follows
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Here £ and p can be complex numbers in general and L ml-; wd P m
are real munbers.  We notice that when £ = p = (), this basis reduces to the com-
putational basis which is not entangled. For £ = p = 1, it reduces to the Bell ba-

sis which is maximally entangled. Therefore this set interpolates between unentangled
and maximally entangled set of basis vectors. Also note that the set |pF) and |¢F)
have different amount of entanglement for 0 < £ p < 1. As measured by von Neu-
mann entropy [14], the entanglement of E(|pf)) = (— L?log,L? — L? |{* log,L?|£]*) and
of E([¢)) = (= P?log,P* — P?|p|* log,P?|p|*). respectively are different for these sets.
However, when { = p, then all basis vectors have identical von Neumann entropy. Even
though |7} and [¢0F) have different amount of entanglement they satisfy the completeness
condition, Le., 37; [t} (¢| = I for all £ and p.

For the purpose of super dense coding one may use any one of the NME basis vectors
as a shared resource. Let Alice and Bob share a non-maximally entangled state |¢)) as a
quantum channel which is given by

|é) = L(]00) + £]11)). (2)

Here, without loss of generality £ can be chosen to be a real number. Notice that because of
the existence of Schmidt decomposition [15, 16] any two qubit entangled state |0} € H?@H?

such as
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can be written as a superposition of two basis vectors. In general, the computational basis
0} and |1} need not be the Schinidt basis, but we assume that Alice and Bob
know the Schinidt basis and coefficients. Then (2) is the most general non-maximally en-
tangled state up to local unitary transformations relating Schmidt basis and computational
basis states. By local unitary transformation, Eqn.(3) can be brought to Eqn.(2).

Let Alice apply on her particle, any one of the four unitary operators {1, g.,io,, 0.}
that encodes two bits of classical information. Then, depending on the applied unitary
transformation the shared state undergoes the following transformation

states such as
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Now Alice sends her qubit to Bob., Bob has at his disposal two qubits which could be
in any one of the four possible states {|¢f ). [}, [¢7), [#7)}. 1f Bob is able to distinguish
all the four states deterministically then he can extract two classical bits of information.
However, the above four states are not mutually orthogonal. In quantum theory, non-
orthogonal states cannot be distinguished with certainty. Note that if the shared state is a
ME state, then all the above four states are mutually orthogonal and the protocol reduces
to the standard one [1].

However, it is known that if a set contains non-orthogonal states that are linearly inde-
pendent then they can be distinguished with some probability of success [19, 20, 21, 22, 23].
Now in our case, it is easy to check that the above set {|o]). |07 ). 07 ). [oF b} is actually
linearly independent. The basic idea is that once Bob is able to distinguish these states
with some probability of success, then he can know which unitary operation Alice has ap-
plied, hence he can extract two classical bits of information. The optimal probability of
distinguishing these linearly independent states is then the optimal success probability of
performing the super dense coding with a partially entangled state.

The way it works is that first Bob performs a projection onto the subspaces spanned
hy the basis states {|00},]|11}} and {|01),|10}}. The corresponding projection operators
are P, = |00}(00] + |11} (11| and P, = |01}{01] + |10} (10|, where P; and P, are mutually
orthogonal. If he projects onto P, then he knows that the state is either |¢]} or |f5;}
Similarly, if he projects onto F,, then he knows that the state is either |t,:';"} or |t ). Now
the task at Bob's hand is to further distinguish between these two states within the given
subspace. To achieve this, he performs a generalized measurement described by Positive
Operator Valued Measurements (POVMs) on his two qubit states. POVMs are nothing
but the generalized measurement operators which can be realized by enlarging the Hilbert
space of the quantum system and performing orthogonal projections on the ancilla system.
They are described by a set of positive operators {4, } that sum to unity, ie, 3, A4, = L.
Here, the number of outcomes can be much larger than the Hilbert space dimension of
the quantum system, ie. p > d. Upon measurement, the probability of observing uth
outcome in a quantum state p is given by p, = tr(A.p). In general these POVM's are
not necessarily orthogonal. If they are orthogonal then they reduce to the standard von
Neumann projection operators.

Now the corresponding POVM elements for the two qubit case in the subspace



{|00}, [11}} are given by
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This was first given in [17] and also used in conclusive teleportation [18]. One can check that
Ay + A + Ay = 1. Here if Bob gets A; then the state is |¢7 ), if he gets A, then it is |q5f_}
and if he gets Az then th(‘ result is inconclusive. The success probability of distinguishing
|y and |be} is 1 — (7| As|¢f) which is same as 1 — (¢ |As|¢; ). This turns out to be
equal to %y Similarly, fﬁr the other two cases one can *-,hﬁw that the success probahility
is given by the above expression. Hence, we can say that Bob can extract two bits of
classical information with a success pr(}'tmhlhtm given by %y For the maximally entangled
case, { =1 and so probability becomes one. This is then the standard super dense coding
protocol that works in a deterministic fashion. This completes the probabilistic super dense
coding protocol with a qubit.

3 Probabilistic dense coding for qudit

We know that if Alice and Bob share a (d x d) maximally entangled state then by sending
a qudit Alice can communicate 2 log, d bits of classical information. Can she send the same
amount of classical information in a probabilistic manner if they share a non-maximally
entangled state? The answer is ves. Interestingly, this problem is also directly related to
the problem of distinguishing a set of non-orthogonal states with a certain probability of
SC0eSs,

In this section we generalize our protocol when Alice and Bob share a NME state in
higher dimensions (say a two-qudit state in d x d). The shared NME state is expressed as

= Z VK k), (6)

where p,'s are the Schmidt coeficients and |k}’s are the Schmidt bases vectors. Alice and
Bob possess one particle each. Now Alice encodes her d” possible choices or 2log, d bits
of classical information using unitary operators U,,,,. where m,n =0,1,...d — 1. These
unitary operators are given by

U= (VIR (7)
where {7 is the shift operator and V' is the rotation operator whose action on the basis states
are defined as follows

Ulk)y = |(k®1))
Vik) = ek )

and @ is addition modulo d. After Alice applies Uy, to her particle the two-qudit state
transforms as

d—1
) — (U @ DT = 3 /B ™ 4|k @ m) k) = | o). (9)
he={}

Next, Alice sends her qudit to Bob who has the two qudit state |U,,,) at his disposal. If
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extract 2log, d bits of information deterministically. However, these d* states given above
are not orthogonal. Indeed, they satisfy the following relation

d—1
{wmr.".'l]m'ﬂ'} = Z pkﬁ_‘lﬂ.k[ﬂ_ﬂr}'fld[immr. {1”}
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Only when all pi's are same (iL.e. the shared state is ME) the above d* states are orthogonal.
Now Bob has to find a strategy to distinguish these states. His ability to distinguish them
will decide the success or failure to extract 2 log, d bits of classical information. Of course,
he cannot do so perfectly. But he can succeed in distinguishing the above states with some
probability. Then the probability of distinguishing these non-orthogonal states will be the
probability of successful dense coding for a qudit.

Here, we are going to use ideas about discriminating non-orthogonal, but linearly inde-
pedent quantuin states and present a closed form expression for average success probability
of distinguishing a collection of such quantum states. This is another direction of research
by itself, so we do not intend to review its status here [19, 20, 21, 22]. Rather we will be
using some of the results. The pertinent question in the present context is that if we have
a set that contains a collection of quantum states {|W;}Hi = 1,2,... N) in some Hilbert
space, then can we perform some measurement and tell in which state the system is? If these
states are orthogonal then the standard von Neumann projection can give us an answer with
certainty. However, if they are non-orthogonal then no von Neumann type measurement can
unambiguously identify the states. Then one has to take recourse to the idea of generalized
or POVM measurements which can help us in discriminating non-orthogonal states with
some probability if and only if the states are linearly independent [21]. A more convenient
approach was suggested by a theorem of Duan-Guo [23] which tells us that there is a uni-
tary operator together with post selection of measurement action which can identify a set
of linearly independent states with some suceess probability. More precisely it states that
the set {|W;} }Hi =1.2,... N) can be identified, respectively, with efficiency +; if and only if
the matrix XY — T is positive definite [23] where X = [(¥,;|¥,}] is the Gram matrix and
I' = diag (v, ve, -~ -vw ). In terms of the unitary operator on the input and probe state the
process takes the form

—_—

U(W:) |P)) = Al WP} + /1 — 3l 8:} | Pra) (11)
where | P} is the initial state of the probe, |F}, |}, - - - | Py 1) are orthonormal basis of the

probe Hilbert space, )} is the final state of the system, and |®;} is the failure component.
After the unitary evolution, if we perform a von Neumann projection on the ancilla system
and get [P}, i = 1,2, ... N, then we are able to identify the state. But if we get | Py}, then
we discard it. The success probability of identifying these states is ;. Using Eqn.(11) we
derive the optimal bound on the success probability of distinguishing any two non-orthogonal
but linearly indepedent states. Taking the inter inner product we have

(Wil W) = A (W) (BB + 4/ (1 — i) (1 — ) (®i] ;). (12)

Using the above equation we can obtain the tight inequality for distinguishing any two
non-orthogonal states from the set. It is given by

L WL — 8. <1 — (0TS (13)



This holds for all ¢,j. For i = j we have = (. One may solve a series of inequalities
to obtain individual success probabilities. However, we are interested in the average suc-
cess probability. This may be obtained as follows. Define the total success probability as

Z':fa

v = ¥, and the average success probability as 7 = . where NV is the number of
linearly independent vectors and N < dim(H). Then p(-rfﬂrmmg a double sum in the above
inequality, we have the average success probability as

- N N
TSy T N |l (14)

; 1_';1

Alternately, this can be expressed as

N

<1- g 2 ) (15)

‘ ig=1
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This shows that if the set contains states that are orthogonal then there is no error, the
average success probability will be always unity. The second term in the optimal success
probability represents the deviation due to the non-orthogonal nature of the states involved.
To our knowledge such a closed form expression for total or average success probability of
distinguishing N non-orthogonal states has not been obtained before. This is another kev
result of our paper.

Coming back to the super dense coding scheme, onee Alice applies d* unitary operators
and sends the qudit to Bob, Bob has d* non-orthogonal states {|W,,,)}. The task for Bob
is how well he can distinguish these states. First, Bob performs d orthogonal projections
P =% |kdm){kdm|@|k) k|, m=0,1,...d—1 that projects these states onto d mutually
orthogonal subspaces. Now within each subspace there are d non-orthogonal but linearly
indepedent states that Bob has to distinguish. For example, if Bob projects onto Fy, then
this subspace has {|W,}} states which are all non-orthogonal. He can perform a unitary
operation on two qudits and an ancilla state. After post selection of measurement outcome
(in other words he is performing a POVM) he can extract 2log, d bits of information with
certain non-zero probability of success. The average success probability of distinguishing
states within a subspace (let us say for m = 0) can be obtained from eqn. (14) by putting
N=d

T (d-1) d(d -

Z | (W o[ W) | (16)
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Alternately, the average success probability with which he can distinguish o non-orthogonal
states is given by

d—1 d-1
Ty i—_mk[n—ﬂ )d 17
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The protocol works for other subspaces also with the average success probability as given in
(16). Thus by sharing a partially entangled state Alice can communicate 2 log, d classical
bits to Bob with a non-zero success probability. This completes the super dense coding
scheme with any higher dimensional entangled state.

Just as a consistency check one can also obtain the average success probability of per-

f o JA, (PN, | SN 0 U Y W, i T | S N S I N I B S SR o S



Bob performs projection onto two subspaces he has only two non-orthogonal states within
each subspace, so N = 2. Then the above relation reduces to 5 < 1 — (py — p1). Identifving
po = L? and p; = L*@ we have 7 < 1 — L*(1 —£?) = 202 /(1 +{*) which was obtained in the
section 2.

Asa further illustration of the general result for d x d. let us consider probabilistic dense
coding for qutrits, i.e., for d = 3. In this case Alice and Bob possess one qutrit each. Alice
can encode 2log, 3 bits of information using unitary operators Uy, where m.n = (), 1, 2.
These operators will lead to nine linearly independent states all of which are not orthogonal.
Although these nine states are not mutually orthogonal, they can be divided into three
subspaces, which are mutually orthogonal. The states in these subspaces are spanned by
basis states { |00}, |11}, |22} }, {|10}, |21}, |02} } and {|20}, |01}, |12} } respectively. By making

appropriate Von-Neumann measurements, Bob can distinguish these three classes. But he

cannot perfectly distinguish the states within a class, since those states are not orthogonal.
However as the states within a particular class are linearly independent, we can use formula
(15) to find the probability for Bob to be able to distinguish these states within a class. This
probability will be the same for all the three subspaces. Let us consider the states within
the class {|¥pa)}, (n = 0,1,2). These states can be distinguished with a suceess probability

g e 3
FEl= ﬁp."l{iﬁu =3+ (=) (18)

Thus, by sharing a 3 x 3 NME state Alice can communicate 2 log, 3 classical bits with a
success probability given in (18). As expected for ME states, py = p1 = p2 = 1/3 and hence
Fopt = 1 which reduces to the standard case.

4 Super dense coding with more entanglement

Since the classical capacity of the communication channel enhances due to the presence
of prior entanglement, one may wonder if the presence of more entanglement can help
to enhance the probability of successful dense coding when Alice and Bob share a NME.
Specifically, as a result of the above discussion, we ask the question whether one can send
2log, d bits of classical information by encoding d? messages in a quDit (a quantum system
with D-dimensional Hilbert space), and sharing a D x D partially entangled state where
D = d. It may be recalled that recently Gour [24] has investigated the question of teleporting
a d level quantum system faithfully using a higher dimensional (say D x D with D > d)
partially entangled state. He has found that the classical communication cost of teleporting
a qudit is at least log,(dD) bits.
Let the state that Alice and Bob have shared is given by

D—1
@) = Z v/Palti} 1) (19)

Alice encodes her d? messages by applying the unitary operators U,,,. Here we have to
enlarge the definition of these operators. The unitary operators U4,,,,, act as it is given earlier
bv Equs. (7 - 8) for m,n = 0.1,...,d — 1, while for the rest of the indices, they act as
identity operators. In other words, U acts on the first d-dimensional subspace as defined



earlier and as an identity for the rest of the subspace. After Alice’s operation the two-quDit
state transforms as

_ D-1
|8) = Upan|B) = |B 1) = [¥rn) + Z‘; VPult) | (20)

It can be shown that |V} are not orthogonal to each other and also they are not normal-
ized. Similarly the |®,.,) are non-orthogonal and satisfy

d—1 D—
(Brn| B} = Y pre 2 HWAG i+ Y P (21)

=0} jr=d

Let us just note that if the shared entangled state |®) is ME, then p, = 1/D and the
above orthogonality relation reduces to

D—d
{'I’.mﬂ'd)mn } = mm [irm' = LTfl {22}

Now Alice sends her D dimensional particle which encodes her d? messages. So basically
she has not utilized the total Hilbert space of her particle. Bob after receiving Alice's
particle has the task of distinguishing effectively d* quantum states {|®,.,}}. Since the
states are not orthogonal, we can conclude that he cannot discriminate them with certainty
and so deterministic dense coding is not possible. He can however extract 2log, d bits of
information in a probabilistic manner. First, Bob performs the von Neumann projection
onto the d subspaces. Then, he performs POVM's within each subspace to distinguish
non-orthogonal states with an average success probability

d-1 d-1
F<£1- Z IZ pre2rikn-m)d Z Pyl (23)
"I{"I - 1} n,nf=0 p=d
AngEnt

Thus, with a non-zero success probability as given in (23) Bob can extract 2 log, d bits of
information. But we cannot compare here whether it is smaller or larger than the previous
one (when Alice and Bob share a d x d partial entangled state) in general.

The situation is more interesting with maximally entangled states. Let us concentrate
on the case where Alice and Bob have shared a D x D maximally entangled state. Then we
have a simple expression for average success probability which is given by

< g (24)

__;!|

This shows that if we use a D x D maximally entangled state and want to communicate
2log, d classical bits then we can do so with an optimal probability /D. This simple
expression gives many new insights indeed. Note that when d = D, we have . = 1
which is the standard case. However, if we use higher dimensional entangled states as
shared resource, then the average success probability is less than one. As we go to higher
dimensions i.e., D = d, then the average success probability of distinguishing non orthogonal
states decreases. Thus we can say that the presence of more entanglement in shared states

may not be always useful (as shown in this scheme). However, it may be too early to
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schemes where more entanglement may be useful for dense coding. However, this is not clear
at the moment. For example, Alice could apply D? unitary operations and choose d? of them
to encode her messages that are best distinguishable for Bob. But this is something which
needs to be explored in future. Also, (24) shows that in order to send 2 log, d classical bits
in a deterministic fashion (ie., with probability one) we must have log, d ebits as a shared
resSOUrce.

We reiterate that the motivation for Section 4 was to see if the mere presence of more
entanglement can enhance the success probability. It is not the question of using or not
using those extra dimensions. (One may recall that in quantum information processing,
sometimes mere presence of the entanglement can act as a catalyst.) Of course, we know
that if we use all the entanglement then we can send more classical bits as entanglement
increases in determinsitel setting. The interesting finding here is that just the mere presence
of more entanglement may decrease the probability of the success. One would have expected
this probability to remain at least the same.

5 Discussions and Conclusions

Ideal EPR pairs are very useful for deterministic dense coding, teleportation, remote state
preparation and so on. However, given arbitrary entangled state of two qubits or qudits
can we do these important tasks. In this paper we have investigated the possibility of
performing super dense coding in a probabilistic manner using a non-maximally entangled
state as a resource. We have shown that 2log, 2 classical bits can be sent probabilistically
by sharing an entangled state that has less than log, 2 ebits of entanglement. Generalizing
to higher dimensions, we have shown that 2 log, d classical bits can be sent in a probabilistic
manner using a shared entangled state that has less than log, d amount of ebits. The success
probability of performing super dense coding is related to the optimal success probability
of distinguishing linearly independent non-orthogonal states. The expressions for average
success probability are given for qubit, qutrit as well as for qudit cases. As far as we know
the results presented are new and do not exist in the literature.

It may be remarked that we could first convert a NME state to a ME state with cer-
tain probability of success [25] and then follow Bennett-Wisner (BW) protocol [1]. In this
scenario the probability of successful conversion of NME to ME state will be the success
probability of dense coding. However there are two subtle differences between this case and
our protocol. 1If we first perforin local filtering and follow BW protocol, the probability
enters at the stage of conversion of NME state to a ME state. Then two classical bits are
transferred deterministically. Whereas in our case, probability enters at a different stage.
In our protocol two classical bits are transfered but recovered probabilistically (due to non-
orthogonal nature of the states). Another important difference is the following. In the first
case, if we fail in converting NME state to a ME state, we cannot use the Bennett-Wisner
protocol. Whereas in our case, whatever is the NME state, we can send two classical bits to
Bob probabilistically. That is, in our case we will always be able to run the protocol. There-
fore, our protocol is a single shot super dense coding protocol for non-maximally entangled
resource without first converting to a maximally entangled pair.

In addition to superdense coding for qubit and qudit, we have also asked that if one
uses a non-maximally entangled state in higher dimensions (say D x D), then can one send
2log,d, (D = d) classical bits with a higher probability of success? Interestingly, we find



that the answer to the above question may be negative: more may not be always better. But
there can be other schemes where entanglement might help. We have shown that if we use
a maximally entangled state in D x D dimensions, then surprisingly the success probability
of performing super dense coding decreases with increasing D). Our analysis also explains
that to send 2log, d classical bits in a deterministic fashion why one needs exactly log, d
chits and not more, not less.

In future it will be interesting to investigate if one can send log,(dD) classical bits by
sharing a D) x D partial entangled state and sending a qudit. This would be reverse of tele-
portation described in [24]. A priori it does not look like possible, but it is worth exploring.
Also one can see if the probabilistic super dense coding scheme can be generalized for mixed
entangled states. That will shed light on the relation between the classical communication
capacity and ability to distinguish mixed entangled states. It will be of great value to gener-
alize our protocol for continuous variable quantum systems. We hope that the probabilistic
super dense coding protocol can be verified experimentally with the present technology.
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