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Abstract

Let ay, and £y, be the ith smallest components of a = (ay,....a,) and b= (... 5,) re-

P
spectively, where a.b & B'™. The vector a is said to be p-larger than b (denoted by az=b) if
ﬂf_]a(_., = ﬂf-.:‘l’im for k= 1,....n Let Uh,..., Uy be independent L0, 1) random variables.

P o
It is shown that if 4, 4* belonging to B' are such that 424", then T.Hfj U/, is greater than
50, LA according to dispersive as well as hazard rate orderings. These results give simple

et

bounds on various quantities of interest associated with these statistics.
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1. Introduction

Stochastic models are usoally sufficiently complex in varous fields of statistics.
Obtaining bounds and approximations for some of their characteristics of interest 1s
of practical importance. That is, the approximation of a stochastic model either by
a simpler model or by a model with simple constituent components might lead to
convenient bounds and approximations for some particular and desired charactenstics
of the model. Lot of work has been done in the literature on this problem.

Statistics which are linear combinations of mndom variables, arse frequently in
statistics and their distnibution theory can be guite complicated in many cases. From
time to ume attempts have been made in the literawre o obtain bounds and approxi-
mations for their distributions. Some relevant references are Proschan (1965), Bock
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et al. (1987}, Tong (1988), Boland et al. (1994), Kochar and Ma (1999) and Ma
{ 2000y among others.

In this paper, we will concentrate only on linear combinations of independent and
identically distnbuted uniform random variables with positive coefficients {or equiv-
alently convolutions of independent uniform andom vanables diffenng in thewr scale
parameters ) and obtam new dispersive ordenng results for them when the vectors of
their coefficients satisfy certain order restrictions. These results lead o simple bounds
on vanous quantities of mterest associated with these statistics, Throughout this pa-
per, ‘increasing’ means nondecreasing and “decreasing” means noninereasing. First we
review the necessary definitions and concepts,

Let X and ¥ be two random variables with distnibution functions & and &, respec-
tively. Let F~! and ' be their rght continuous mverses. X s said @ be more
dispersed than ¥ (denoted by X = g ¥ if

F“'{L‘}—F"{u} = G"{L‘}—G"{u} fr = =v= 1. (1.1}

This means that the difference between any two quantiles of F is at least as much as
the difference between the corresponding quantiles of . From this one can casily sec
that

X z2apY & F ' (x)—G7'(x) isincreasing in x € (0,1). (1.2)

A consequence of X 2 4., ¥ ois that [X) — X3 24 | — Y2/ and which in tum implies
var(X') = var(Y) as well as E[[X] —Xs|] = E[|Y) — ¥a|], where X7, (¥, ¥a) are two
independent copies of X(Y ), and s’ represents the usual stochastic order.

By taking w =0 in (1.1}, it follows that for nonnegative random variables, X = i,
¥ = X =, ¥ Reeall that a random variable X with survival funetion £ is said to
be larger than another random variable ¥ with survival function G in hazard rate
ordenng (denoted by X =, ¥) if F(x)/G(x) is increasing in x. It is casy to see that
for nomegative random variables, X =y ¥V = X =, V. Bagal and Kochar ( 1986)
noted the following connection between hazard rate ordering and dispersive ordenng.

Lemma L.1. Let X and Y be two nonnegative random vaviables. If X 245 ¥V oand X
ar Y is IFR, then X = Y.

For details, see Chapters 1 and 2 of Shaked and Shanthikumar (1994 ).
One of the tools which s useful for denving inequalities in statistics and probability
is the notion of majporization. Let {x,, £ x2, £ --- £ x,} denote the increasing

arrangements of the components of the vector X = (x;,xa,....x, ). The vector x is said
m y: 1
to majonze the vector ¥ (wntten xz=y) if 30 x; € Y g for j=1,....n -1

and 37 x5 =31, W;. Functions that preserve the majorization ordering are called
Schur-convex functions. The vector X is said to majorize the vector ¥ weakly (written
if ¥/ xg < Y, we for j=1.....,n. See Marshall and Olkin (1979, Chapter 3)
for properties and more details on these partial orderings. Recently Bon and Paltanea
{ 1999} have considered a pre-order on B, which they call as a p-larger order. A
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veetor X m BT 15 said to be p-larger than another vector y also m B™ {wntten

P : :
xz=y) if [I_, xa < [E., . j=1.....n. Let log(x) denote the vector of the loga-
rithms of the coordinates of x. It 15 casy to venfy that

r W
xz=y <« log(x)= log(y). (13)

m W
It 15 known that x:=y = {g{x) ... glx, 0 =(g(w ).....g{ v,)) for all concave functions
g (ef. Marshall and Olkin, 1979, p. 115). From this and (1.3), it follows that for x, vy
u’e-l-.u

i "
XZy = XZFY.
P
The converse 15, however, not true. For example, the vectors (0.2,1,3):2=(1,2,3) but
majonzation does not hold between these two vectors. Obwviously, for any vector 4 €

B2 {d4,. ..,.:.,,}]%{z:.._,. ; .,j}, where 1 denotes the geometric mean of the components
of the vector 4.

Let Uy,....U, be independent U0, 1) random wvariables and let S(4,....4,) =
Z:'I=| Uifds, where 4; = 0 for i=1,....n Note that S(4,...,4,) =gia Z:':I X, where
A

SR

.4 are independent random vanables such that for i=1, ... n, X =5, U(0 145,
In Scetion 2, we prove that

P
ol Sk T s SO %y, (14)
We also show that
]I‘
Az=l" = S0l L) =0 SOAT, LA

where 2y, denotes hazard mite ordering,

2. Main results
To prove the desired results we need the following theorems.
Theorem 2.1 (Lewis and Thompson, 1981). Let Z be a random variable independent

of random variables X and V. If X 245, ¥ and Z has a log-concave density, then
X+Z 249 Y +2
Theorem 2.2 (Lewis and Thompson, 1981). Let for n 2 1, X, ¥, X and ¥ be ran-

dom variables such that X, — X and ¥, — Y, weakly. Then X, Zyp Yoo n 2 1
implies X Zg4ip Y.

Theorem 2.3 (Marshall and Olkin, 1979, p. 39). A real valued fimetion ¢ on the se
A C R satisfies
X=yond = x) = iyl

if and only if. o & decreasing and Schur-convex on A.



16 B-E Khaledi, 5 Kochar! Jownal of Statisticnd Planning and Inference 100 {2002 | 1321

Lemma 2.1. The function o BY — | satisfies

xéy = 1h(x) = (y) (2.1)
if and only if,

(1) ie™,....e™) is Schur-convex in (ay,....a,)
(i) ie™,....e™) iv decreasing in a;, for i=1,....n,

where a; =logx;, for i=1,....n.

Proof. Using relation (1.3), we see that (2.1) 15 equivalent to
azb = (e, ,.e0) = (e, ... M), (22)

where a; =logx; and b; =logy;, for i=1,..., n Taking fay,....a,) ={e™, .. ..e")
in Theorem 2.3, we get the required result. [

Let X5, and X5, be independent U(0,1/4 ) and U(0,1/42) random variables, respee-
tively. Without loss of generality assume that &) = 4. The density function and the
distribution function of S{4;, 42) =X, + X, are, respectively,

)..| )..3.1(, 0 =x< ]'."I";‘H

Al 1/ = x = 1fds,

AL dasx) = _ :
At —A4idax, 1o s x s 14+ 14,

0. otherwise
(2.3)
and
(0, x <0,
Aydaxf2, 0 <x < 1/,
G(Ly, daix) = { Aax — Aaf20y, 1/l <x < 1k,
1—(dy +4s — Ljdax P/2404a, Ud €x € 1Jd + 14,
L 1. otherwise.
(2.4}
The right mverse function of G s
[ (250 02)"", 0 <x < Ayf24y,
G0y, A x) = ¢ (x+ Ao/ 204 ) da, Jaf2h €x <1 — A3f24,,
L1/A 4+ 14 — 200 —x)fda)'?, 1—A20 €x < L.
(2.5)

MNow we prove the mam result of this section.
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Theorem 2.4, Let X, ..... X, be independent random variables such that X, has
U014 distribution, for =1
ST A

"
cooan Then, Lzl implies S(4, .. 4) 24

Proof. We first prove the result for n=2 and then extend it to arbitrary positive mteger
n = 2. Without loss of generality, let us assume that 4y = 4 and i) =2 AL

Case (a): Ay = Ay and A7 = A3,

We first consider the case when 4; # A7 and is # A and shall discuss the other
possibilities later. It follows from Lemma 2.1 that it 15 sufficient to show that

(1) the function
G e, e B)— G (e, 025 4) (2.6)

is Schurconvex m (g,a) forall 0 <2 = < 1, where @, = log 4, i = 1,2,

{1) the function defined in (2.6) 18 decreasmg moa;, 1= 1,2,

Without loss of generality, assume that @y + a2 = ¢. From the assumptions we have
@) = ax and a} = @y and @) # a2 and @} # ). Using relation (1.2), it is casy to scc
that (1) 1s equivalent o saying that the function

hix) = Gl e, e™x) — G e, e% i x) s increasing in x & (0,1). (2.7)

The function f in (2.7) can be written as

i

itk
0, 0<xs 8,
‘“{t+"r O, "12_“' <X = cﬂ'::re.
(x4 O P £y, A e ot
e+ ) — e (x + ) 3' sxg l -5,
M=y e U+—T—l—*~ (e + %)
+H2(1 —x)e~%)", -5 <x < 1- 5,
e (6™ +e®) — (A1 —x)e )2
| —e7%(e"l + ) + (A1 —x)e ) 1-S<x<l

(2.8)

Under the constraints of majorization between (a).a2) and (a).a}), it is casy to see
that the function # is mereasing in x. This proves (1). It 15 worth noting that (1) is
cquivalent to saying that S(e”',¢™ ) 15 decreasing m @y and g» according to dispersive
ordering. Now let @ = a). It is casy to see that X, =45, Xew . The random variables
Xs are mdependent and X has a log-concave density. Combining these facts, it
follows from Theorem 2.1 that S{¢,e™) = dig S{e,e"). Similarly one can prove
that S(¢”, ¢ ) 1s decreasmg in ga. The required result follows from these. Now if
ol

"
Ay = A7, then (4, A ) =047, A7) implies that Ay < A5 and which in tum implies that



18 B-E Khaledi, 5 Kochar! Jownal of Statisticnd Planning and Inference 100 {2002 | 1321

X, Zasp Xzp. The required result in this case follows from Theorem 2.1, since the
random variables X 's have log-concave densities and they are independent. The last
possibility is 4y = A3, In this case lx = 4 =AY = A, Again the required result follows
from Theorem 2.1. This completes the proof of case (a).

Case (b): 4y = 4y and i} = A5

Noting that iy = iy < A} or 4 < A7 < A7, the result follows from Theorem 2.1

Case (c): A4y = Ay and AT = A5,

Again the required result for the case when 4y = 47 mmediately follows from The-

" =
orem 2.1, Now let A # 47, In this case (4.42)=(47. A7) implies that 4] = 4, where

A=A 41)"2, the geometric mean of Ay, 4a. First we prove the result for the case when
- (e

A] = A It is easy to see that, for m = 1, (4, A2)=(4 A+ 1/n). Using this observation,

it follows from case (a) that, forn = 1,

X 4+ XL Zap X+ X

+1/u

Using the fact that X: |~ — X: | weakly, it follows that X-+X: |~ — 84, 4) weakly.
Combining these observations, the required result in this case follows from Theorem
2.2, The result for the case when 4] = 7 follows from the above case, the fact that
X; Z4ip Xs; and again using Theorem 2.1, This completes the proof of this case.

Case (d): 4 = 4 and 4 = 47,

Using {2.5) m this case, it s casy to see that (1.2) holds.

This completes the proof for n =2,

MNow we prove the mesult for 7 = 2. As m the proof for n =2, we show that

(1)
m . .
aza® = 8S(e", 0] 2 SeT e )

where a; =logd; and af =logil, i=1,,....n,
(i) S(e™,. ... ) 1s decreasing in g;, for i =1,....» according to dispersive ordering.

To prove (1), it 15 sufficient to consider the case when (a, oy }:T-?'r‘—{ﬂl*,aj}, and a; =a?,
i =3,....n Then it follows from the case n =2 that S{e".e™) =iy S{e*,e" ). The
random variable S{e®, ... ¢™) has a log-concave density, since the class of distribu-
tions with log-concave densities is closed under convolutions (cf. Dhammadhikan and
Joag-dev, 1988, p. 17). Adding S{e¢®,....¢™) to both sides of the above inequality,
we find that the required result follows from Theorem 2.1, The proof of (1) here s
similar to that of (i) in case n = 2. Using (1) and (i), again the main result follows
from Theorem 2.3. O

The following result mmediately follows from the above results,

Corollary 2.1, Ler X ... X, be independent random variables such that X;, =g
P
{014 fori=1,....n. Then, Az=4" implies 5(2,.. . A) = S(AF.. .45
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Fig. 1. Graphs of survival functions of S{4;,23).

LA = AN, Ea = LAY

Fig. 2. Graphs of survival functions of 5{4;,22).

Proof. Since S(4;,....4,) has a log-concave density, it is IFR (ef. Barlow and Proschan,
1981). From Theorem 2.4, 84 ... 4) 24 S(4... .47 ) The required result then
follows from Lemma 1.1, 0]

& e "

Let 4 denote the geometde mean of Ay,.. .. 4, Then since (4. .. 4, )&=(4. ., 4),

we get the followmg lower bounds on varous quanties of interest associated with
convolutnons of umifonm random variables.

Corollary 2.2, Led X, ... X, be independent random variables such that X;, =g
U014 for i =1, .. .0 Then,

Al ?di:\]r Sij, -,f:-}.
(b) S(Ap.o ) =4S4 4),
(€) SChadn) Za S(A... 4.

(a) S(Ay,... .4

In Figs. | and 2, we plot the survival functions (denoted by G4 42:x)) of con-
volutions of two independent uniform mandom variables along with the bounds given
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Fig. 3. Grphs of hamrd mte functions of 54,420
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Fig. 4. Grphs of hamrd mte functions of §{4,42)

by Corollary 2.2(c). In Figs. 3 and 4, we plot the hazard mate functions {denoted by
w41, 42: x)) of convolutions of two independent uniform random variables along with
the bounds given by Corollary 2.2(b).
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