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Abstract

We study the last pussage tme and its asymptotic distribution for minimum conirast estimators defined
through the minimezation of a convex criterion function based on C-functionals. This includes cases of
non-smaoadh estimators for vector valued parameters, We also derive 2 Bahadur-type representation and
the law of iterated logarithms for such estimators.

2000 Mahemarics subject classificarion:; primary 62F 1§ 2; secondary 60F99, 60HS9, 62E20,
Kevewords and phrases; minimum contrast estimators, last passage time, law of iterated loganthms,
RBahudur representation, Oja median, £, median.

1. Introduction

Let X be an M valued random variable with distribution F. Let X,,... . X,. be
independent, identically distributed copies of X, Let g(f, Z) be a real valued function
defined for @ € BY and 7 & M" for some m, | = m < oo, We assume that
g is measurable and is symmetric in its last m arpuments for each 8. Let O(6) =
Evrgif. X\, ... . X,)and &, (unique) be such that G(&,) = infy E.q(@. X\.... . X.}
Define the sample analogue of QUF) as

-1
0.(8) = (:1) Y el X Xl

bh o sinZn

The estimator 8, of &, is the value which satisfies 0, (6,) = inf, (,(f) and is called a
minimum contrast estimator. This is the M, estimate of &, introduced by Huber [9].
For the present paper these estimators are based on minimisation of convex functions
of U-functionals. Examples of statistics that come under our set-up include (i) Oja
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median (Oja [13]), (ii) univaniate location estimators of Maritz et af. [11], (ii1) univari-
ate Hodpes-Lehmann estimators of location, (iv) a univariate robust scale estimator of
Bickel and Lehmann [1], {v)} a regression coefficient estimator of Theil {see Hollander
and Wolfe [8]), (vi} I/ quantiles (Chowdhury and Serfling [6]), (vii} L, median, (viii)
geometric quantiles of Chaudhuri [5] and, (ix) Hodges-Lehmann versions of {vii)
and {viii).

For m = 1, strong consistency and asymptotic normality of 6, was established by
Habermann [7] using the assumption of convexity of g in ¢. Niemiro [12] utilized
this convexity to establish other asymptotic properties of £,. Bose [4] extended these
results to m = 1. In particular, they established a Bahadur type representation of the
form

Vn(8, — fy) = leading term + R,

where R, is of suitable order almost surely under suitable assumptions. Ifm = 1 and
g is differentiable then &, satisfies | g'(9, x) F,(dx) = 0. For these estimators, which
are known as Huber's M -estimators, Stute [16] obtained a similar representation under
the restrictions that the score function g’ is smooth, bounded and nonincreasing in ¢
for cach x € B, Here F, denotes the empirical distribution function and #; is a root
of 1(8) = [ ¢'(8, x) Fs (dx) = 0. This representation was used to study asymptotic
properties of the last passage time of 8, in Stute [15] for m = 1. For a sequence of
estimators #,, the last passage time is defined as

. =supln = | |#, — ] = €.

One immediate use of lust passage time asymptotics is in computing fixed volume
confidence sets for the parameter of interest with prescribed asymptotic coverage
probability. Last passage times are also important from the viewpoint of computing
asymptotic relative efficiencies of members of a class of estimators and thereby se-
lecting the optimal estimators. They also relate to Pitman efficiency of estimators,
see Stute [15] for precise details. They may also be used for computing most other
statistics that are relevant in the context of sequential procedures. A truly sequen-
tial procedure is often complicated and intractable for non-smooth statistics, so an
approximation throogh last passage time asympiotics can be quite useful.

When &, is the sample mean of independent, identically distributed random vari-
ables, asymptotic properties of last passage time estimators have been considered
by Robbins and Siegmund {14]. Stute [16] extended these results to M -estimates
for m = 1. His main assumptions are that the score function is a ron ircreasing,
differentiable function of 8, is bounded uniforsmly in x, T(8) is twice continuonsly
differentiable in a neighbourhood af 6, such that I'(8,) < 0.

In this paper we discuss the last passage time asymptotics for the M, estimators.
Thus we extend Stete's results in two directions. First, we consider functionals which
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are not necessarily smooth. Second, we allow m = 1. Thus we are able to include
a significantly wider class of estimators, some examples of which were mentioned
earlier.

Cur main theorem on last passage times uses a Bahadur representation of M,
cstimators, Such a representation is already available in Bose [4]. However, we need
a more general statement for the present purpose, and (hat is given in Theorem 2.1,
Foliowing this general Bahadur representation theorem, the law of iterated logarithms
is an immediate corollary, so we make a mention of 1. The main result on last passage
times is given in Thearem 2.2, All proofls are given in Section 3.

2. Results

Lat X be an M valued random variable with distribution F. Let X, ... . X,, be
Lid F. Let g{f#, Z) be a real valued function defined for ¢ € BY and 2 ¢ M™ for
some i, L= < o0 We assume that g is measurable and 15 symimetric in its last m
arcuments for each #. Let (HO) = E.q(#, X,... . X, ) and &, {unique} be such that

(21} Q#Hu:}:U:rE;.q{ﬁl.xh -er.'}'

Detine the sample analogue of g(8) as

[

-1
n
(2.2) 0.8 = ( ) giE. X, . ... X))
! = Zﬂn <n
and the estimator ¢, of & as the value which satisties (0, (8,1 = infs {0, (7). Il no such
f. exists, take ¢, = 20, The estimator &, can be and 1s chosen In a measarable way.
Lit g be o suberadient of ¢ That is, for all o, 8, 2,

(2.3) gl Z3+ (f ~a¥ela, £2) = gif, Z).
Further g is such that it is measurable in Z for each «. We will use the notation
(@) = Egif, Xy, ... X, ). The gradient vector and the matrix of second derivatives
of ¢ at @ will be denoted by ¥ Qif} and V= Q{#) respectively, Let
; -1
2 n
= o[ SR S d U, = .
= T st o md o=()

Define g(éh, X)) = Elel@, X1, ... . X)X (] Fora vector a, the notation |al will

denate its Euclidean norm. For a matrix 4, the notation A" will denote its transpose.
We now state the conditions that are assumed throughout this paper. Let & be an
appropriate neighbourhood ol &, r = Tand # — . 0 =5 < 1.
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(I} {8, £)isconvex in & for every Z.
{II}  £XR) is finite for all 8.
({TI) B satisfying (2.1) exists aml is unigue.
(IV)} Var(g(€. X1.... . X)) is posilive definite.
(V} Elgid, X,.... Xo)|I"=ocvV8eN.
(V1} H = VI0(f,) exists and is positive definite.
(VII} |V Q8 — VI QUBNE — )| = O — &|* ) as & — @
(VIIl} Elgd. Xq... . X)) — 2B Xioo. Xpd|P = 008 = """ as § — .
(IX) Elgif. Xy, ... . Xu)|"= (1) asf — &
(X3 V= Ep (4. X.}g;‘"{ﬁu, X 1) is positive definite.
Otten, the finiteness condition (11} is satisfied for only a subset of R®. All our results
remain valid if & is an intcrior poinl of this subsct, Assumplions (D—{1X) arc same
as that of MNiemiro (1992) and Bose (1998). Assumption (X} in particular implies
that the {f-statistic U}, is non-degenerate. The matrix V = Egi{f, X g/ (%, XD
being positive definite, it can he written as ¥V = ZE', where £ can be chosen to
he symmetric, and further. positive definite, We will retain the notation  for such
a choice. As remarked in the intradoction, oor main result Theorem 2.2 requires a
Bahadur representation of minimum contrast estimators. The peneral representation
result involve four sequences of non-negative reals that satisty certain interrelation-
ships. We consider the following: 4., n,. v. and e, are {our nonnegative sequences
satisfying
(a) 1, = o(n'?), In,} bounded away from 0,
(b)) 5. /8, =1fralln =1,
{c) n¥ =, = Co ¥ 09+ foraconstant € = 1 and some § = 1/2,
(d) €, =2Kyv.(logn)'? + 4K 5,, where Kq, K, are constants.

THEOREM 2.1. Assume the conditions (DHIX) with r = 2 and some 5 € (0, 1),
Then

n]ﬂ(&n - EII} = _"”2'”-_] Um + R.u

wiith

d
P{|R.| = Ke,) = O ((:—) n“’-"*‘tr;'{logrxll”'z) :

L

where 1/ K =inf, -, ¢'He/2

The corresponding representations available in Bose [4] or Niemiro [12] can be
worked from Theorem 2.1. A Jaw of iterated logarithm follows immediately from
Theorem 2.1. We record this result in the following corollary.
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CORCLLARY 2.1. Suppose assumptions (1)-(X) hold and let v = 444014 53/ (345).
Then for any c € B?, ||| = |, we have

1,2 T}: IH Hﬂ M
P | lim sup £ cd_(—ﬂ.,} =- =0
f2m? (log logs)

" W

We now stale our main resuli.

THREOREM 2.2, Suppose asswmptions (F—(X) hold with r = 2. Also ler W, be a
standard Brownian motion on C,[0, 1] and Giy) = Plsup,.,., [ Wit} = »'72/m),
Then

(i) Lim,_y Plelr, = v}« Giy)  and

(i) lim,—g E(e’n) = f; v dG(y).

The above theorem reguires higher moment conditions thun what is needed in
establishing similar results for i.Ld real random variables or Huber’s M -estimators.
This is a trade off in that we have dropped the smoothness conditions and boundedness
conditions on the criterion function.

3 Prools

For all the proofs, assume withouot loss of gencrality that 8, = O and Q08,) = O
For a real quantity x, [x] will denote its integral part.

In order to prove the Bahadur representation theorem, we need a lemma that we
state here. This is essentially Lemma 2 of Bose [3]. We omit the proof of this lemma.

Levsa 3.1 (Bose [3]). Ler [h,) be a sequence of (symmetric) kernels of order
woand let [X,. | = [ = n} be i.Ld real valued random variables for each n. Let
Uih,) = {:.}_I ZI:;n-:----ﬁ,-:"'r Llh (X Lo, X0 Farther, suppose that for some
&= 0 and some v, = 0, LN, . Xt =0, ElhdX, .. . XowlF = v
aird B\ (X e o Kond| = 8 = 00 for some v = 2. Then for all large K,

Pin' UL ) = Ko dlogn)' 7y = Da' o T(log n)™.

Preoor oF THEOREM 2.1, Let 8 denote the set of all m element subsets of {1, ...,
n}. Forany x = {§...., in} € 8. let Y, denote the random vector (X, .... , X ).

Define G, (o) = (")7 ¥ elo ) X,, = gla/n'?, ¥,) — g(0, ¥,). Note that
EiX..)= Cla/n"™) and f;}i YT E(?J,{ujn'ﬂ} —{"} 'S,,]_ Ry (VIII),

]

(3.1} X P = thin Py aniformly for el < My,
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where n~'25, — Oasn — oo from (a). Now note that (3.1) in conjunction with the
upper bound in {c) and assumption {V} ensure that the conditions of Lemma 3.1 are
satisfied. Thercfore for large &y

-1
12 rf 12
(e ( m)*—ﬂ (m) Sp—n F(H )

=1 {"l r-'2 r{]“g”}r 2}

= Kyva(log n)" {|

(3.2} sup P[
x| =Mna

Moreover, from (VI1} we have sup .y, 07 Glee/n')— Ha| = Q(n=1+iipienity
Hence, since n~"1+3M4pi+0i2 <y (lop a2, the term 1Y Glee/n'") can be replaced
in{3.2)by Hu.

MNow consider a finite §, trangulation of the ball {le| = M, + 1] consisting of
O{(n,/8,)") points. From (3.2} it follows that

I aaf Fgs
", el il gy — Ha
n H

holds simultaneously (or all & belonging to the triangulation with probability equal to
1 — O((ne/ 8,0 "7 2v " {logn)?. Now apply Lemma 6 of Niemiro [12] to extend
this inequality to all points of the ball, Lel ¢, = 2K,v, (log n)'? + 4K 6, where K,
is as earlier, and K, is a constant from (YIT). Then

(3.3) P [ sup = Em:|

i~ f 2 L er
foitG, — | —-n "L — He
o= g “].-..

o
o)
-l
n”zﬁm(%) — nw(”) 5 — He
n's? m

holds for some #. Consider radial directinnal derivatives of the convex Tunction
nQu(a/n'?) — n@,(0) on the sphere |a — n'?H-'U,| = Ke, setting the value
1)K =inf, ., ' He/2. Under (3.4), for |¢| = | we have

. —n T+ Kee . .
nl’zﬂ"( nlxzw If) —nti - H{—u'-“H"Uﬂ-{-KE,,e]I = €.

172
= Kou,logn™

Suppose that the event

(3.4} sup

a|=Mn,

ZEy

so that

) - HeKe | <€

—_— s

' I."zG" (_HJ.&II_I.LF" it K!'"(:'

nlis
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and hence we have

. ek I__-!I_f—l.{r R .I'f: o€ .
en'e, (—r-!v ~l:l—"é—€) = e HeKe, — e, =L
nti?

Thus these radial directional derivatives are positive whenever (3.4) holds. Therefore
we have the result

of
PR, = Ke,) = U( (%) il "r""jt-‘"_'{lﬂg ”],-_,-?)I O

REMARK. The above proof atilised an idea of Niemiro [12] where he used particular
choices of 8,, n,, v, and €, sequences, Our result provides a more precise rate of the
error term R, in the Bahadur representation of M - eslimates.

ProoF OF COROLLARY 2,1, Using Theorem 2.1 one has

111".2[1"1].; - ) = - EH U + Ry

Thues
o' T VA, — &) _ TEEFL Wl I8 cTEVHR,

2niloglogapt® B {(Zm?{log log n))'s? 2mi(loglog np)lit

Now take 1, = Of(loglog )" {log )~/ * o tplt=siiZithy 5 = O({loglog n)'™)
and ¥, = Q(n~""HH 0%y with the constants appropriately adjusted, to get e, =
O({log log r)%). Now chserve that for the sequences thus fixed and given value of
r. we have from Theorem 2.1 that F{|R,| = Ke,) = (n~7) with y = 1. Hence
3, PUR, = Ke,) = oo, and (2mi(loglogn)y™""c" E-'H R, — 0 almost surely.

Now use the taw of iterated lopgarithms for [/-statistics to get the result. L]

PrROOF OF THEOREM 2.2, {i) Recall that we have assumed that 8, = 0 and
ity =0 Fore = 0,y = 0. putr = 257 and j = ¥e". Also re-
call the Bahadur representation »'%{8,) = —n'?H-'{], + R,. Then we have

Ple’r, z ¥] = Plr, =z j ') = PL*" sup,.; |6, = ¥'7]. Now for fixed d = 0,

F I:j""r sup &, | = _v'"':':|
LETIREN

- L sup | — H7' 4| =y - 5} + 2 Pl IR > 8],

TR P
As e ~— [ we have j — 20, and hence the sum er:; e actuilly represents a tail
sum. Since for our choice of r we have 3 | PV a7 "R, = 8] = oo, so that

=1
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3 opajin PR R, | = 8] — 0, and hence

(3.5) limsup Ple’s, = y] = llm Pl sup | — H7'0, = ' —r‘i:|_

=il B n=flis

Similarly,

P sup |8,] = ¥
LET AL

= P l:j.l:_l.-; sup |_ H—l L."nl - },l."_" -LE] _ Z P [j.l:_..-;n._ll-'zlﬂml - a] :

i nzg

and hence

(3.6) 11mmf Ple’t, = ¥l = Ilm P[ i sap B A =L Lt 5]_

aof!
For any ¢ > 1 and fixed j. define AL (F 7%} 10 be the mintmum eigenvalue of H 4
we have

(3.7) P [; sup | — H™' ) >yl —a}

n_.-\::J.I.":

ol |i_;"-"’ s.ul? |2 H %) = 3! :5:|
LEG A
<= Y PlIGl = (M = s U]
nzg i
The above sumin (3.7) is finite for cvery fixed ¢, and therefore it can be miscde arbitrarily
small by choosing ¢ large enough. hnnsu a large © such that ¢f ' 1s an inleger. Tt
remains to deal with P[;*/' sup, ... — H' ] = w1 — 8] Define

IR R

0, it =g im - g

i) = IZ-'H [

and linearly in between. Then L, . (¢} == Wy on ([0, 00] as j — o0 for fixed ¢

(see, for example, Lee [ 10, pages 136—137] for a statement and proof of the univariate

version of this theorem). The d-dimensional version is a direct generalisation. Using
this convergence, it 15 easy 1o sec that

clia

il r=ligg'™ d=mm+1, .

[FL RN K
JUE sup  |HT'Ui= sup |ZU mlm{g .—jj‘—
JITanug e 1 | [ ; ire]
e Zwal
— ML Sup —————— A% j — 00

|
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Now me™"sup_,_,. |[EWa(0)|/t has the same law as msup,. . " ""HE W)
by a time-reversal of Brownian motion. and this in tarn has the same law as
™ Sup |2 Woir)| by a time scaling of Brownian motion, Therefore, as j — oo,

“la g

r ] 1UJ a
Pliv sup |~H U=y -6~ P[ sup |EWy(n)] = - ]
|Jﬂnﬂ

ni

PRy P
FrtEREL

Then as ¢ — 20,

.I.-'E_a .I_-'J_a
(3.8) P[ sup |Z Walr) = }—} — P[sup |Z Whir)| = }—:|
" "

e |

e o

and as § — 0, this converges to Plsupy.,., |Z Wylr)| = v fm] where W, is standard
Brownian motion on [0, 1), This proves (i). il

PrROOF OF THEOREM 2.2, (ii) It suffices to prove that for some €; = 0, the fam-
ily [e’r, : 0 = & = g) is uniformly integrable. Recall that Ple’r, = v] =

Plj r"'riiLl[‘lu.__,_,-..-. 18] = ¥'7], where j = y*/¢ By application of Lemma 3.2
of Bickel and Yahuav |2], we only need 10 prove

(3.9} Za‘up PiY sup 18] = &7 | = oo,

iel e

where the first supremum extends over all j such that j = &% /e, This 15 proved
along lines similar to the proof of part () of this result. C
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