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1 Preliminaries

This paper is a survey of the known results on homogeneous operators. A small proportion
of these results are as yet available only in preprint form. A miniscule proportion may even
be new. The paper ends with a list of thirteen open problems suggesting possible directions
for future work in this area. This list is not purported to be exhaustive, of course!

All Hilbert spaces in this paper are separable Hilbert spaces over the field of complex
numbers. All operators are bounded linear operators between Hilbert spaces. If H, K are
two Hilbert spaces, B(H,K) will denote all operators from H to K; if H = K, this will be
abridged to B(H). The set of all unitary operators in B(H) will be denoted by U(H). When
equipped with any of the usual operator topology U(H) becomes a topological group. All
these topologies induce the same Borel structure on U(H). We shall view U(H) as a Borel
group with this structure.

Z, R and C will denote the integers, the real numbers and the complex numbers, respec-
tively. D and T will denote the open unit disc and the unit circle in C, respectively, and D̄
will denote the closure of D in C. Möb will denote the Möbius group of all biholomorphic
automorphisms of D. Recall that Möb = {ϕα,β : α ∈ T, β ∈ D}, where

ϕα,β(z) = α
z − β

1− β̄z
, z ∈ D (1.1)

For β ∈ D, ϕβ := ϕ−1,β is the unique involution (element of order 2) in Möb which interchanges
0 and β. Möb is topologised via the obvious identification with T×D. With this topology, Möb
becomes a topological group. Abstractly, it is isomorphic to PSL(2,R) and to PSU(1, 1).

The following definition from [6] has its origin in the papers [21] and [22] by the second
named author.

Definition 1.1 An operator T is called homogeneous if ϕ(T ) is unitarily equivalent to T
for all ϕ in Möb which are analytic on the spectrum of T .

It was shown in Lemma 2.2 of [6] that

Theorem 1.1 The spectrum of any homogeneous operator T is either T or D̄. Hence ϕ(T )
actually makes sense (and is unitarily equivalent to T ) for all elements ϕ of Möb.

Let ∗ denote the involution (i.e. automorphism of order two) of Möb defined by

ϕ∗(z) = ϕ(z̄), z ∈ D, ϕ ∈ Möb. (1.2)



Thus ϕ∗α,β = ϕᾱ,β̄ for (α, β) ∈ T× D. It is known that essentially (i.e. upto multiplication by
arbitrary inner automorphisms), ∗ is the only outer automorphism of Möb. It also satisfies
ϕ∗(z) = ϕ(z−1)−1 for z ∈ T. It follows that for any operator T whose spectrum is contained
in D̄, we have

ϕ(T ∗) = ϕ∗(T )∗, ϕ(T−1) = ϕ∗(T )−1 (1.3)

the latter in case T is invertible, of course. It follows immediately from (1.3) that the adjoint
T ∗ - as well as the inverse T−1 in case T is invertible - of a homogeneous operator T is again
homogeneous.

Clearly a direct sum (more generally, direct integral) of homogeneous operators is again
homogeneous.

2 Characteristic functions

Recall that an operator T is called a contraction if ‖T‖ ≤ 1, and it is called completely non-
unitary (cnu) if T has no non-trivial invariant subspace M such that the restriction of T to
M is unitary. T is called a pure contraction if ‖Tx‖ < ‖x‖ for all non-zero vectors x. To any
cnu contraction T on a Hilbert space, Sz.-Nagy and Foias associate in [25] a pure contraction
valued analytic function θT on D, called the characteristic function of T .

Reading through [25] one may get the impression that the characteristic function is only
contraction valued and its value at 0 is a pure contraction. However, if θ is a contraction
valued analytic function on D and the value of θ at some point is pure, its value at all points
must be pure contractions. This is immediate on applying the strong maximum modulus
principle to the function z → θ(z)x, where x is an arbitrary but fixed non-zero vector.

Two pure contraction valued analytic functions θi : D → B(Ki,Li), i = 1, 2 are said
to coincide if there exist two unitary operators τ1 : K1 → K2, τ2 : L1 → L2 such that
θ2(z)τ1 = τ2θ1(z) for all z ∈ D. The theory of Sz.-Nagy and Foias shows that (i) two cnu
contractions are unitarily equivalent if and only if their characteristic functions coincide,
(ii) any pure contraction valued analytic function is the characteristic function of some cnu
contraction. In general, the model for the operator associated with a given function θ is
difficult to describe. However, if θ is an inner function (i.e., θ is isometry-valued on the
boundary of D), the description of the Sz.-Nagy and Foias model simplifies as follows :

Theorem 2.1 Let θ : D→ B(K,L) be a pure contraction valued inner analytic function. Let
M denote the invariant subspace of H2(D)⊗L corresponding to θ in the sense of Beurling’s
theorem. That is, M = {z 7→ θ(z)f(z) : f ∈ H2(D) ⊗ K}. Then θ coincides with the
characteristic function of the compression of multiplication by z to the subspace M⊥.

From the general theory of Sz.-Nagy and Foias outlined above, it follows that if T is a cnu
contraction with characteristic function θ, then letting T [µ] denote the cnu contraction with
characteristic function µθ for 0 < µ ≤ 1, we find that {T [µ] : 0 < µ ≤ 1} is a continuum
of mutually unitarily inequivalent cnu contractions. In general, it is difficult to describe
these operators explicitly in terms of T alone. But, in [7], we succeeded in obtaining such
a description in case θ is an inner function (equivalently, when T is in the class C.0) - so
that T has the description in terms of θ given in Theorem 2.1. Namely, for a suitable
Hilbert space L, T may be identified with the compression of M to M⊥, where M : H2

L :=
H2(D)⊗L → H2

L is multiplication by the co-ordinate function andM is the invariant subspace
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for M corresponding to the inner function θ. Let M =
(
M11 0
M21 M22

)
be the block matrix

representation ofM corresponding to the decompositionH2
L = M⊥⊕M. (Thus, in particular,

T = M11 and M22 is the restriction of M to M.) Finally, let K denote the co-kernel of M22,
N : H2

K → H2
K be multiplication by the co-ordinate function and let E : H2

K →M be defined
by Ef = f(0) ∈ K. In terms of these notations, we have :

Theorem 2.2 Let T be a cnu contraction in the class C.0 with characteristic function θ.
Let µ be a scalar in the range 0 < µ < 1 and put δ =

√
1− µ2. Then, with respect to the

decomposition M⊥ ⊕M⊕H2
K of its domain, the operator T [µ] : H2

L ⊕H2
L ⊕H2

K → H2
K has

the block matrix representation

T [µ] =



M11 0 0
δM21 M22 µE

0 0 N∗


 .

In Theorem 2.9 of [6], it was noted that

Theorem 2.3 A pure contraction valued analytic function θ on D is the characteristic func-
tion of a homogeneous cnu contraction if and only if θ ◦ ϕ coincides with θ for every ϕ in
Möb.

From this theorem, it is immediate that whenever T is a homogeneous cnu contraction , so
are the operators T [µ] given by Theorem 2.2. Some interesting examples of this phenomenon
were worked out in [7].

As an interesting particular case of Theorem 2.3, one finds that any cnu contraction with
a constant characteristic function is necessarily homogeneous. These operators are discussed
in [11] and [6]. Generalizing a result in [6], Kerchy shows in [19] that

Theorem 2.4 Let θ be the characteristic function of a homogeneous cnu contraction. If θ(0)
is a compact operator then θ must be a constant function.

(Actually Kerchy proves the same theorem with the weaker hypothesis that all the points in
the spectrum of θ(0) are isolated from below.)

Sketch of Proof : Let θ : D → B(K,L) be the characteristic function of a homogeneous
operator. Assume C := θ(0) is compact. Replacing θ by a coincident analytic function if
neceesary, we may assume without loss of generality that K = L and C ≥ 0. By Theorem 2.3
there exists unitaries Uz, Vz such that θ(z) = UzCVz, z ∈ D. Let λ1 > λ2 > · · · be the non-
zero eigenvalues of the compact positive operator C. At this point Kerchy shows that (as a
consequence of the maximum modulus principle for Hilbert space valued analytic functions)
the eigenspace K1 corresponding to the eigenvalue λ1 is a common reducing subspace for
Uz, Vz, z ∈ D (as well as for C of course) and hence for θ(z), z ∈ D. So we can write
θ(z) = θ1(z)⊕ θ2(z) where θ1 is an analytic function into B(K1). Since θ1 is a unitary valued
analytic function, it must be a constant. Repeating the same argument with θ2, one concludes
by induction on n that the eigenspace Kn corresponding to the eigenvalue λn is reducing for
θ(z), z ∈ D, and the projection of θ to each Kn is a constant function. Since the same is
obviously true of the zero eigenvalue, we are done.

3 Representations and Multipliers

Let G be a locally compact second countable topological group. Then a measurable function
π : G→ U(H) is called a projective representation of G on the Hilbert space H if there is a
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function (necessarily Borel) m : G×G→ T such that

π(1) = I, π(g1g2) = m(g1, g2)π(g1)π(g2) (3.1)

for all g1, g2 in G. (More precisely, such a function π is called a projective unitary repre-
sentation of G; however, we shall often drop the adjective unitary since all representations
considered in this paper are unitary.) The projective representation π is called an ordinary
representation (and we drop the adjective “projective”) if m is the constant function 1. The
function associated with the projective representation π via (3.1) is called the multiplier of π.
The ordinary representation π of G which sends every element of G to the identity operator
on a one dimensional Hilbert space is called the identity (or trivial) representation of G. It is
surprising that although projective representations have been with us for a long time (particu-
larly in the Physics literature), no suitable notion of equivalence of projective representations
seems to be available. In [7], we offered the following

Definition 3.1 Two projective representations π1, π2 of G on the Hilbert spaces H1, H2

(respectively) will be called equivalent if there exists a unitary operator U : H1 → H2 and a
function (necessarily Borel) f : G→ T such that π2(ϕ)U = f(ϕ)Uπ1(ϕ) for all ϕ ∈ G.

We shall identify two projective representations if they are equivalent. This has the some
what unfortunate consequence that any two one dimensional projective representations are
identified. But this is of no importance if the group G has no ordinary one dimensional rep-
resentation other than identity representation (as is the case for all semi-simple Lie groups
G.) In fact, the above notion of equivalence (and the resulting identifications) saves us from
the following disastrous consequence of the above (commonly accepted) notion of projective
representations : any Borel function from G into T is a (one dimensional) projective repre-
sentation of the group !!

3.1 Multipliers and Cohomology

Notice that the requirement (3.1) on a projective representation implies that its associated
multiplier m satisfies

m(ϕ, 1) = 1 = m(1, ϕ), m(ϕ1, ϕ2)m(ϕ1ϕ2, ϕ3) = m(ϕ1, ϕ2ϕ3)m(ϕ2, ϕ3) (3.2)

for all elements ϕ,ϕ1, ϕ2, ϕ3 of G. Any Borel function m : G×G→ T satisfying (3.2) is called
a multiplier of G. The set of all multipliers on G form an abelian group M(G), called the
multiplier group of G. If m ∈M(G), then taking H = L2(G) ( with respect to Haar measure
on G), define π : G→ U(H) by

(
π(ϕ)f

)
(ψ) = m(ψ,ϕ)f(ψϕ) (3.3)

for ϕ,ψ in G, f in L2(G). Then one readily verifies that π is a projective representation of G
with associated multiplier m. Thus each element of M(G) actually occurs as the multiplier
associated with a projective representation. A multiplier m ∈ M(G) is called exact if there
is a Borel function f : G→ T such that m(ϕ1, ϕ2) = f(ϕ1)f(ϕ2)

f(ϕ1ϕ2) for ϕ1, ϕ2 in G. Equivalently,
m is exact if any projective representation with multiplier m is equivalent to an ordinary
representation. The set M0(G) of all exact multipliers on G form a subgroup of M(G). Two
multipliersm1,m2 are said to be equivalent if they belong to the same coset ofM0(G). In other
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words, m1 and m2 are equivalent if there exist equivalent projective representations π1, π2

whose multipliers are m1 and m2 respectively. The quotient M(G)/M0(G) is denoted by
H2(G,T) and is called the second cohomology group of G with respect to the trivial action of
G on T (see [24] for the relevant group cohomology theory). For m ∈M(G), [m] ∈ H2(G,T)
will denote the cohomology class containing m, i.e., [ ] : M(G) → H2(G,T) is the canonical
homomorphism.

The following theorem from [8] (also see [9]) provides an explicit description of H2(G,T)
for any connected semi-simple Lie group G.

Theorem 3.1 Let G be a connected semi-simple Lie group. Then H2(G,T) is naturally
isomorphic to the Pontryagin dual π̂1(G) of the fundamental group π1(G) of G.

Explicitly, if G̃ is the universal cover of G and π : G̃ → G is the covering map (so that
the fundamental group π1(G) is naturally identified with the kernel Z of π) then choose a
Borel section s : G→ G̃ for the covering map (i.e., s is a Borel function such that π ◦ s is the
identity on G, and s(1) = 1). For χ ∈ Ẑ, define mχ : G×G→ T by :

mχ(x, y) = χ(s(y)−1s(x)−1s(xy)), x, y ∈ G. (3.4)

Then the main theorem in [8] shows that χ 7→ [mχ] is an isomorphism from Ẑ onto
H2(G,T) and this isomorphism is independent of the choice of the section s.

The following companion theorem from [8] shows that to find all the irreducible projective
representations of a group G satisfying the hypotheses of Theorem 3.1, it suffices to find the
ordinary irreducible representations of its universal cover G̃. Let Z be the kernel of the
covering map from G̃ onto G. Let β be an ordinary unitary representation of G̃. Then we
shall say that β is of pure type if there is a character χ of Z such that β(z) = χ(z)I for all z in
Z. If we wish to emphasize the particular character which occurs here, we may also say that
β is pure of type χ. Notice that, if β is irreducible then (as Z is central) by Schur’s Lemma
β is necessarily of pure type. In terms of this definition, the second theorem in [8] says :

Theorem 3.2 Let G be a connected semi-simple Lie group and let G̃ be its universal cover.
Then there is a natural bijection between (the equivalence classes of) projective unitary repre-
sentations of G and (the equivalence classes of) ordinary unitary representations of pure type
of G̃. Under this bijection, for each χ the projective representations of G with multiplier mχ

correspond to the representations of G̃ of pure type χ, and vice versa. Further, the irreducible
projective representations of G correspond to the irreducible representations of G̃, and vice
versa.

Explicitly, if β is an ordinary representation of pure type χ of G̃ then define fχ : G̃ → T
by fχ(x) = χ(x−1 · s ◦ π(x)), x ∈ G̃. Define α̃ on G̃ by α̃(x) = fχ(x)β(x). Then α̃ is a
projective representation of G̃ which is trivial on Z. Therefore there is a well defined (and
uniquely determined) projective representation α of G such that α̃ = α ◦ π. The multiplier
associated with α is mχ. The map β 7→ α is the bijection mentioned in Theorem 3.2.

Finally, as was pointed out in [9], any projective representation (say with multiplier m) of
a connected semi-simple Lie group can be written as a direct integral of irreducible projective
representations (all with the same multiplier m) of the group. It follows, of course, that any
multiplier of such a group arises from irreducible projective representations. It also shows
that, in order to have a description of all the projective representations, it is sufficient to have
a list of the irreducible ones and to know when two of them have identical multipliers. This
is where Theorems 3.1 and 3.2 come in handy.
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3.2 The multipliers on Möb

Notice that for any element ϕ of the Möbius group, ϕ′ is a non-vanishing analytic function on
D̄ and hence has a continuous logarithm on this closed disc. Let us fix, once for all, a Borel
determination of these logarithms. More precisely, we fix a Borel function (z, ϕ) 7→ logϕ′(z)
from D̄ × Möb into C such that logϕ′(z) ≡ 0 for ϕ = id. Now define argϕ′(z) to be the
imaginary part of logϕ′(z).

Define the Borel function n : Möb×Möb → Z by :

n(ϕ−1
1 , ϕ−1

2 ) =
1
2π

(arg(ϕ2ϕ1)′(0)− argϕ′1(0)− argϕ′2(ϕ1(0))).

For any ω ∈ T, define mω : Möb×Möb → T by

mω(ϕ1, ϕ2) = ωn(ϕ1,ϕ2).

The following proposition is a special case of Theorem 3.1. Detailed proofs may be found
in [9].

Proposition 3.1 For ω ∈ T, mω is a multiplier of Möb. It is trivial if and only if ω = 1.
Every multiplier on Möb is equivalent to mω for a uniquely determined ω in T. In other words,
ω 7→ [mω] is a group isomorphism between the circle group T and the second cohomology group
H2(Möb,T).

3.3 The projective representations of the Möbius group

Every projective representation of a connected semi-simple Lie group is a direct integral of
irreducible projective representations (cf. [9, Theorem 3.1]). Hence, for our purposes, it
suffices to have a complete list of these irreducible representations of Möb. A complete list of
the (ordinary) irreducible unitary representations of the universal cover of Möb was obtained
by Bargmann (see [29] for instance). Since Möb is a semi-simple and connected Lie group,
one may manufacture all the irreducible projective representations of Möb (with Bargmann’s
list as the starting point) via Theorem 3.2. Following [8] and [9], we proceed to describe the
result. (Warning : Our parametrisation of these representations differs somewhat from the
one used by Bargmann and Sally. We have changed the parametrisation in order to produce
a unified description.)

For n ∈ Z, let fn : T → T be defined by fn(z) = zn. In all of the following examples,
the Hilbert space F is spanned by an orthogonal set {fn : n ∈ I} where I is some subset of
Z. Thus the Hilbert space of functions is specified by the set I and {‖fn‖, n ∈ I}. (In each
case, ‖fn‖ behaves at worst like a polynomial in |n| as n → ∞, so that this really defines a
space of function on T.) For ϕ ∈ Möb and complex parameters λ and µ, define the operator
Rλ,µ(ϕ−1) on F by

(Rλ,µ(ϕ−1)f)(z) = ϕ′(z)λ/2|ϕ′(z)|µ(f(ϕ(z)), z ∈ T, f ∈ F , ϕ ∈ Möb.

Here one defines ϕ′(z)λ/2 as expλ/2 logϕ′(z) using the previously fixed Borel determination
of these logarithms.

Of course, there is no a priori gurantee that Rλ,µ(ϕ−1) is a unitary (or even bounded)
operator. But, when it is, it is easy to see that Rλ,µ is then a projective representation of Möb
with associated multiplier mω, where ω = eiπλ. Thus the description of the representation
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is complete if we specify I, {‖fn‖2, n ∈ I} and the two parameters λ, µ. It turns out that
almost all the irreducible projective representations of Möb have this form.

In terms of these notations, here is the complete list of the irreducible projective unitary
representations of Möb. (However, see the concluding remark of this section.)

• “Principal series” representations Pλ,s, − 1 < λ ≤ 1, s purely imaginary. Here λ =
λ, µ = 1−λ

2 + s, I = Z, ‖fn‖2 = 1 for all n. (so the space is L2(T)).

• “Holomorphic discrete series” representations D+
λ : Here λ > 0, µ = 0, I = {n ∈

Z : n ≥ 0} and ‖fn‖2 = Γ(n+1)Γ(λ)
Γ(n+λ) for n ≥ 0. For each f in the representation

space there is an f̃ , analytic in D , such that f is the non-tangential boundary value
of f̃ . By the identification f ↔ f̃ , the representation space may be identified with
the functional Hilbert space H(λ) of analytic functions on D with reproducing kernel
(1− zw̄)−λ, z, w ∈ D.

• “Anti-holomorphic discrete series” representations D−
λ , λ > 0. D−

λ may be defined as
the composition of D+

λ with the automorphism ∗ of Equation 1.2 : D−
λ (ϕ) = D+

λ (ϕ∗), ϕ
in Möb. This may be realized on a functional Hilbert space of anti-holomorphic func-
tions on D, in a natural way.

• “Complementary series” representation Cλ,σ, − 1 < λ < 1, 0 < σ < 1
2(1 − |λ|). Here

λ = λ, µ = 1
2(1− λ) + σ, I = Z, and

‖fn‖2 =
|n|−1∏

k=0

k ± λ
2 + 1

2 − σ

k ± λ
2 + 1

2 + σ
, n ∈ Z,

where one takes the upper or lower sign according as n is positive or negative.

Remark 3.1 (a) All these projective representation of Möb are irreducible with the sole ex-
ception of P1,0 for which we have the decomposition P1,0 = D+

1 ⊕D−
1 .

(b) The multiplier associated with each of these representations is mω where ω = e−iπλ

if the representation is in the anti-holomorphic discrete series, and ω = eiπλ otherwise. It
follows that the multipliers associated with two representations π1 and π2 from this list are
either identical or inequivalent. Further, if neither or both of π1 and π2 are from the anti-
holomorphic discrete series, then their multipliers are identical iff their λ parameters differ
by an even integer. In the contrary case (i.e., if exactly one of π1 and π2 is from the anti-
holomorphic discrete series), then they have identical multipliers iff their λ parameters add to
an even integer. This is Corollary 3.2 from [9]. Using this information, one can now describe
all the projective representations of Möb (at least in principle).

4 Projective representations and homogeneous operators

If T is an operator on a Hilbert space H then a projective representation π of Möb on H is
said to be associated with T if the spectrum of T is contained in D̄ and

ϕ(T ) = π(ϕ)∗Tπ(ϕ) (4.1)

for all elements ϕ of Möb. Clearly, if T has an associated representation then T is homoge-
neous. In the converse direction, we have :
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Theorem 4.1 If T is an irreducible homogeneous operator then T has a projective represen-
tation of Möb associated with it. This projective representation is unique upto equivalence.

We sketch a proof of Theorem 4.1 below. The details of the proof may be found in [9]. The
existence part of this theorem was first proved in [23] using a powerful selection theorem.
This result is the prime reason for our interest in projective unitary representations of Möb.
It is also the basic tool in the classification program for the irreducible homogeneous opera-
tors which is now in progress.

Sketch of Proof: Notice that the scalar unitaries in U(H) form a copy of the circle group
T in U(H). There exist Borel transversals E to this subgroup, i.e., Borel subsets E of U(H)
which meet every coset of T in a singleton. Fix one such (in the Proof of Theorem 2.2 in [9],
we present an explicit construction of such a transversal). For each element ϕ of Möb let Eϕ

denote the set of all unitaries U in U(H) such that U∗TU = ϕ(T ). Since T is an irreducible
homogeneous operator, Schur’s Lemma implies that each Eϕ is a coset of T in U(H). Define
π : Möb → U(H) by :

{π(ϕ)} = E ∩ Eϕ.

It is easy to see that π, thus defined, is indeed a projective representation associated with T .
Another appeal to Schur’s Lemma shows that any representation associated with T must be
equivalent to π. This completes the proof.

For any projective representation π of Möb, let π# denote the projective representation of
Möb obtained by composing π with the automorphism ∗ of Möb (cf. (1.2)). That is,

π#(ϕ) := π(ϕ∗), ϕ ∈ Möb. (4.2)

Clearly, if m is the multiplier of π, then m̄ is the multiplier of π#. Also, from (1.3) it is more
or less immediate that if π is associated with a homogeneous operator T then π# is associated
with the adjoint T ∗ of T . If, further, T is invertible, then π# is associated with T−1 also.

4.1 Classification of irreducible homogeneous operators

Recall that an operator T on a Hilbert spaceH is said to be a block shift if there are non trivial
subspaces Vn (indexed by all integers, all non-negative integers or all non-positive integers –
accordingly T is called a bilateral, forward unilateral or backward unilateral block shift) such
that H is the orthogonal direct sum of these subspaces and we have T (Vn) ⊆ Vn+1 for each
index n (where, in the case of a backward block shift, we take V1 = {0}). In [9] we present a
proof (due to M. Ordower) of the somewhat surprising fact that in case T is an irreducible
block shift, these subspaces Vn (which are called the blocks of T ) are uniquely determined by
T . This result lends substance to the following theorem.

For any connected semi-simple Lie group G take a maximal compact subgroup K of G (it is
unique upto conjugation). Let K̂ denote, as usual, the set of all irreducible (ordinary) unitary
representation of K (modulo equivalence). Let us say that a projective representation π of G
is normalised if π|K is an ordinary representation of K. (If H2(K,T) is trivial, then it is easy
to see that every projective representation of G is equivalent to a normalised representation ).
If π is normalised, then, for any χ ∈ K̂, let Vχ denote the subspace of Hπ (the space on which
π acts) given by

Vχ = {v ∈ Hπ : π(k)v = χ(k)v ∀k ∈ K}.
Clearly Hπ is the orthogonal direct sum of the subspaces Vχ, χ ∈ K̂. The subspace Vχ is
called the K-isotypic subspace of Hπ of type χ.
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In particular, for the group G = Möb, we may take K to be the copy {ϕα,0 : α ∈ T} of
the circle group T. (K may be identified with T via α 7→ ϕα,0.) For π as above and n ∈ Z, let
Vn(π) denote the K-isotypic subspace corresponding to the character χn : z 7→ z−n, z ∈ T.
With these notations, we have the following theorem from [9] :

Theorem 4.2 Any irreducible homogeneous operator is a block shift. Indeed, if T is such an
operator, and π is a normalized projective representation associated with T then the blocks of
T are precisely the non-trivial K-isotypic subspaces of π.

(Note that if T is an irreducible homogeneous operator, then by Theorem 4.1 there is a
representation π associated with T . Since such a representation is determined only upto
equivalence, we may replace π by a normalized representation equivalent to it. Then the
above theorem applies.)

A block shift is called a weighted shift if its blocks are one-dimensional. In [9] we define
a simple representation of Möb to be a normalized representation π such that (i) the set
T (π) := {n ∈ Z : Vn(π) 6= {0} } is connected (in an obvious sense) and (ii) for each
n ∈ T (π), Vn(π) is one dimensional. If T is an irreducible homogeneous weighted shift,
then, by the uniqueness of its blocks and by Theorem 4.2, it follows that any normalized
representation π associated with T is necessarily simple. Using the list of irreducible projective
representations of Möb given in the previous section (along with the remark 3.1(b) following
this list) one can determine all the simple representations of Möb. This is done in Theorem
3.3 of [9]. Namely, we have :

Theorem 4.3 Upto equivalence, the only simple projective unitary representations of Möb
are its irreducible representations along with the representations D+

λ ⊕D−
2−λ, 0 < λ < 2.

Since the representations associated with irreducible homogeneous shifts are simple, to
complete a classification of these operators , it now suffices to take each of the representa-
tions π of Theorem 4.3 and determine all the homogeneous operators T associated with π.
Given that Theorem 4.2 pinpoints the way in which such an operator T must act on the space
of π, it is now a simple matter to complete the classification of these operators (at least it
is simple in principle - finding the optimum path to this goal turns out to be a challenging
task!). To complete a classification of all homogeneous weighted shifts (with non-zero weights
– permitting zero weights would introduce uninteresting complications), one still needs to
find the reducible homogeneous shifts. Notice that the technique outlined here fails in the
reducible case since Theorem 4.1 does not apply. However, in Theorem 2.1 of [9], we were able
to show that there is a unique reducible homogeneous shift with non-zero weights, namely
the un-weighted bilateral shift B. Indeed, if T is a reducible shift (with non-zero weights)
such that the spectral radius of T is = 1, then it can be shown that T k = Bk for some
positive integer k, and hence T k is unitary. But Lemma 2.1 in [9] shows that if T is a homo-
geneous operator such that T k is unitary, then T itself must be unitary. But, clearly, B is the
only unitary weighted shift. This shows that B is the only reducible homogeneous weighted
shift with non-zero weights. When all this is put together, we have the main theorem of [9] :

Theorem 4.4 Upto unitary equivalence, the only homogeneous weighted shifts are the known
ones (namely, the first five series of examples from the list in Section 6).

Yet another link between homogeneous operators and projective representations of Möb
occurs in [10]. Beginning with Theorem 2.3, in [10] we prove a product formula, involving a
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pair of projective representations, for the characteristic function of any irreducible homoge-
neous contraction. Namely we have

Theorem 4.5 If T is an irreducible homogeneous contraction then its characteristic function
θ : D→ B(K,L) is given by

θ(z) = π(ϕz)∗Cσ(ϕz), z ∈ D
where π and σ are two projective representations of Möb (on the Hilbert spaces L and K
respectively) with a common multiplier. Further, C : K → L is a pure contraction which
intertwines σ|K and π|K.

Conversely, whenever π, σ are projective representations of Möb with a common multiplier
and C is a purely contractive intertwiner between σ|K and π|K such that the function θ
defined by θ(z) = π(ϕz)∗Cσ(ϕz) is analytic on D, then θ is the characteristic function of a
homogeneous cnu contraction (not necessarily irreducible).

(Here ϕz is the involution in Möb which interchanges 0 and z. Also, K = {ϕ ∈ Möb : ϕ(0) =
0} is the standard maximal compact subgroup of Möb.)

Sketch of Proof: Let θ be the characteristic function of an irreducible homogeneous cnu
contraction T . For any ϕ in Möb look at the set

Eϕ := {(U, V ) : U∗θ(w)V = θ(ϕ−1(w)) ∀w ∈ D} ⊆ U(L)× U(K).

By Theorem 2.3, Eϕ is non-empty for each ϕ. By Theorem 3.4 in [25], for (U, V ) ∈ Eϕ

there is a unitary operator τ(U, V ) such that (i) τ(U, V )∗Tτ(U, V ) = ϕ(T ) and (ii) the
restriction of τ(U, V ) to L and K equal U and V respectively. Therefore, irreducibility of T
implies that, for (U, V ), (U ′, V ′) in Eϕ, τ(U ′, V ′)∗τ(U, V ) is a scalar unitary. Hence Eϕ is a
coset of the subgroup S (isomorphic to the torus T2) of U(L) × U(K) consisting of pairs of
scalar unitaries. As in the proof of Theorem 4.1, it follows that there are projective unitary
representations π and σ with a common multiplier (on the spaces L and K respectively) such
that (π(ϕ), σ(ϕ)) ∈ Eϕ for all ϕ in Möb. So we have

π(ϕ)∗θ(w)σ(ϕ) = θ(ϕ−1(w)), w ∈ D, ϕ ∈ Möb. (4.3)

Now, choose ϕ = ϕz and evaluate both sides of (4.3) at w = 0 to find the claimed formula
for θ with C = θ(0). Also, taking w = 0 and ϕ ∈ K in (4.3), one sees that C intertwines σ|K
and π|K.

For the converse, let θ(z) := π(ϕz)∗Cσ(ϕz) be an analytic function. Since C = θ(0) is a
pure contraction and θ(z) coincides with θ(0) for all z, θ is pure contraction valued. Hence θ is
the characteristic function of a cnu contraction T . For ϕ ∈ Möb and w ∈ D, write ϕwϕ = kϕz

where k ∈ K and z = (ϕwϕ)−1(0) = ϕ−1(w). Then we have

π(φ)∗θ(w)σ(ϕ) = π(ϕ)∗π(ϕw)∗Cσ(ϕw)σ(ϕ)
= π(ϕwϕ)∗Cσ(ϕwϕ)
= π(kϕz)∗Cσ(kϕz)
= π(ϕz)∗π(k)∗Cσ(k)σ(ϕz)
= π(ϕz)∗Cσ(ϕz)
= θ(ϕ−1(w)).
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(Here, for the second and fourth equality we have used the assumption that π and σ are
projective representations with a common multiplier. For the penultimate equality, the as-
sumption that C intertwines σ|K and π|K has been used.) Thus θ satisfies (4.3). Therefore
θ◦ϕ coincides with θ for all ϕ in Möb. Hence Theorem 2.3 implies that T is homogeneous .

5 Some constructions of homogeneous operators

Let’s say that a projective representation π of Möb is a multiplier representation if it is
concretely realised as follows. π acts on a Hilbert space H of E - valued functions on Ω,
where Ω is either D or T and E is a Hilbert space. The action of π on H is given by(
π(ϕ)f

)
(z) = c(ϕ, z)f(ϕ−1z) for z ∈ Ω, f ∈ H, ϕ ∈ Möb. Here c is a suitable Borel function

from Möb× Ω into the Borel group of invertible operators on E.

Theorem 5.1 Let H be a Hilbert space of functions on Ω such that the operator T on H
given by

(Tf)(x) = xf(x), x ∈ Ω, f ∈ H,
is bounded. Suppose there is a multiplier representation π of Möb on F . Then T is homoge-
neous and π is associated with T .

This easy but basic construction is from Proposition 2.3 of [6]. To apply this theorem, we
only need a good supply of what we have called multiplier representations of Möb. Notice that
all the irreducible projective representations of Möb (as concretely presented in the previous
section) are multiplier representations.

A second construction goes as follows. It is contained in Proposition 2.4 of [6].

Theorem 5.2 Let T be a homogeneous operator on a Hilbert space H with associated repre-
sentation π. Let K be a subspace of H which is invariant or co-invariant under both T and
π. Then the compression of T to K is homogeneous. Further, the restriction of π to K is
associated with this operator.

A third construction (as yet un-reported) goes as follows :

Theorem 5.3 Let π be a projective representation of Möb associated with two homoge-
neous operators T1 and T2 on a Hilbert space H. Let T denote the operator on H ⊕ H
given by

T =
(
T1 T1 − T2

0 T2

)
.

Then T is homogeneous with associated representation π ⊕ π.

Sketch of proof: For ϕ in Möb, one verifies that

ϕ(T ) =
(
ϕ(T1) ϕ(T1)− ϕ(T2)

0 ϕ(T2)

)
.

Hence it is clear that π ⊕ π is associated with T .
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6 Examples of homogeneous operators

It would be tragic if we built up a huge theory of homogeneous operators only to find at the
end that there are very few of them. Here are some examples to show that this is not going
to happen.

• The Principal series example. The unweighted bilateral shift B (i.e., the bilateral shift
with weight sequence wn = 1, n = 0,±1, . . .) is homogeneous. To see this, apply
Theorem 5.1 to any of the principal series representations of Möb. By construction, all
the Principal series representations are associated with B.

• The Discrete series examples. For any real number λ > 0, the unilateral shift M (λ) with
weight sequence

√
n+1
n+λ , n = 0, 1, 2, . . . is homogeneous. To see, this, apply Theorem 5.1

to the Discrete series representation D+
λ .

For λ ≥ 1, M (λ) is a cnu contraction. For λ = 1, its characteristic function is the (constant)
function 0 – not very interesting! But for λ > 1 we proved the following formula for the
characteristic function of M (λ) (cf. [7]) :

Theorem 6.1 For λ > 1, the characteristic functionof M (λ) coincides with the function θλ

given by
θλ(z) = (λ(λ− 1))−1/2D+

λ−1(ϕz)∗∂∗D+
λ+1(ϕz), z ∈ D,

where ∂∗ is the adjoint of the differentiation operator ∂ : H(λ−1) → H(λ+1).

This theorem is, of course, an instance of the product formula in Theorem 4.5.

• The anti-holomorphic Discrete series examples. These are the adjoints M (λ)∗ of the
operators in the previous family. The associated representation is D−

λ .

It was shown in [22] that

Theorem 6.2 Upto unitary equivalence, the operators M (λ)∗, λ > 0 are the only homoge-
neous operators in the Cowen-Douglas class B1(D).

This theorem was independently re-discovered by Wilkins in [33, Theorem 4.1].

• The Complementary series examples. For any two real numbers a and b in the open unit
interval (0, 1), the bilateral shift Ka,b with weight sequence

√
n+a
n+b , n = 0,±1,±2, · · · ,

is homogeneous. To see this in case 0 < a < b < 1, apply Theorem 5.1 to the Com-
plementary series representation Cλ,σ with λ = a + b − 1 and σ = (b − a)/2. If a = b
then Ka,b = B is homogeneous. If 0 < b < a < 1 then Ka,b is the adjoint inverse of the
homogeneous operator Kb,a, and hence is homogeneous.

• The constant characteristic examples. For any real number λ > 0, the bilateral shift
Bλ with weight sequence · · · , 1, 1, 1, λ, 1, 1, 1, · · · , (λ in the zeroth slot, 1 elsewhere) is
homogeneous. Indeed, if 0 < λ < 1 then Bλ is a cnu contraction with constant charac-
teristic function −λ; hence it is homogeneous. Of course, B1 = B is also homogeneous.
If λ > 1, Bλ is the inverse of the homogeneous operator Bµ with µ = λ−1, hence it
is homogeneous. (In [6] we presented an unnecessarily convoluted argument to show
that Bλ is homogeneous for λ > 1 as well.) It was shown in [6] that the representation
D+

1 ⊕D−
1 is associated with each of the operators Bλ, λ > 0. (Recall that this is the

only reducible representation in the Principal series!)
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In [6] we show that apart from the unweighted unilateral shift and its adjoint, the opera-
tors Bλ, λ > 0 are the only irreducible contractions with a constant characteristic function.
In fact,

Theorem 6.3 The only cnu contractions with a constant characteristic function are the
direct integrals of the operators M (1), M (1)∗ and Bλ, λ > 0.

Since all the constant characteristic examples are associated with a common represen-
tation , one might expect that the construction in Theorem 5.3 could be applied to any
two of them to yield a plethora of new examples of homogeneous operators. Unfortunately,
this is not the case. Indeed, it is not difficult to verify that for λ 6= µ, the operator(
Bλ Bλ −Bµ

0 Bµ

)
is unitarily equivalent to Bσ ⊕ Bδ where σ and δ are the eigenvalues of

(AA∗)1/2, A =
(
λ λ− µ
0 µ

)
.

Notice that the examples of homogeneous operators given so far are all weighted shifts.
By Theorem 4.4, these are the only homogeneous weighted shifts with non-zero weights. D.R.
Wilkins was the first to come up with examples of (irreducible) homogeneous operators which
are not scalar shifts.

• The generalized Wilkins examples. Recall that for any real number λ > 0, H(λ) denotes
the Hilbert space of analytic functions on D with reproducing kernel (z, w) 7→ (1−zw̄)−λ.
(It is the Hilbert space on which the holomorphic Discrete series representation D+

λ

lives.) For any two real numbers λ1 > 0, λ2 > 0, and any positive integer k, view
the tensor product H(λ1) ⊗H(λ2) as a space of analytic functions on the bidisc D × D.
Look at the Hilbert space V (λ1,λ2)

k ⊆ H(λ1) ⊗ H(λ2) defined as the ortho-complement
of the subspace consisting of the functions vanishing to order k on the diagonal ∆ =
{(z, z) : z ∈ D} ⊆ D × D. Finally define the generalized Wilkins operator W (λ1,λ2)

k as
the compression to V (λ1,λ2)

k of the operator M (λ1) ⊗ I on H(λ1) ⊗H(λ2). The subspace
V

(λ1,λ2)
k is co-invariant under the homogeneous operator M (λ1) ⊗ I as well as under

the associated representation D+
λ1
⊗ D+

λ2
. Therefore, by Theorem 5.2, W (λ1,λ2)

k is a

homogeneous operator. For k = 1, W (λ1,λ2)
1 is easily seen to be unitarily equivalent to

M (λ1+λ2), see [7] and [14], for instance. But for k ≥ 2, these are new examples.

The operator W (λ1,λ2)
k may alternatively be described as multiplication by the co-ordinate

function z on the space of Ck-valued analytic functions on D with reproducing kernel

(z, w) 7→ (1− zw̄)−λ1

((
∂i∂̄j(1− zw̄)−λ2

))
0≤i,j≤k−1

.

(Here ∂ and ∂̄ denote differentiation with respect to z and w̄, respectively.) Indeed (with
the obvious identification of ∆ and D) the map f 7→ (f, f ′, . . . , f (k−1))|∆ is easily seen to be
a unitary between V

(λ1,λ2)
k and this reproducing kernel Hilbert space intertwining W (λ1,λ2)

k

and the multiplication operator on the latter space. (This is a particular instance of the jet
construction discussed in [15].) Using this description, it is not hard to verify that the adjoint
of W (λ1,λ2)

k is an operator in the Cowen-Douglas class Bk(D). The following is (essentially)
one of the main results in [34].
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Theorem 6.4 Upto unitary equivalence, the only irreducible homogeneous operators in the
Cowen-Douglas class B2(D) are the adjoints of the operators W (λ1,λ2)

2 , λ1 > 0, λ2 > 0.

This is not the description of these operators given in [34]. But it can be shown that Wilkin’s
operator T ∗λ,% is unitarily equivalent to the operator W (λ1,λ2)

2 with λ = λ1 +λ2 + 1, % = (λ1 +
λ2 + 1)/(λ2 + 1). Indeed, though his reproducing kernel Hλ,% looks a little different from the
kernel (with k = 2) displayed above, a calculation shows that these two kernels have the same
normalization at the origin (cf. [12]), so that the corresponding multiplication operators are
unitarily equivalent. However, it is hard to see how Wilkins arrived at his examples T ∗λ,%

while the construction of the operators W (λ1,λ2)
k given above has a clear geometric meaning,

particularly in view of Theorem 5.2. But, as of now, we know that the case k = 2 of
this construction provides a complete list of the irreducible homogeneous operators in B2(D)
only by comparing them with Wilkins’ list – we have no independent explanation of this
phenomenon.

Theorem 6.1 has the following generalization to some of the operators in this series.
(Theorem 6.1 is the special case k = 1 of this theorem.)

Theorem 6.5 For k = 1, 2, . . . and real numbers λ > k, the characteristic function of the
operator W (1,λ−k)

k coincides with the inner analytic function θ
(λ)
k : D → B(H(λ+k),H(λ−k))

given by
θ
(λ)
k (z) = cλ,kD

+
λ−k(ϕz)∗∂k∗D+

λ+k(ϕz), z ∈ D.
Here ∂k∗ is the adjoint of the k-times differentiation operator ∂k : H(λ−k) → Hλ+k) and
cλ,k =

∏k
`=−(k−1)(λ− `)−1/2.

Sketch of Proof: It is easy to check that C := cλ,k∂
k∗ is a pure contraction intertwining

the restrictions to K of D+
λ+k and D+

λ−k. Since we already know (by Theorem 6.1) that θλ
k is

an inner analytic function for k = 1, the recurrence formula

θ
(λ)
k+1 = θ

(λ−k)
1 θ

(λ)
k−1θ

(λ+k)
1

(for k ≥ 1, λ > k + 1, with the interpretation that θ(λ)
0 denotes the constant function 1)

shows that θ(λ)
k is an inner analytic function on D for λ > k, k = 1, 2, . . .. Hence it is

the characteristic function of a cnu contraction T in the class C.0. By Theorem 2.1, T is the
compression to M⊥ of the multiplication operator on H(1)⊗H(λ−k), where M is the invariant
subspace corresponding to this inner function. But one can verify that M is the subspace
consisting of the functions vanishing to order k on the diagonal. Therefore T = W

(1,λ−k)
k .

• Some perturbations of the Discrete series examples. Let H be a Hilbert space with
orthonormal basis {fk : k = 0, 1, . . .} ∪ {hk,` : k = 0,±1,±2, . . .}. For any three
strictly positive real numbers λ, µ and δ, let M (λ)[µ, δ] be the operator on H given by

M (λ)[µ, δ]fk =

√
k + 1

k + λ+ 1
fk+1 +

√
δ

k + λ+ 1
h1,k+1,

M (λ)[µ, δ]h0,` = µh1,`,

and
M (λ)[µ, δ]hk,` = hk+1,`, for k ≥ 1.
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An application of Theorem 2.2 to the operators M (λ) in conjunction with an analytic
continuation argument shows that these operators are homogeneous . This was observed
in [7].

• The normal atom. Define the operator N on L2(D) by (Nf)(z) = zf(z), z ∈ D, f ∈
L2(D). The Discrete series representation D+

2 naturally lifts to a representation of Möb
on L2(D). Applying Theorem 5.1 to this representation yields the homogeneity of N .

Using spectral theory, it is easy to see that the operators B and N are the only homogeneous
normal operators of multiplicity one. In consequence, we have

Theorem 6.6 Every normal homogeneous operator is a direct sum of (countably many)
copies of B and N .

Let us define an atomic homogeneous operator to be a homogeneous operator which can not
be written as the direct sum of two homogeneous operators. Trivially, irreducible homoge-
neous operators are atomic. As an immediate consequence of Theorem 6.6, we have :

Corollary 6.1 B and N are atomic (but reducible) homogeneous operators.

N is a cnu contraction. Its characteristic function was given in [7] :

Theorem 6.7 The characteristic functionθN : D → B(L2(D)) of the operator N is given by
the formula

(θN (z)f)(w) = −ϕw(z)f(w), z, w ∈ D, f ∈ L2(D).

(Here, as before, ϕw is the involution in Möb which interchanges 0 and w.)
The usual transition formula between cartesean and polar coordinates shows that L2(D) =

L2(T) ⊗ L2([0, 1], rdr). Since B may be represented as multiplication by the coordinate
function on L2(T), it follows that the normal atomN is related to the the other normal atomB
by N = B⊗C where C is multiplication by the coordinate function on L2([0, 1], rdr). Clearly
C is a positive contraction. Let {fn : n ≥ 0} be the orthonormal basis of L2([0, 1], rdr)
obtained by Gram-Schmidt orthogonalization of the sequence {r 7→ rn : n ≥ 0}. (Except for
scaling, fn is given in terms of classical Jacobi polynomials by x 7→ P

(0,1)
n (2x − 1), cf. [31].)

Then the theory of orthogonal polynomials shows that (with respect to this orthonormal
basis) C is a tri-diagonal operator. Thus we have

Theorem 6.8 Upto unitary equivalence, we have N = B ⊗C where the positive contraction
C is given on a Hilbert space with orthonormal basis {fn : n ≥ 0} by the formula

Cfn = anfn−1 + bnfn + an+1fn+1, n = 0, 1, 2, . . .

where (f−1 = 0 and) the constants an, bn are given by

an =
√
n(n+ 1)
4n+ 2

, bn =
2(n+ 1)2

(2n+ 1)(2n+ 3)
, n ≥ 0.
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7 Open Questions

7.1 Classification

The primary question in this area is, of course, the classification of homogeneous opera-
tors upto unitary equivalence. Theorem 4.4 is a beginning in this direction. We expect
that the same methodology will permit us to classify all the homogeneous operators in the
Cowen-Douglas classes Bk(D), k = 1, 2, . . .. Work on this project has already begun. More
generally, though there seem to considerable difficulties involved, it is conceivable that exten-
sion of the same techniques will eventually classify all irreducible homogeneous operators.
But, depending as it does on Theorem 4.1, this technique draws a blank when it comes to
classifying reducible homogeneous operators. In particular, we do not know how to approach
the following questions.

Question 1 Is every homogeneous operator a direct integral of atomic homogeneous opera-
tors?

Question 2 Are B and N the only atomic homogeneous operators which are not irreducible?

We have seen that the homogeneous operator N can be written as N = B ⊗ C. In this
connection, we can ask :

Question 3 Find all homogeneous operators of the form B ⊗ X. More generally, find all
homogeneous operators which have a homogeneous operator as a ‘tensor factor’.

Another possible approach towards the classification of irreducible homogeneous contrac-
tions could be via Theorem 4.5. (Notice that any irreducible operator is automatically cnu.)
Namely, given any two projective representations π and σ of Möb having a common multi-
plier, we can seek to determine the class C(π, σ) of all operators C : Hσ → Hπ such that (i)
C intertwines σ|K and π|K and (ii) the function z 7→ π(ϕz)∗Cσ(ϕz) is analytic on D. Clearly
C(π, σ) is a subspace of B(Hσ,Hπ), and Theorem 4.5 says that any pure contraction in this
subspace yields a homogeneous operator. Further, this method yields all irreducible homoge-
neous contractions as one runs over all π and σ. This approach is almost totally unexplored.
We have only observed that, upto multiplication by scalars, the homogeneous characteristic
functions listed in Theorem 6.5 are the only ones in which both π and σ are holomorphic
Discrete series representations . (But the trivial operation of multiplying the characteristic
function by scalars correspond to a highly non-trivial operation at the level of the operator.
This operation was explored in [7].) So a natural question is :

Question 4 Determine C(π, σ) at least for irreducible projective representations π and σ
(with a common multiplier).

Note that Theorem 6.5 gives the product formula for the characteristic function ofW (λ1,λ2)
k

for λ1 = 1. But for W (λ1,λ2)
k to be a contraction it is sufficient (though not necessary) to

have λ1 ≥ 1. So on a more modest vein, we may ask :

Question 5 What is the (explicit) product formula for the characteristic functions of the
operators W (λ1,λ2)

k for λ1 > 1 ?
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Recall that a cnu contraction T is said to be in the class C11 if for every nonzero vector
x, limn→∞ Tnx 6= 0 and limn→∞ T ∗nx 6= 0. In [19], Kerchy asks :

Question 6 Does every homogeneous contraction in the class C11 have a constant charac-
teristic function?

7.2 Möbius bounded and polynomial bounded operators

Recall from [30] that a Hilbert space operator T is said to be Möbius bounded if the family
{ϕ(T ) : ϕ ∈ Möb } is uniformly bounded in norm. Clearly homogeneous operators are
Möbius bounded, but the converse is false. In [30], Shields proved :

Theorem 7.1 If T is a Möbius bounded operator then ‖Tm‖ = O(m) as m→∞.

Sketch of proof: Say ‖ϕ(T )‖ ≤ c for ϕ ∈ Möb . For any ϕ ∈ Möb , we have an expansion
ϕ(z) =

∑∞
m=0 amz

m, valid in the closed unit disc. Hence,

amT
m =

∫

T
ϕ(αT )α−m dα

where the integral is with respect to the normalized Haar measure on T. Therefore we get
the estimate |am|‖Tm‖ ≤ c for all m. Choosing ϕ = ϕ1,β, we see that for m ≥ 1, |am| =
(1− r2)rm−1 where r = |β|. The optimal choice r =

√
(m− 1)/(m+ 1) gives |am| = O(1/m)

and hence ‖Tm‖ = O(m).
On the basis of this Theorem and some examples, we may pose :

Conjecture: For any Möbius bounded operator T , we have ‖Tm‖ = O(m1/2) as m→∞.

In [30], Shields already asked if this is true. This question has remained un-answered
for more than twenty years. One possible reason for its intractability may be the difficulty
involved in finding non-trivial examples of Möbius bounded operators. (Contractions are
Möbius bounded by von Neumann’s inequality, but these trivially satisfy Shield’s conjecture.)
As already mentioned, non-contractive homogeneous operators provide non-trivial examples.

For the homogeneous operator T = M (λ) with λ < 1, we have ‖Tm‖ =
√

Γ(λ)Γ(m+1)
Γ(m+λ) and hence

(by Sterling’s Formula) ‖Tm‖ ∼ cm(1−λ)/2 with c = Γ(λ)1/2. Thus the above conjecture, if
true, is close to best possible (in the sense that the exponent 1/2 in this conjecture cannot
be replaced by a smaller constant). An analogous calculation with the Complementary series
examples C(a, b) (with 0 < a 6= b < 1) leads to a similar conclusion. This leads us to ask :

Question 7 Is the conjecture made above true at least for homogeneous operators T ?

(It is conceivable that the operators Tλ,s introduced below contain counter examples to
Shield’s conjecture in its full generality.)

Recall that an operator T , whose spectrum is contained in D̄, is said to be polynomially
bounded if there is a constant c > 0 such that ‖p(T )‖ ≤ c for all polynomial maps p : D→ D.
(von Neumann’s inequality says that this holds with c = 1 iff T is a contraction.) Clearly, if
T is similar to a contraction then T is polynomially bounded. Halmos asked if the converse
is true, i.e., whether every polynomially bounded operator is similar to a contraction. In
[28], Pisier constructed a counter example to this conjecture. (Also see [13] for a streamlined
version of this counter example.) However, one may still hope that the Halmos conjecture is
still true of some ‘nice’ classes of operators. In particular, we ask
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Question 8 Is every polynomially bounded homogeneous operator similar to a contraction?
For that matter, is there any polynomially bounded (even power bounded) homogeneous oper-
ator which is not a contraction?

Notice that the Discrete series examples show that homogeneous operators (though Möbius
bounded) need not even be power bounded. So certainly they need not be polynomially
bounded.

7.3 Invariant subspaces

If T is a homogeneous operator with associated representation π, then for each invariant
subspace M of T and each ϕ ∈ Möb, π(ϕ)(M) is again T -invariant. Thus Möb acts on the
lattice of T -invariant subspaces via π. We wonder if this fact can be exploited to explore
the structure of this lattice. Further, if T is a cnu contraction, then the Sz.-Nagy–Foias
theory gives a natural correspondence between the invariant subspaces of T and the ‘regular
factorisations’ of its characteristic function (cf. [25]). Since we have nice explicit formulae
for the characteristic functions of the homogeneous contractions M(λ), λ > 1, may be these
formulae can be exploited to shed light on the structure of the corresponding lattices.

Recall that Beurling’s theorem describes the lattice of invariant subspaces ofM (1) in terms
of inner functions. Recently, it was found ([18] and [1]) that certain partial analogues of this
theorem are valid for the Bergman shift M (2) as well. We may ask :

Question 9 Do the theorems of Hedenmalm and Aleman et al generalize to the family
M (λ), λ ≥ 1 of homogeneous unilateral shifts?

7.4 Generalizations of homogeneity

In the definition of homogeneous operators , one may replace unitary equivalence by similarity.
Formally, we define a weakly homogeneous operator to be an operator T such that (i) the
spectrum of T is contained in D̄ and (ii) ϕ(T ) is similar to T for every ϕ in Möb. Of course,
every operator which is similar to a homogeneous operator is weakly homogeneous . In [11]
it was asked if the converse is true. It is not – as one can see from the following examples.

Example 1. Take H = L2(T) and, for any real number in the range −1 < λ ≤ 1 and any
complex number s with Im(s) > 0, define Pλ,s : Möb → B(H) by :

Pλ,s(ϕ−1)f = ϕ′λ/2|ϕ′|(1−λ)/2+sf ◦ ϕ, f ∈ H.

For purely imaginary s, these are just the Principal series unitary projective representa-
tions discussed earlier. For s outside the imaginary axis, Pλ,s is not unitary valued. But,
formally, it still satisfies the condition (3.1) with m = mω, ω = eiπλ. In consequence, Pλ,s is
an invertible operator valued function on Möb.

For λ and s as above, let Tλ,s denote the bilateral shift on L2(T) with weight sequence

n+ (1 + λ)/2 + s

n+ (1 + λ)/2− s
, n ∈ Z.

When s is purely imaginary, these weights are unimodular and hence Tλ,s is unitarily equiv-
alent to the un-weighted bilateral shift B. In [9] it is shown that, in this case the Principal
series representation Pλ,s is associated with Tλ,s as well as to B. That is, we have,
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ϕ(Tλ,s) = Pλ,s(ϕ)−1Tλ,sPλ,s(ϕ) (7.1)

for purely imaginary s. By analytic continuation, it follows that Equation 7.1 holds for all
complex numbers s. Thus Tλ,s is weakly homogeneous for Im(s) > 0. It is easy to see that
‖Tm

λ,s‖ ≥ ‖Tm
λ,sf0‖ ≥ |Γ(m+a)Γ(b)|

|Γ(m+b)Γ(a)| where a = (1 + λ)/2 + s, b = (1 + λ)/2 − s and f0 is the
constant function 1. Hence by Sterling’s formula, we get

‖Tm
λ,s‖ ≥ cm2Re(s)

for all large m (and some constant c > 0). If Tλ,s were similar to a homogeneous operator ,
it would be Möbius bounded and hence by Theorem 7.1 we would get ‖Tm

λ,s‖ = O(m) which
contradicts the above estimate when Re(s) > 1/2. Therefore we have :

Theorem 7.2 The operators Tλ,s is weakly homogeneous for all λ, s as above. However, for
Re(s) > 1/2, this operator is not Möbius bounded and hence is not similar to any homoge-
neous operator.

Example 2 (due to M. Ordower) : For any homogeneous operator T , say on the Hilbert

space H, let T̃ denote the operator
(
T I
0 T

)
. For any ϕ in a sufficiently small neighbourhood

of the identity, ϕ(T̃ ) makes sense and one verifies that ϕ(T̃ ) =
(
ϕ(T ) ϕ′(T )

0 ϕ(T )

)
. If U is a

unitary on H such that ϕ(T ) = U∗TU then an easy computation shows that the operator L =
Uϕ′(T )1/2 ⊕ Uϕ′(T )−1/2 satisfies LT̃L−1 = ϕ(T ). Thus ϕ(T̃ ) is similar to T̃ for all ϕ in a
small neighbourhood. Therefore an obvious extension of Theorem 1.1 shows that T̃ is weakly
homogeneous. Since ‖ϕ(T̃ )‖ ≥ ‖ϕ′(T )‖ and since the family ϕ′, ϕ ∈ Möb is not uniformly
bounded on the spectrum of T , it follows that T̃ is not Möbius bounded. Therefore we have

Theorem 7.3 For any homogeneous operator T , the operator T̃ is weakly homogeneous but
not Möbius bounded. Therefore this operator is not similar to any homogeneous operator.

These two classes of examples indicate that the right question to ask is :

Question 10 Is it true that every Möbius bounded weakly homogeneous operator is similar
to a homogeneous operator ?

For purely imaginary s, the homogeneous operators Tλ,s and B share the common associ-
ated representation Pλ,s; hence one may apply the construction in Theorem 5.3 to this pair.
We now ask :

Question 11 Is the resulting homogeneous operator atomic? Is it irreducible? More gener-
ally, are there instances where Theorem 5.3 lead to atomic homogeneous operators ?

Another direction of generalization is to replace the group Möb by some subgroup G. For
any such G, one might say that an operator T is G-homogeneous if ϕ(T ) is unitarily equivalent
to T for all ‘sufficiently small’ ϕ in G. (If G is connected, the analogue of Theorem 1.1 holds.)
The case G = K has been studied under the name of ‘circularly symmetric operators ’. See, for
instance, [17] and [3]. Notice that if S is a circularly symmetric operator then so is S ⊗ T for
any operator T – showing that this is a rather weak notion and no satisfactory classification
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can be expected when the group G is so small. A more interesting possibility is to take G
to be a Fuchsian group. (Recall that a closed subgroup of Möb is said to be Fuchsian if it
acts discontinuously on D.) Fuchsian homogeneity was briefly studied by Wilkins in [33]. He
examines the nature of the representations (if any) associated with such an operator.

Another interesting generalization is to introduce a notion of homogeneity for commuting
tuples of operators. Recall that a bounded domain Ω in Cd is said to be a bounded symmetric
domain if, for each ω ∈ Ω, there is a bi-holomorphic involution of Ω which has ω as an isolated
fixed point. Such a domain is called irreducible if it can not be written as the cartesean prod-
uct of two bounded symmetric domains. The irreducible bounded symmetric domains are
completely classified modulo biholomorphic equivalence (see [2] or [16] for instance) – they
include the unit ball Im,n in the Banach space of all m × n matrices (with operator norm).
Let GΩ denote the connected component of the identity in the group of all bi-holomorphic
automorphisms of an irreducible bounded symmetric domain Ω. If T = (T1, . . . , Td) is a com-
muting d-tuple of operators then one may say that T is homogeneous if, for all ‘sufficiently
small’ ϕ ∈ GΩ, ϕ(T ) is (jointly) unitarily equivalent to T . (Of course, this notion depends
on the choice of Ω – for most values of d there are several choices – so, to be precise, one
ought to speak of Ω-homogeneity). Theorem 1.1 generalizes to show that, in this setting, the
Taylor spectrum of T is contained in Ω̄ (and is a GΩ-invariant closed subset there-of). Also,
if T is an irreducible homogeneous tuple (in the sense that its components have no common
non-trivial reducing subspace), then Theorem 4.1 generalizes to yield a projective represen-
tation of GΩ associated with it. Therefore, many of the techniques employed in the single
variable case have their several variables counterparts. But these are yet to be systematically
investigated. One difficulty is that for d ≥ 2, the (projective ) representation theory of GΩ

(which is a semi-simple Lie group) is not as well understood as in the case Ω = D. But this
also has the potential advantage that when (and if) this theory of homogeneous operator tu-
ples is investigated in depth, the operator theory is likely to have significant impact on the
representation theory.

With each domain Ω as above is associated a kernel BΩ (called the Bergman kernel)
which is the reproducing kernel of the Hilbert space of all square integrable (w.r.t. Lebesgue
measure) analytic functions on Ω. The Wallach set W = WΩ of Ω is the set of all λ > 0 such
that Bλ/g

Ω is (a non-negative definte kernel and hence) the reproducing kernel of a Hilbert
space H(λ)(Ω). (Here g is an invariant of the domain Ω called its genus, cf. [2]). It is
wellknown that the Wallach set W can be written as a disjoint union Wd ∪Wc where the
‘discrete’ part Wd is a finite set (consisting of r points, where the ‘rank’ r of Ω is the number
of orbits into which the topological boundary of Ω is broken by the action of GΩ) and the
‘continuous’ part Wc is a semi-infinite interval.

The constant functions are always in H(λ)(Ω) but, for λ ∈ Wd, H(λ)(Ω) does not contain
all the analytic polynomial functions on Ω. It follows that for λ ∈Wd multiplication by the co-
ordinate functions do not define bounded operators on H(λ)(Ω). However, it was conjectured
in [4] that for λ ∈ Wc, the d-tuple M (λ) of multiplication by the d co-ordinates is bounded.
(In [5], this conjecture was proved in the cases Ω = Im,n. In general, it is known that for
sufficiently large λ the norm on H(λ)(Ω) is defined by a finite measure on Ω̄, so that this tuple
is certainly bounded in these cases.) Assuming this conjecture, the operator tuples M (λ),
λ ∈ Wc, constitute examples of homogeneous tuples – this is in consequence of the obvious
extension of Theorem 5.1 to tuples. In [4] it was shown that the Taylor spectrum of this tuple
is Ω̄ and
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Theorem 7.4 Upto unitary equivalence, the adjoints of the tuples M (λ), λ ∈ Wc, are the
only homogeneous tuples in the Cowen-Douglas class B1(Ω).

For what values of λ ∈Wc is the tuple M (λ) sub-normal ? This is equivalent to asking for
the values of λ for which the norm on H(λ)(Ω) is defined by a measure. In [4] we conjecture
a precise answer. Again, the special case Ω = Im,n of this conjecture was proved in [5].

Regarding homogeneous tuples, an obvious meta-question to be asked is :

Question 12 Formulate appropriate generalisations to tuples of all the questions we asked
before of single homogeneous operators – and answer them!

A d-tuple T on the Hilbert space H is said to be completely contractive with respect to Ω
for every polynomial map P : Ω → Im,n, P (T ) is contractive when viewed as an operator from
H⊗Cn to H⊗Cm. T is called contractive with respect to Ω if this holds in the case m = n = 1.
In general one may ask whether contractivity implies completely contractive. In general the
answer is ‘no’ for all d ≥ 5 ([27]). However one has a positive answer in the case Ω = D. But an
affirmative answer (for special classes of tuples) is interesting because complete contractivity
is tantamount to existence of nice dilations which make the tuple in question tractable. For
instance, we have an affirmative answer for subnormal tuples. We ask :

Question 13 Is every contractive homogeneous tuple completely contractive?
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