g-inverses are indeed an integral part of linear algebra and should be treated as such even at an elementary level.

Various techniques have been employed to deal with the problem of singularity. In the linear model context one may reparametrize the model to make it a full rank' model. A more recent approach which is theoretically quite appealing is to extend the notion of inverse to arbitrary matrices. This can be achieved in several ways but the following de nition has survived the test of elegance and applicability. Let A be an m f n matrix. We say that an nf m matrix G is a generalized inverse (or simply, a g-inverse) of A if AGA = A: Clearly if A is square and nonsingular then A i is the only g-inverse it has. But in general a matrix has in nitely many g-inverses. This abundance of g-inverses results in a very rich theory.

A matrix over an arbitrary "eld admits a g-inverse. This fact is well-known and not dit cult to prove. However, it is interesting to see the various approaches by which the statement can be established. It becomes apparent during the process that g-inverses are indeed an integral part of linear algebra and should be treated as such even at an elementary level.

We sum marize several ways in which the existence of a g-inverse over the complex numbers can be established. Some of the arguments remain valid over more general—elds. Also, with some extra e®ort one can derive the existence of more specialized g-inverses such as the least-squares and the minimum -norm g-inverse and the Moore{Penrose inverse. The emphasis is on bringing together several topics encountered in a standard linear algebra course.

We now introduce some de nitions. We deal with complex matrices. The set of mfn complex matrices will be denoted by C^{mfn} : The transpose of A is denoted A^T whereas A^D is the conjugate transpose. In the sequel we only give the de nitions that are required in the text but do not O^B er any motivation or examples. For a leisurely

December 2001

developm ent of these concepts one m ay consult the references mentioned in the last section.

For an m f n matrix A consider the usual Penrose equations

- (1) AGA = A,
- (2) GAG = G,
- (3) $(AG)^{0} = AG$,
- (4) (GA) = GA.

Recall that the $n \notin m$ m atrix G is called a g-inverse of A if it satis es (1). We call G a least-squares g-inverse if it satis es (1), (3), a m in im um -norm g-inverse if it satis es (1), (4) and the M core {Penrose inverse if it satis es (1)-(4). Any m atrix A adm its a unique M core {Penrose inverse, which we denote as A^+ : If A is $n \notin n$ then G is called the group inverse of A if it satis es (1), (2) and AG = GA: The m atrix A has group inverse, which is unique, if and only if R ank (A) = R ank (A^2) :

Proofs of Existence of g-inverse

First observe that if A is square and nonsingular, then A; 1 is the only g-inverse of A: Also, if the matrix B has full column rank (i.e., the columns of B are linearly independent), then the left inverses of B are precisely its g-inverses. A similar remark applies to matrices of full row rank. We now turn to the existence of g-inverses of an arbitrary matrix.

1. A Proof using Rank Factorization

Any matrix admits a rank factorization. Thus if A is an m f n matrix of rank r; then there exist matrices B and C of rank r and of order m f r and r f n, respectively such that A = BC: Clearly, B admits a left inverse, say B and C admits a right inverse, say C admits a right inverse and C admits a right inverse.

be B $^+$ since B has full column rank) then G = C † B † is a least-squares g-inverse of A : Sim ilarly choosing C † to be a minimum-norm g-inverse (which must be C $^+$) we obtain a minimum-norm g-inverse of A : Combining these observations, A $^+$ = C $^+$ B $^+$ is the Moore {Penrose inverse of A :

We also remark that A has group inverse if and only if CB is nonsingular. In such a case, it is easily veried that $G = B (CB)^{1/2}C$ is the group inverse of A:

2. A Proofusing the Rank Canonical Form

If A is m f n of rank r; then there exist nonsingular matrices P and Q of order m f m and n f n, respectively, such that "#

$$A = P \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q :$$

It can be veried that for any U;V;W of appropriate dimensions, " #

is a g-inverse of

Then

$$G = Q^{\dagger 1} \quad \begin{array}{cccc} & & & \# & & \\ & I_{r} & U & & \\ & V & W & & \end{array}$$

is a q-inverse of A:

This approach m akes it evident that if A is not a square nonsingular matrix, then it adm its in nitely many giverses, since each choice of U; V; W leads to a different giverse. We can also deduce the following useful fact: if A has rank r; and if $r \cdot k \cdot m$ infm; ng then A adm its a g-inverse of rank k: To see this, choose U and V to be zero and W to be a matrix of rank k; r: In particular, any square matrix adm its a nonsingular g-inverse.

A Computational Approach

Let A be an m f n m atrix of rank r: Then A has an rf r nonsingular subm atrix. For convenience we assume that

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix};$$

where A_{11} is rf r and nonsingular. Since the rank of A is r; the rstroolumns of A form a basis for the column space and hence $A_{12} = A_{11}X$ and $A_{22} = A_{21}X$ for some matrix X : Let "#

$$G = \begin{bmatrix} A_{11}^{\dagger 1} & 0 \\ 0 & 0 \end{bmatrix};$$

where the zero blocks are chosen so as to make G an n
otin m atrix. Then a simple computation shows that

$$AGA = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}A_{11}^{11}A_{12} \\ A_{21} & A_{21}A_{11}^{11}A_{12} \end{bmatrix} \#$$

$$= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}A_{11}^{11}A_{11}X \\ A_{21} & A_{21}X \end{bmatrix} \#$$

$$= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}X \end{bmatrix}$$

$$= A:$$

If an rf r nonsingular submatrix of A is not located in the top left corner then the above algorithm requires a small m odication as follows. Locate an rf r nonsingular submatrix, say B; of A: In A; replace B by the transpose of B^{+1} and all the remaining entries by zero. Transpose the resulting m atrix to get a g-inverse of A:

The algorithm prescribed above provides a convenient way to calculate the g-inverse of a matrix of a small order which might arise in a classroom example. This is the reason for calling the proof 'computational'. Of course when the matrix is large, one must use more sophisticated methods in order to locate the nonsingular of rmatrix and to invert it.

As an example, consider the matrix

$$A = \begin{matrix} 2 & & & & & 3 \\ & 1 & 7 & 1 & 4 \\ 6 & 1 & 2 & 0 & 1 \\ & 0 & 5 & 1 & 3 \end{matrix}$$

of rank 2: For illustration, we pick the nonsingular 2£ 2 submatrix of A formed by rows 2;3 and columns 2;4: Replacing the matrix by its inverse transpose and the other entries by zero produces the matrix

Transposing the above matrix results in a g-inverse of A;

$$G = \begin{matrix} 2 & 0 & 0 & 0 & 3 \\ 6 & 0 & 3 & 1 & 1 & 7 \\ 6 & 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 5 & 2 & 5 \end{matrix}$$

4. A Proof by Induction

Let A be an m f n matrix of rank r: We assume, without loss of generality, that $r < n \cdot m$: Then A must have a column, which is a linear combination of the rest. For convenience, take it to be the last column. Write A as an augmented matrix A = [B;x] where x is the last column of A: Proceeding by induction on m + n; we may assume that B has a g-inverse, say B^{\dagger} : Set

$$G = \begin{bmatrix} B \\ 0 \end{bmatrix}$$
:

We claim that G is a g-inverse of A: Observe that

$$AGA = BB^{\dagger}A = BB^{\dagger}B;x] = B;BB^{\dagger}x]$$
:

Since x is in the column space of B; x = By for some y: Then $BB^{\dagger}x = BB^{\dagger}By = By = x$: It follows that AGA = A and the claim is proved.

M ore generally, suppose A is partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where A₁₁ is of rank r: Then

$$G = \begin{bmatrix} A_{11}^{\dagger} & 0 \\ 0 & 0 \end{bmatrix}$$

is a g-inverse of A for any choice of a g-inverse A_{11}^{\dagger} of A_{11} : (Here the zero blocks in G are chosen to make it an n f m matrix.)

5. An Operator Theoretic Approach

Consider the map f_A de ned from $C^{\mathfrak{mfn}}$ to itself given by f_A (B) = AB A:We show that A is in the range of f_A : On $C^{\mathfrak{mfn}}$ we have the usual inner product < X;Y>= tr (XY $^{\circ}$): Suppose Z is orthogonal to the range of f_A : Then tr (AB AZ) = 0 for all B 2 $C^{\mathfrak{mfn}}$ and hence tr (B AZ) = 0 for all B 2 $C^{\mathfrak{mfn}}$ and hence tr (B AZ) = 0. Thus AZ AZ = 0 and hence (AZ) = 0. Thus AZ AZ = 0 and hence (AZ) = 0. Thus all eigenvalues of AZ are zero and therefore tr (AZ) = 0. Thus Z is orthogonal to A: It follows that any matrix which is orthogonal to the range of f_A is orthogonal to A and hence A is in the range of f_A : Thus there exists H 2 $C^{\mathfrak{mfn}}$ such that f_A (H) = AH A = A: But then $G = H^{\circ}$ is a g-inverse of A:

6. A Functional Approach

Subspaces S and T of a vector space V are said to be complementary if V = S + T and $S \setminus T = f0g$: If A is an m f n m atrix then we denote by N (A) ½ C^n the null space of A and by R (A) ½ C^m the range space of A: Let S be a subspace of C^n complementary to N (A) and let T be a subspace of C^m complementary to R (A): The matrix A denes a linear map from C^n to C^m : Let A_1 be the restriction of the map to S: Then it is easily seen that A_1 is a one-to-one map from S onto R (A): Thus

 $A_1^{i^1}x$; $x \ge R$ (A) is well-de-ned. De-ne G: C^m ! C^n as $Gx = A_1^{i^1}x$ if $x \ge R$ (A); Gx = 0 if $x \ge T$ and extend linearly to C^m : ($x \ge C^m$ can be uniquely written as x = y + z; where $y \ge R$ (A); $z \ge T$: Then set Gx = Gy + Gz:) We denote the matrix of G with respect to the standard basis by G itself. Then it is easy to check that AGA = A and hence we have got a g-inverse of A:

We remark that if $S = R(A^{\circ})$ and $T = S^{?} = N(A^{\circ})$ then the g-inverse constructed above is the Moore {Penrose inverse. When do we get a least-squares g-inverse and a minimum -norm g-inverse?

7. A Proof using the Spectral Theorem

Suppose A is an n f n herm itian m atrix. By the spectral theorem , there exists a unitary matrix U such that

where D is the diagonal matrix with the nonzero eigenvalues of A along its diagonal. Then

$$G = U^{\alpha} \begin{array}{cccc} & & & & \\ & D^{11} & X & \\ & Y & Z & \end{array} U$$

is a g-inverse of A for arbitrary X; Y; Z: Thus any hermitian matrix admits a g-inverse. Now for an arbitrary m f n matrix A; it can be verifed that $G = (A^DA)^T A^D$ is a g-inverse of A for an arbitrary g-inverse $(A^DA)^T$ of the hermitian matrix A^DA :

8. A Proof using the Singular Value Decomposition

If A is an m $\, \in \, n \, m$ atrix then there exist unitary m atrices U and V such that

$$A = U \begin{bmatrix} D & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} V;$$

where D is the diagonal matrix with the singular values of A along its diagonal. This is the well-known singular

value decomposition of A: Then

$$G = V^{\circ} \begin{array}{cccc} & & & & & \\ & D^{11} & X & & \\ & Y & Z & & \end{array}$$

is a g-inverse of A for arbitrary X;Y;Z:If X=0 then G is a least-squares g-inverse, if Y=0 then G is a m in im um -norm g-inverse and T nally, if X;Y and Z are all null matrices then G is the Moore {Penrose inverse.

A Proof using Linear Equations

If A is an m f n m atrix then recall that the column space of A° equals the column space of $A^{\circ}A$: Therefore the equation $A^{\circ}AX = A^{\circ}$ is consistent. Thus there exists an n f m matrix G such that $A^{\circ}AG = A^{\circ}$: Now

$$AGA = G^{\circ}A^{\circ}AGA = G^{\circ}A^{\circ}A = A$$

and hence G is a g-inverse of A:

10. A Proof Employing a Bordered Matrix

Let A be an m f n matrix. Let S be a subspace of C^m complementary to R (A) and let T be a subspace of C^n complementary to R (A^T): Let X be an m f (m; r) matrix whose columns form a basis for S and let Y be an (n; r) f n matrix whose rows form a basis for T: We claim that the bordered matrix

is non singular. Suppose

Then Au + Xv = 0: Thus Au = Xv and in view of the choice of X; it follows that Au = 0; Xv = 0: Since the columns of X are linearly independent, v = 0: Also,

Yu = 0 and Au = 0 imply that u = 0: Hence the claim is proved. Let

$$\begin{bmatrix} A & X \\ Y & 0 \end{bmatrix} = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$$
:

Then AB + XD = I;AC + XE = 0 and as before we conclude that AC = 0:W e also have BA + CY = I:Thus ABA + ACY = A and since AC = 0; we have ABA = A:Thus B is a g-inverse of A:

If we choose $S = R (A)^2$ and $T = R (A^T)^2$ then the g-inverse constructed above is the M oore{Penrose inverse.

N otes

The standard references for g-inverse are the classical books [2, 3 and 4]. The operator theoretic proof given in Proof 5 appears to be new . Further results on singular values and g-inverse, especially the M oore{Penrose inverse, are given in [1]. For g-inverses and bordered matrices, see [5].

Suggested Reading

- R B Bapat and Adi Ben-Israel, Singular values and maximum rank minors of generalized inverses, *Linear and Multilinear Algebra*, 40, 153-161, 1995.
- [2] Adi Ben-Israel and T NE Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.
- [3] S L Campbell and C D Meyer Jr., Generalized Inverses of Linear Transformations, Pitman, 1979.
- [4] Kentaro Nomakuchi, On characterization of generalized inverses, Linear Algebra and Its Applications, 33, 1-8, 1980.
- [5] C R Rao and S K Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.

Address for Correspondence R B Bapat Indian Statistical Institute New Delhi 110 016, India

Existence of Generalized Inverse: Ten Proofs and Some Remarks

R B Bapat

R B Bapat is Professor at the Indian Statistical Institute, New Delhi. His main research areas have been nonnegative matrices, matrix inequalities, generalized inverses, and matrices in graph theory. He is author of Linear algebra and linear models (Hindustan Book Agency and Springer-Verlag) and, jointly with T E S Raghavan, Nonnegative matrices and applications (Cambridge University Press).

Introduction

The theory of g-inverses has seen a substantial growth over the past few decades. It is an area of great theoretical interest which 'nds applications in many diverse areas, including statistics, numerical analysis, Markov chains, di®erential equations and control theory.

W hat is the motivation for seeking a generalized notion of the inverse of a matrix? We briefly address this question now. Recall that an $n
oldsymbol{fin} n$ matrix A is said to be nonsingular if there exists a matrix B such that $AB = I_n$; the identity matrix of order n: The inverse, when it exists, is unique and is denoted by A^{11} : An $n
oldsymbol{fin} n$ matrix A is nonsingular if and only if the associated linear transformation f(x) = Ax is one-to-one. The concept of nonsingularity is of central importance in linear algebra and it easily relates to other concepts such as basis, rank, inner product, orthogonality and so on.

In practice, however, one often enounters matrices that are singular as well as matrices that are rectangular, rather than square, and hence clearly not nonsingular. The singularity seems to be inherent in the problem and cannot be made to go away by super cial means. As an example, in a statistical linear model one has a study variable Y which depends on some control variables $X_1; \ldots; X_p$: We set up the hypothesis that Y is a linear combination of $X_1; \ldots; X_p$ except for a random error. Often there is a linear relationship among $X_1; \ldots; X_p$ and this causes the covariance matrix of the errors corresponding to the observations on Y to be singular.