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Abstract

Let V be an n-dimensional inner product space. Let A be an irreducible character of the
symmetric group Sy, and let ¥ be the symmety class of tensors associated with it. Let
A be a linear operator on V and let K (A) be the operator it induces on Vi . We obtain an
explicit expression for the norm of the derivative of the map A — K;(A) in terms of the
singular values of A. Two special cases of this problem—antisy mmetric and symmetric tensor
products—have been studied earlier, and our results reduce to the earlier ones in these cases.

Keywords: Symmetry class of tensors; Induced linear operator: Derivative: Norm: Positive linear
aperator

1. Introduction

Let 2 V) be the space of bounded linear operators on a Hilbert space V. The
norm of an element A of 2(V) is defined as
Al =sup{lAv]:v e V. |v] =1}

In this paper Vis finite-dimensional. Then |4 1s the largest singular value of A.
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Functions f : Z(V) — (W) arestodied often in different contexts. Sometimes
Fis defined on an open subset of 2(V) such as the set of invertible operators. In
perturbation theory, numencal analysis, and physics, one often wants o know the
effect of changesin A on f(A). When the map fis differentiable, it is helpiul to have
estimates of the norm of its derivative. The derivative of fat A is a lincar map Df(A)
from (V) into 2°(W) and its norm is defined as

IDF (A = sup [ IDF(A)(B)|: B € £(V). | B] =1}. (1)

Estirmates of this lead to first-order perturbation bounds for £ See the discussion in
[1. Chapter X] and the papers [4.6,15.17 ] for different perspectives on this question.
Recall that
|
DF{ANE) = L SUA+1B). i2)
d =i

SinceA and B do not always commute several difficulties arise inestimating || Df{A) .
Finding exact values of |[DF(A) 15 even more difficalt, and very few such results are

known. Some of them have led to intnguing questions [5,7].

In this paper we oblain exact formulas for |DF(A)Y|| when f{A) is any of the
operators induced by A on a symmetry class of ensors comesponding to the (full)
symmetne group. Two special cases have been studied eardier [2.3]. To put our results
in perspectve we first recall these results. We need some basie facts, notations, and
terminology of multilinear algebra. Further details may be found in [12] or [ 13].

LetdimV =n,and for A € #(V) let

Mmoozl
be the singular values of A. Let @V =V & V & - - - @ V be the m-fold tensor pow-
er of Vand let @"A be the comesponding tensor power of A, It is easy to see that
(21
ID &" (A)] = m|lA|™". (3)
Mow let 1 = m = n, let A™V be the subspace of @™ V consisting of antisymmet-
ric tensors, and let A™ A be the restriction of ®™ A o this subspace. This is sometimes
called the extenor power of A or the Grassmann power of A, In [2] it was shown that

(P (A} = sm_r (v, va, oo, ), (4
where s, — 15 the (m — 1ith elementary symmetric polynomial invy, ..., Iy LE.,
L] i1
S—1(, .., Up) = Zl_[UI- (3)
J=1i=1
2

The comresponding problem for the symmetric tensor power ™ A (obtained by re-
stricting @™ A w the space ™V of symmetric tensors) was studied in [3], where it
wis shown that

1D V™ () =m A" =mup ! (6)
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and a speculation was made about a general result that would subsume (4) and (6).
The precise formulation and proof of such a result 15 the principal outeome of this
paper.

Let &,y be the symmetric group of degree m. Each element o of &, gives riseto a
linear operator Pio) on @™ V. This is defined as

Pladun @@ - @ tn) =0 @ Uiy B - - @ Uy, (7)

on decomposable tensors and then extended lineady w all of @™V,

The map o — Piog) is a unitary representation of 5, in @™ V. In other words,
P(a1)P(a2) = Plojay) and P(o)™' = P(a™') = P(a)*.

Let 7 be a subgroup of &, and let & be an imeducible chameter of G Let
A (d)

TG, A=
el e T

> A@)Plo), (8)
aels

where 1d stands for the identity element and |G| for the order of the group G, This
linear operator on @™V is an orthoprojector and is called a symmerriser map. 1s
range 15 called the symmetry class of tensors associated with L and G

We will study symmetry classes associated with the full symmetric group 7 =
S Then the altemating chamcter Ao ) = &5 (the signature of the permutation o)
leads o the symmetry class ~™ V; whereas the principal character A{o) = 1 leads
the symmetry class v V.

There 15 a standard canonical comespondence between irreducible characters of
&, and partitions of the integer m [10]. We use the same symbol & to denote an
irreducible character and the comesponding partiion. Recall that a partibon 7 of
m i% a k-tuple of positive mtegers T = (@, ..., ) such that mp = --- 2 mp and
m + -+ -+ @ = m. For convenience we think of a partition of m also as an m-tuple
with nomnegative integer entries by putting some zeros at the end if necessary. We
adopt a similar convention for decreasing sequences of nonnegative real numbers.,
Ifh=(1,.... 10 then Vi(Su) ="V and if L =(m. 0, ..., 0y, then V(S5 =
vJH V :

Let £04) be the length of the partition A—this 1s the number of nonzem entrics in
Ao Foreach 1 <1 < m wedenote by A the m-tuple defined as

s .5 P P T P R P R Am) A £ E(A), 9)
W (hr o, PYSRRE = NP VI R P i E{A) < t.
Given any n-tuple of nomnegative real numbers (v, v, ... vl and a k-tuple
(¥1. .-, i) whose entries are either nonnegative inte gers or —oo, we define v¥ as
o=t

with the convention that 2" = 1 and @ =™ = 0 for every nonnegative a.
MNow let A be a partition of moand ket £(0) < n. Pul
Sy = At o aonh® g b (10}

Motethatif A = (1,1, ..., 1), then
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moom
= Zl_ll-'f =8m_(Viseens Uy ).
J=1i=l
it
IfAi=i(m0, ..., (1), then

5= mu‘l"_l .

Now retum o symmetry classes of tensors. I is well known that Vi (5, ) = {0}
if and only if £{L) < n; see [14]. Given any A € %(V) we denote by K;3(A) the
restriction of the operator ®™ A 1o the subspace ViS5, ). This is called the operator
induced by A on the symmetry class Vi (S5 ). Our primcipal result is the following
theore m.

Theorem 1. Let V be an n-dimensional Hilbert space. Let m be a positive inte-
ger: Let A be a partition of m such that £(0) = n. Let A — K;(A) be the map that
associates to each element A of #(V) the induced operator K3 (A) on the symme-
try class Vi (Sy). Then the nomm of the dervivative aof this map at A is given by the
Jormula

| DK (A = Si v, (11)

~

where v 2 v 2 -0 2 Uy @i the singular values of A, and 53, i the polvnomial

defined by (10).

MNote that Theorem | includes as very special cases the results (4) and (6) obtained
in[2.3].

Tor guide the reader through the proof we highlight its salient features. Let A have
the singular value decomposition A = L7 PLS. Using the unitary invariance of the
norm and of the singular values one sees that |DE; (A)| = [|DECP). S0, one may
replace A by the positive diagonal matrix P. Then one observes that DK (P) 1s a
positive linear map between two matns algebras. By a general theorem of Russo and
Dye, such a map between any two unital C*-algebras attains its nonn at the identity
I. This simplifies our calculations immensely because we do not have o consider
arbitrary A and B in expression (2) for denvatives. Even after this simplification
some difficulties remain, While in the special examples A™ V oand v™ V good ortho-
normal bases corresponding W the standard basis in Vocan be found immediately,
this is not the case in other symmetry classes. We explain how a suitable basis
may be chosen for our purposes. This choice leads o a partition of m; and finally
we have to study the relation between this partition and A, and the comesponding
functons 5 . Here we prove a majonsation theorem that s of interest in its own
right.

The idea of replacing A by Fin calculating | D ok (A)| occurs in [2]. It 15 also
shown there that || D AR (P)Y =L Al (P The idea of proving the same resull
using completely positive maps 15 due to Sunder [ 16].
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2. Preliminaries
Given a symmetriser map TG, L) et
Up kv ke k Uy = TIE A @1 @ @ vy).

These vectors belong to V5 (G) and are called decomposable symmetrised tensors.

Let Iy be the set of all maps from the set {1, ..., m} omto the set {1, ....n}.
This set can be identified with the collection of all mulidindices {{i, ..., Ed il
i, f=nb. I oely,. this correspondence associates the index (a(l), ..., wiml)

with it. We order [y, 5 by the lexicographic order.
Every subgroup 7 of 8, acts on Iy, by the action (o, o) — g ! TG, o e
Iy . The subgroup G of G defined as
Gaz{aeﬂ':aaza}
15 called the srabiliser of .
Let {e1, ..., ex} be a basis of V. Then {e® := eq(1) ® - ® eqpm) 10 € inn} 18
a basis for " V. Hence the set
leh =T Gl o € M)
spans the space Vi (). However, the elements of this set need not be linearly inde-
pendent. Some of them may even be zero. Let

e gia ety 2l (12)

aeliy
It is easy Lo see that
A )
161

FEliy

v
le«ll” =

Al

Sothe set {ef @ o € O} consists of the nonzero elements of {ef ta € 1 |
Let A be the system of distinet representatives for the set [y, /G, construcled by
choosing the smallest element (in the lexicographic order) from each orbit. Let
A= 3}_ =AnNL.
It can be proved that {ef o & Ayisa lincary independent set. Since the set {e} :
a £ (3} spans Vi () there exists a set A suchthat 4 € A € 2 and
lef o € 4} (13)
is 4 basis for Vi (), not necessarily orthonormal. See [13] for details.
Each element o of Iy, gives nise to a partition of m in the following way. Let
ranges = {f1,..., fr}, whereiy, ..., i¢ are labelled in such a way that
ROV N (5 = Vs (73R

Then
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2 = (le Wik e Gl loe~ (ie)l) (14)

is o partition of m of length £.
On the set of partidons of m, we define a pantial order < as follows: we say that
= Afforalll < k<m

k k
Z i %= Z)"-'"
i=l J=l

(This is the usual majorisation order between m-tuples [1] when we identify parti-
tions with m-tuples.) We will need the following theorem of Merris [14].

Theorem 2 {Merris). Let & be a partition of m and @ an element of 'y, . Let £, and
1 be as defined in (12) and (14). Then o € (; if and only r:f';..[m - A,

Let &, g be two partitons of m. We say that g <24, if there exist indices i, § €
Tl m} such that
()i < js
i) i =k — Ly =h;j+ 1, and hy = g fork £ 4, j;
(i) eitheri = j— loru; =pj.
We will need the following result [ 10, p. 24].

Proposition 3. Jf . < ). then there exists a sequence of partitions AV )12 "
such that

p=A2 g2 g ga®_

For brevity we say that A € (V) is positive if it is positive semidefinite. A linear
map @ : (V) — (W) s called positive if 1t maps positive elements of 2(V) into
positive elements of #°(W). We say that & is unital if f9() = 1.

Positive lincar maps @ enjoy a very special property: |9 = |49 . This 1s a
consequence of the well-known Russo-Dye Theorem [11] valid in C*-algebras.

3. Proofls

Let Vi = Vil 5y be the symmetry class of tensors associated with & and let K, :
VY — (V) be the induced map. For brevity let Dy (A, B) = DE; (A B), the
image of B under the denvative DE; {A). Then D;(A, B) is the restriction oV of
the operatoron @™V defined as

DAB)=BRARAR® - ®A+ARBRA® --®A
+-+A® - -®AR®B.

Note that if A and B are positive, then so s DA, B).
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Let A = L5 PU be the singular value decomposition of A. Using unitary invari-
ance of the norm and the fact that K (L) is unitary if IF s unitary, we see that

[PE (A} = |DELCP).

From the description above it is clear that DK (FP) 1s a positive linear map. Hence
by the Russo-Dye Theorem

DKL (A = | DilP. 1. (15)

S0 we have to caleulate the maximum eigenvalue of Dy (P, ). We will do this by
finding a basis for Vi in which Dy (P, I') is diagonal. Then the diagonal entries of
this matrix are the eigenvalues of Dy 0P, T); our basis need not be orthonormal for
this.
Leta € Iy 4 and let it be the partition of length ¢ associated with o as in (14).
Let
Vg = {UJ',~---~UJ',}' (16}

be the largest (in the lexicographic order) sequence such that (5, ..., ip) satisfies
(14). (For example, if £ = 4 and |a~'(6)| = |a~'(7)] = |a~ ' (4)] = |a~"(3)], then
Ve = (V. U7, 13, 1))

Given any partition &, let ey, be the element of Iy, , defined as

an=(1..., B s Do A Py 8 (17)
— e — ""_'-\-r'_'
Ay times Ay times hpyay times
Then clearly
W =g M)k v (s Veeay)- (18)
Proposition 4. Let P be a positive linear operator on V., and suppose E = {ey, ...,

ey } 15 an orthonormal basis for V in which the matrix of P is diagonal with diagonal
entries v = --- = vy, Let {f: o E 3} be a basis for Vi as in (13). Then in this
basiz Dy (P, 1) is diagonal and ity (o, o) entry is
moom
Dy(P. Daa=Y_ | [veiy = Sy, . €4 (19)

J=1li=l
i

Proof. Recall that forany e € Iy,
.i'-.{ld}l

*

T ooele

MNote that

Dy(P. 1) (Eua}efﬁ)
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=D(P, ) (Z Ma}eﬁ,)
a
=I®PRP® - -®P) (Zl{a}ff’a)
&

+ -+ (PRP® ---®D (Zua}ef;)

m—1
(Zl{ﬂ'}l l_[”afru]‘-'a-:r) : (Z}-{ﬂ'}' l_[ Uuau]‘-'afr) .
<

Foreach 1 < k =
i1 il
I—[Uaa[l'] = l_[ Vaiia-
i=l i=1
i# i)

This shows that

m m
Dy(P. Det = | ¥ [ [wen | -

_,l'=|.J'=|
Py
Thus the matrix of Dy (P, 1) in the basis {¢) ca € Al is diagonal with entries given
i 19).
By definitions (14) and (19)

Ll LU

fi fi fix} fix} for
e :r M1 gl it () Hy oy —1 it
E l_[Ua[J]—FI v Vg, --U‘-I' + iy v, . v, --,u‘.r’
J=li=l
iE]
- [}
) r, fiy g —1
+ +H i .---'[,|‘.I
—SJ.IIMU“- :'

Proposition 5. Let L and p be partitions of m, and let v 2 --- 2 vy = 0 be any
decreasing sequence of nonnegative numbers. If p < A, then 8y, = 81 ..

Proof. By Proposition 3, it 1s enough to prove this when g <14, Assume vy, = O
the general case follows from this by continuity.
Use the notations as m definition of g <14, before Proposiion 3. Then fork £ 4, §

At = at T [ o
r#k
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-1
= [L[ uf* l—[ vf."’

rk
- ey —1 I—[ Ar 3—1 kj+l1
= frly L I U v
r, gk
= i) —1 I
__J'_.[;_'l,lJt l_['l,'r‘r
rk
:Hil"m“-

Mext note that

[}L"Ul”l + )Lj'l.'ll-”] Y [H‘.UIII-'I +_u_|.'v'”'-":|

Ao
Iy
= ——|huwv; +i; ;’—{)L,-—uuf—uj+1}u,-uj]
'L"- 'L'_'.' L
v 2 3
= o[ = Duvy = Gu = D2 + 2507 = wvp)]
Uj U_,l' =
. -
gl 2 a2
2 (A — Dy — UJ-::I:I (since vy = wug)
vy L

=0 (sinced; = p; +1 2= 1)

Taken together, the two inegualities we have obtained, prove the proposition. O

Let A =(Xky,.... Ko i 0) be a padition of m. Then we denote by A* the
partition of m — £ given as
=it B
whcrc)-.}‘ =A;j— 1iff = ¢ and )-.j?‘ =0ifi = £.
Given an m-tuple (&), ..., &) of real numbers we denote by a4 its decreas-
ing regrmngement; Le., gt = lﬂrl ..... H,F&}, where Hl“l 2.z H,F& are the numbers
ceicns By rearranged. We use the notation v = 8 o mean vy = 8; for all j.

Proposition 6. Ler v, 8 be m-tuples of nonnegative real numbers such that v is de-
creasing and v = g Then for every partition . of mwe have 5, 2 5 5.

Proof. Note first that
vz (04 20N (20)
For any m-tuple p = (g, ..., P ) Of nonnegative real numbers let

L
Thp= Z plm_



41X R Bharia, JA. Dias da Xilva # Linear Algebra and its Applications 34 1 { 2002) 391402

Then, bearing in mind that A (i) = —oo 1if § = £ we have

4
Ty, = Z g

i=1
=o' o gy T o pr i3 pe e L pet)
= p¥sgealpgiin ped.
where s; 1 18 the (£ — 1ith elementary symmetnce polynomial in £ vanables. So from
(20 and using the symmetry of 5 we have
ThwzTip. (21)

Mext note that

Sl-ﬁ‘ = Tl.;’-‘ + (A — l}ﬂl'” +{hr — l}l,ﬂl'z' + et (he — l}pllrl
=T ,+m o ()pr”h T +}._:;‘_ﬁpj‘rm ..)
=Tato---pdis (22)

We prove the assertion 53, = 83 p by induction on the integer 4. If 3 = 1, then
S =Sm—1(v o ) 2 S (8, . Bm) = Sin.

If Ay = 1, use (22) to write
Siw=Tw v S .

Thenuse (21), the inequalities v = i+ . and the induc ion hypothesis to conclude that
Sivz Se O

Combining Propositions 5 and 6 we have:

Proposition 7. Let v, 8 be m-tuples of nonnegative real numbers such that v is de-
creasing and 6+ < v. Let &, ju be partitions of m such that u < ». Then

5,'1.& = Sl.u-

Proof of Theorem 1. By Proposition 4, the matrix of Dy (P, 1) is diagonal in the
basis {e) t o € A}, and the diagonal clements are mivenby § o |

Let ax be the element of Iy, , associated with & by (17). Then an, £ A = A By
the prool of Proposition 4, we also have Dy (P, I, o, = 55 (sce the relabons
(180 50 | Dy (P, D 2 55 0.

By Theorem 2, ' < A It is obvious that v,;l <v. Hence 5, , < Siv by
Proposition 7. :

Since S, .0 € A, is an enumeration of all the eigenvalues of the positive
operator Dy (P, I), this imphies | Dy (P, D £ & . Thus | Dy (P, I)|| = 5. Use
{15) 1o complete the proof. O
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4. Hemarks

. Using standard results of Caleulus [1, Chapter X we can obtain from Theorem 1
perturbation bounds for K. Thus we have for B close to A the first-order perur-
bation bound

1K3(A) — Ki(B)| € SiullA — Bl +0(|4— B|%). (23)
2. Given an imeducible character A of 5. let
1 L)
di(4) = 3o Y Alo) ]_[ Hiatis
T ESm J=l1
This is called an immanant of A. These functions are important in representation
theory and combinatorics.
Let m = n. When Aio) =gia) the function o 15 the determimmant, and when
A ) = 1,1t the permanent. [tis well known that we can choose an orthonormal
basis for Vi (&) such that 45(A) is one of the diagonal entries of K;(4) in this
basis, S0 from (23) we obtain
ldi(A) —di (B)] € SauA— B +0O()|A—BJ*). (24)

3. For simplicity we have restricted our discussion to symmetry classes associated
with the full symmetric group. Similar results can be obtained for general symme-
try classes. Let G be a subgroup of 5, and let A be a complex nredueible character
of . Denote by my, the mululineanty partition of & [8]. Using arguments similar
to those that have been used to prove Theorem 1 and the results in [9], we can see
that

IPE(AN| = S, 0-

Furthermore if the inner product (7, A) g 18 different from zero, then it can be
proved that

DK (AN = Sa, 0
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