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Abstract

When T is a completely non-unitary (cnu) contraction with Sz.-Nagy–Foias characteristic
function θ and µ is a scalar (0 < µ < 1) then general theory implies the existence of a cnu
contraction T [µ] with characteristic function µθ. How to describe T [µ] in terms of T? In this
paper, we find a simple answer in case T is in the class C·0. An operator is called homogeneous
if its spectrum is contained in the closed unit disc and all the bi-holomorphic automorphisms
of the unit disc lift to automorphisms of the operator T modulo unitary equivalence. When
T is homogeneous, so is T [µ]. We find explicit formulae for the characteristic functions of
the (homogeneous ) twisted Bergman shifts – these have product formulae involving the
discrete series projective representations of the Möbius group. These formulae lead to an
explicit description of the Sz.-Nagy–Foias models of these weighted shifts. Combining our
main results with an analytic continuation argument, we find a three-parameter family of
homogeneous operators.

1 Introduction

1.1 All Hilbert spaces in this paper are separable Hilbert spaces over the complex numbers.
For positive integers k, Ck will denote the k-dimensional Hilbert space with the standard inner
product. All operators are bounded linear operators between Hilbert spaces. For Hilbert
spaces H, K, L, B(H,K) (respectively B(H)) will denote the Banach space of all operators
from H to K (respectively from H to H) with the operator norm. Ck×k will denote B(Ck)
viewed as the space of k× k matrices (with respect to the standard basis). U(H) will denote
the Borel group of all unitary operators on the Hilbert space H with the Borel structure
induced by the strong operator topology. An operator T is called a contraction if ‖T‖ ≤ 1. It
is called a pure contraction if ‖Tx‖ < ‖x‖ for all nonzero vectors x. T is called a completely
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non unitary (cnu) operator if it has no unitary part, i.e., if T has no non-trivial reducing
subspace M such that the restriction T |M is unitary.

1.2 Let T ∈ B(H) be a cnu contraction. Let K and L denote the closures of the ranges
of DT := (I − T ∗T )1/2 and of DT ∗ := (I − TT ∗)1/2, respectively. K, L are called the defect
spaces of T , and their dimensions are called its defect indices. DT and DT ∗ are called the
defect operators associated with T .

1.3 In [7, Chapter VI], Sz.-Nagy and Foias associate with each cnu contraction T a pure
contraction valued analytic function θT , called the characteristic function of T . Namely,
letting K and L be the defect spaces of T , one defines θT : ID → B(K,L) as follows. For z in
the unit disc ID,

θT (z) = (−T + zDT ∗(I − zT ∗)−1DT ) |K . (1.1)

It is easy to verify that the right hand side of (1.1) maps K into L; hence it defines a
contraction θT (z) ∈ B(K,L). In particular, −T maps K into L and hence defines an element
θT (0) of B(K,L). It is easy to see that θT (0), thus defined, is a pure contraction. However, if a
contraction valued analytic function θ is pure at some point in its domain, then, applying the
strong maximum modulus principle to the Hilbert space valued analytic function z → θ(z)x
for a fixed but arbitrary nonzero vector x, one sees that θ must be pure contraction valued
through out its domain. Thus the characteristic function θT of T is indeed a pure contraction
valued analytic function from ID into B(K,L). Note that if T is a cnu contraction then so is
its adjoint T ∗. If θ is the characteristic function of T , then the characteristic function of T ∗

is θ∗. Here ∗ is the usual involution on analytic functions defined by θ∗(z) = θ(z̄)∗, z ∈ ID.
1.4 In the terminology of Sz.-Nagy and Foias, two pure contractions C1 and C2 coincide

if there exist unitary operators U , V (between appropriate Hilbert spaces) such that C2 =
UC1V . Two pure contraction valued analytic functions θ1 : ID → B(K1,L1) and θ2 : ID →
B(K2,L2) coincide if there exist unitaries U : L1 → L2, V : K2 → K1 such that θ2(z) =
Uθ1(z)V for all z ∈ ID. (Of course, this is stronger than merely requiring that θ1(z) and θ2(z)
coincide for each z ∈ ID.) It is easy to see that if the cnu contractions T1 and T2 are unitarily
equivalent then their characteristic functions coincide. The power of the Sz.-Nagy–Foias
theory lies in the fact that the converse statement is also correct. Thus the characteristic
function, modulo coincidence, is a complete unitary invariant for cnu contractions.

1.5 This indicates that it should be possible to recover a cnu contraction, up to unitary
equivalence, from its characteristic function. Sz.-Nagy–Foias showed that this is indeed the
case. Indeed, to any pure contraction valued analytic function θ : ID → B(K,L), they
associate a model operator Tθ in B(H) as follows. Let H2 = H2(ID) be the usual Hilbert
space of analytic functions on the unit disc ID with square integrable boundary values and
let L2 = L2(T) be the L2-space of all square integrable (with respect to the normalised arc
length measure) measurable functions on the unit circle T. Let H2

L = H2⊗L and L2
K = L2⊗K

be the Hilbert spaces of L valued analytic functions on ID with square integrable boundary
values on T and K valued square integrable measurable functions on T respectively. Define
H2
K similarly. Define Θ : H2

K → H2
L and ∆ : L2

K → L2
K by

(Θf)(z) = θ(z)f(z), (∆g)(w) = (I − θ(w)∗θ(w))1/2g(w), (1.2)
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for z ∈ ID, w ∈ T, f ∈ H2
K, g ∈ L2

K. (From the classical theory of scalar valued bounded
analytic functions, it is easy to deduce that that the contraction valued analytic function θ
has radial limits at almost all points of the unit circle T. In the definition of ∆ in (1.2), we
have used the same letter θ to denote the boundary value as well. )

Let ran(∆) denote the closure in L2
K of the range of ∆. Let V be the closure in H2

L⊕ran(∆)
of {Θf ⊕∆f : f ∈ H2

K} and let H be the orthocomplement of V in H2
L⊕ ran(∆). This defines

a subspace H of H2
L ⊕ L2

K. Let M be the multiplication operator defined on H2
L ⊕ L2

K by
M(f ⊕ g) = f1 ⊕ g1, where f1(z) = zf(z), z ∈ ID and g1(w) = wg(w), w ∈ T. Finally,
let Tθ be the compression of M to H. Then it is shown in Theorem VI.3.1 of [7] that
Tθ is a cnu contraction and the characteristic function of Tθ coincides with θ. Thus every
pure contraction valued analytic function on ID is indeed the characteristic function of a cnu
contraction. In view of this bijection between unitary equivalence classes of cnu contractions
and coincidence classes of pure contraction valued analytic functions on ID, we shall identify
two such functions if they coincide.

1.6 For w ∈ ID, let ϕw : ID → ID denote the Möbius map

ϕw(z) =
w − z

1− w̄z
, z ∈ ID. (1.3)

Each ϕw is a biholomorphic map from ID onto ID which is its own inverse. Let Möb denote
the collection of all the maps αϕw, α ∈ T, w ∈ D. It is well known that Möb is a group
under composition; indeed, it is the group of all biholomorphic automorphisms of the unit
disc. The Möbius group is intimately related to the Sz.-Nagy–Foias theory via the following
easy fact (which is essentially the result (1.7) in [7, p. 240]) : if T is a cnu contraction with
characteristic function θ then for any ϕ ∈Möb, ϕ(T ) is a cnu contraction whose characteristic
function coincides with θ ◦ ϕ−1. In symbols,

θϕ(T ) = θT ◦ ϕ−1. (1.4)

1.7 Recall from [1] that T is said to be a homogeneous operator if ϕ(T ) is unitarily
equivalent to T for every ϕ in Möb for which ϕ(T ) is well defined (i.e., for every ϕ which is
analytic in a neighborhood of the spectrum of T ). It was shown in [1, Lemma 2.2] that if T
is homogeneous then the spectrum of T is either the unit circle or the unit disc. Thus, in
either case, ϕ(T ) is defined (and unitarily equivalent to T ) for all ϕ in Möb.

The notion of homogeneous operators was introduced informally in [5], and since then it
has been studied by many authors. (Complete references may be found in [2].) Our long
term goal is to classify all homogeneous operators. Note that any contraction may be written
uniquely as the direct sum of its cnu part and the unitary part. Further, it is clear that
a contraction is homogeneous if and only if both its parts are homogeneous. Finally, using
the spectral theorem, it is easy to determine all homogeneous unitary operators. Namely, if
T is a homogeneous unitary, then the scalar spectral measure of T must be quasi invariant
under Möb and its multiplicity function must be stable under Möb. This implies that the
only homogeneous unitaries are direct integrals of copies of the (unweighted) bilateral shift.
This reduces the problem of classifying homogeneous contractions to that of classifying cnu
homogeneous contractions.
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In view of (1.4), it is immediate that a cnu contraction T is homogeneous if and only
if its characteristic function θ coincides with θ ◦ ϕ−1 for every ϕ in Möb. This raises the
serious possibility that it may be possible to classify all homogeneous cnu contractions using
the theory outlined above. However, this is not the objective of this paper.

1.8 Instead, we exhibit in this paper how the Sz.-Nagy–Foias theory may be applied to
create various continuums of new homogeneous operators starting from known ones. One
basic construction is the following. Let T be a cnu contraction with characteristic function θ.
then, for any scalar µ in the range 0 < µ ≤ 1, µθ is clearly a pure contraction valued analytic
function, and hence it is the characteristic function of a cnu contraction T [µ]. Clearly, the
operators T [µ], 0 < µ ≤ 1 are mutually unitarily inequivalent except in the case when θ is
the constant function identically equal to zero. From the characterisation of homogeneity in
terms of characteristic functions presented in section 1.7 above, it is immediate that if T is a
homogeneous cnu contraction then T [µ] is homogeneous for every µ in (0, 1).

1.9 For the above to be a useful construction, we should have a usable description of
T [µ] in terms of T . Of course, the Sz.-Nagy–Foias model (presented in section 1.5 above)
provides an answer. This is, however, not so useful since the model is complicated. However,
there is one case in which the Sz.-Nagy–Foias model is remarkably simple, namely, for the
cnu operators in class C·0. Recall that the cnu contraction T is said to be in the class C·0 if
T ∗n → 0 strongly as n →∞. In Proposition VI.3.5 of [7] it is shown that a cnu contraction T
is in the class C·0 if and only if its characteristic function θ is inner in the sense that θ (more
precisely, the boundary value of θ) is isometry valued at almost all points of the unit circle.
(Equivalently, the operator Θ of (1.2) is an isometry.) This implies that the operator ∆ of
(1.2) is the zero operator, and hence the Sz.-Nagy–Foias model for T simplifies as follows.
If T ∈ C·0 with θT = θ, M is the multiplication operator (by the co-ordinate function z)
on H2

L and M is the M - invariant subspace corresponding to the inner function θ (i.e., M
is the range of Θ) then T is unitarily equivalent to the compression of M to M⊥. Thus
the operators in the class C·0 are precisely the compressions of unweighted unilateral shifts
(with multiplicity) to co-invariant subspaces. Further, for such operators T , the characteristic
function θT is the inner function involved in the description of the complementary invariant
subspace.

In section 2 of this paper, we show that for T ∈ C·0 and 0 < µ < 1, T [µ] has a model
which is almost as simple as the Sz.-Nagy–Foias model for T . Namely, T [µ] is a “slight
perturbation” of the operator M ⊕N∗, where M, N are multiplication operators on H2

L and
H2
K, respectively.
1.10 It is clear that, in order to apply the above to create new examples of homogeneous

operators, one must begin with a supply of homogeneous operators in the class C·0 for which
the characteristic functions are “known” in a sufficiently nice and usable form. Unfortunately,
there is hardly any example in the literature of cnu operators with “known” characteristic
functions. ( Of course, one could write down the formula (1.1) in any particular case, but
this is almost never very useful! ) One exception is the unweighted unilateral shift. This is a
homogeneous contraction in the class C·0, and its characteristic function is as simple as can
be - the identically zero function. But this is too trivial. A slightly less trivial example that
we can think of is the operator N on L2(ID) given by Nf(z) = zf(z). By [1, Proposition
2.3], N is homogeneous. Also, clearly, N is in the class C·0. Since N is normal, it is easy to
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simplify the formula (1.1) in this case to obtain the following simple but interesting formula
for the characteristic function θN : ID → B(L2(ID)) :

(θN (z)f)(w) = −ϕw(z)f(w), z, w ∈ ID, f ∈ L2(ID). (1.5)

Here ϕw is as in (1.3). The formula (1.5) indicates yet another mysterious link between
characteristic function and the Möbius group. Unfortunately, we are unable to use formula
(1.5) to obtain explicit descriptions of the operators N [µ], 0 < µ < 1.

1.11 Notation: For any real number x and integer n ≥ 0,
(x
n

)
will denote the coefficient

of tn in the Taylor expansion of (1 + t)x around t = 0. For positive integers x, this agrees
with the usual notation for the Binomial coefficients.

The earliest known examples (cf. [5]) of homogeneous operators are the twisted Bergman
shifts M (λ), λ > 0. M (λ) may most simply be described as the unilateral weighted shifts
with weight sequence

√
n+1
n+λ , n ≥ 0. Thus in particular, M (1) is the unweighted unilateral

shift, while M (2) is the Bergman shift. Clearly, M (λ) is a contraction if and only if λ ≥ 1.
Let H(λ) denote the functional Hilbert space of analytic functions on ID with reproducing
kernel (z, w) → (1 − zw̄)−λ. Then M (λ) may alternatively be described as the operator of
multiplication by the co-ordinate function z on H(λ). (Indeed, let e

(λ)
n , n ≥ 0, be the elements

of H(λ) defined by e
(λ)
n (z) =

√(n+λ−1
n

)
zn, z ∈ ID. Then {e(λ)

n : n ≥ 0} is an ortho-normal
basis of H(λ) and multiplication by z acts as the weighted shift with the indicated weight
sequence with respect to this basis.) This description shows that, for λ ≥ 1, M (λ) is actually
in the class C·0.

In section 3 of this paper, we explicitly determine the characteristic function of M (λ),
λ > 1. To describe these, recall that a projective representation π of Möb on a Hilbert
space H is a Borel map from Möb into the group U(H) of unitary operators on H such
that π(ϕ1ϕ2) = m(ϕ1, ϕ2)π(ϕ1)π(ϕ2) for all ϕ1, ϕ2 in Möb. Here m(ϕ1, ϕ2) is a unimodular
constant, depending on ϕ1, ϕ2. The function m : Möb × Möb → T is called the multiplier
associated with π. For λ > 0, Dλ will denote the holomorphic discrete series (projective)
representation of Möb on H(λ) given by

(Dλ(ϕ−1)f)(z) = ϕ′(z)(λ/2)f(ϕ(z)) (1.6)

for z ∈ ID, f ∈ H(λ), ϕ ∈ Möb. (Warning: Dλ is an “ordinary” representation, i.e., the
associated multiplier is the constant function 1, only in the cases where λ is an even integer.
The adjective “discrete series” is usually reserved for these cases. We are using this word in
a generalised sense.)

It is well known, and easy to see, that the representations Dλ are intimately related to
the operator M (λ). Indeed, Dλ is associated with M (λ) in the sense that

ϕ(M (λ)) = Dλ(ϕ)∗M (λ)Dλ(ϕ) ϕ ∈ Möb (1.7)

for λ > 0. This is easy to verify and contains a direct verification of the homogeneity of
M (λ), λ > 0. One surprising find of this paper is that, for λ > 1, the representations Dλ−1

and Dλ+1 are also intimately related to M (λ). Indeed, the characteristic function of M (λ)
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coincides with the function θλ : ID → B(H(λ+1),H(λ−1)) given by

θλ(z) =
1√

λ(λ− 1)
Dλ−1(ϕz)∗∂∗Dλ+1(ϕz). (1.8)

Here ∂∗ is the adjoint of the differentiation operator ∂ : H(λ−1) → H(λ+1) and ϕz is the
involutive element of Möb defined in section 1.6.

Using (1.8) it is easy to calculate the Sz.-Nagy–Foias model for M (λ). This is done in
section 3 and it turns out that the model is as follows. Let’s identify, as usual, the tensor
product H(1) ⊗ H(λ−1) with a space of functions on the bi-disc ID × ID, and let M be the
subspace of functions vanishing on the diagonal {(z, z) : z ∈ ID}. Let M1 be the multiplication
by the first co-ordinate on H(1)⊗H(λ−1). That is, M1 = M (1)⊗ I. Then the Sz.-Nagy–Foias
model of M (λ) is the compression of M1 to M⊥. In particular, this shows that M (λ) is
unitarily equivalent to this compression; but that is a special case of a well known description
(arising from the theory of module tensor products : see Theorem 1.1 in [4] ) of M (λ1+λ2) as
the compression of M (λ1)⊗I on H(λ1)⊗H(λ2) to the orthocomplement of functions vanishing
on the diagonal. The interesting point is that at least a special case of this construction is
implicit in the Sz.-Nagy–Foias theory : the minimal isometric dilation of M (λ) (λ > 1) is
M (1) ⊗ I on H(1) ⊗H(λ−1) in a natural way.

1.12 With an explicit description of the characteristic functions of M (λ), λ > 1, available,
the path is now open for the application of the results of section 2 to explicitly determine
the homogeneous operators M (λ)[µ], λ > 1, 0 < µ < 1. This is done in section 4. Indeed, in
conjunction with Proposition 2.4 of [1] and an analytic continuation argument, this yields a
new three parameter family of homogeneous operators. This is a record, the previous record
being held by the two parameter family of homogeneous operators found by Wilkins in [8].

2 The models for scalar multiples of inner functions

2.1 Notation: Throughout, T is a cnu contraction in the class C·0, and θ is its characteristic
function. Thus, for a suitable Hilbert space L, T may be identified with the compression of
M to M⊥, where M : H2

L → H2
L is multiplication by the co-ordinate function, and M is an

invariant subspace for M (corresponding to the inner function θ). Let M =

(
M11 0
M21 M22

)

be the block matrix representation of M corresponding to the decomposition H2
L = M⊥⊕M.

(Thus, in particular, M11 = T and M22 is the restriction of M to M.) Finally, let K denote
the co-kernel (i.e., the orthocomplement of the range) of M22, and let N : H2

K → H2
K be

multiplication by the co-ordinate function, and let E : H2
K →M be defined by Ef = f(0) ∈

K. (Remember K ⊆M.)
Theorem 2.1 Let T be a cnu contraction in C·0 with characteristic function θ. Let µ be a
scalar in the range 0 < µ < 1, and put δ = +

√
1− µ2. In terms of the above notation, let

T [µ] : H2
L ⊕H2

K → H2
L ⊕H2

K be the operator whose block matrix representation with respect
to the decomposition M⊥ ⊕M⊕H2

K is given by

T [µ] =




M11 0 0
δM21 M22 µE

0 0 N∗


 .
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Then the characteristic function of T [µ] coincides with µθ. (Of course, this includes the fact
that T [µ], thus defined, is a cnu contraction.)

Proof: We begin with the Sz.-Nagy–Foias model Tµθ and reduce it to the above description.
Let M̃ be the multiplication operator on L2

K, where, for now, K is the first defect space of Tµθ

(we shall later identify K with coker(M22)). Recall that Tµθ is the compression of M ⊕ M̃ to
the subspace H of H2

L⊕L2
K, where in our case (since θ is inner), H⊥ = {(µΘf, δf) : f ∈ H2

K}.
Let ∼ denote the unitary operator from H2

K onto L2
K ª H2

K given by g̃(z) = z−1g(z−1),
z ∈ T, g ∈ H2

K. (Here we have used the usual identification of the elements of H2
K with

their boundary values. Thus, for now, we view all Hilbert spaces in sight as Hilbert spaces
of functions on the unit circle T.) Then it is trivial to verify that for g ∈ H2

L and h ∈ H2
K,

(g,−δ−1µΘ∗g + h̃) is orthogonal to all elements of H⊥ and hence is in H. Conversely, if
(g, k) ∈ H2

L⊕L2
K is orthogonal to (µΘf, δf) for every f ∈ H2

K then k+δ−1µΘ∗g is orthogonal
to all the elements of H2

K and hence is of the form h̃ for a uniquely determined h ∈ H2
K. Thus

k = −δ−1µΘ∗g + h̃ in this case. This shows,

H = {(g,−δ−1µΘ∗g + h̃) : g ∈ H2
L, h ∈ H2

K}.
It follows that we have the orthogonal decomposition

H = H1 ⊕H2 ⊕H3,

where H1 = {(g,−δ−1µΘ∗g) : g ∈ M}, H2 = {(g, 0) : g ∈ kerΘ∗} and H3 = {(0, h̃) : h ∈
H2
K}. (Here, as in notation 2.1, M is the range closure of Θ. So kerΘ∗ = M⊥.) To compute

Tµθ, it suffices to compute its action on these three subspaces.
Notice that for g ∈ M, (Θ∗g)(z) = θ(z)∗g(z), z ∈ T. (This follows since θ is isometry

valued on T.) It follows that M̃Θ∗g = Θ∗Mg for g ∈ M. Therefore, H1 is invariant under
M ⊕ M̃ . Hence

Tµθ(g,−δ−1µΘ∗g) = (Mg,−δ−1µΘ∗Mg), g ∈M, (2.1)

gives the action of Tµθ on H1.
Next we show that the action of Tµθ on H2 is given by

Tµθ(g, 0) = (δ2ΘEΘ∗Mg,−δµEΘ∗Mg) + (Mg −ΘEΘ∗Mg, 0), g ∈M⊥. (2.2)

Indeed, since Θ is an isometry, the first term in the right hand side (RHS) of (2.2) is in H1.
Therefore, to show that the RHS is in H, it is enough to establish that its second term is in
H2, i.e., that M⊥ is invariant under (I −ΘEΘ∗)M . Since Θ is an isometry, this amounts to
showing that M⊥ is contained in the kernel of (I − E)Θ∗M . Since the kernel of I − E is K
(identified with the subspace of constant functions in H2

K), we need to show that Θ∗M maps
M⊥ into K. But this is obvious from the fact that, for g ∈ H2

L, Θ∗g is the projection to H2
K

of the element z 7→ θ(z)∗g(z) of L2
K. Thus the RHS of (2.2) is indeed in H. So, to complete

the proof of (2.2), it is enough to verify that the difference between this RHS and (Mg, 0) is
in H⊥. But this difference is (µ2ΘEΘ∗Mg, δµEΘ∗Mg) = (µΘf, δf), where f = µEΘ∗Mg.
But this is indeed in H⊥ as is clear from the initial description of H⊥.

Finally, we claim that the action of Tµθ on H3 is given by

Tµθ(0, h̃) = (−δµΘEh, µ2Eh + Ñ∗h), h ∈ H2
K. (2.3)
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Indeed, since (−δµΘEh, µ2Eh) is in H1 and (0, Ñ∗h) is in H3, the RHS of (2.3) is in H.
So, to prove (2.3), it is enough to show that the difference of the RHS of (2.3) and (0, M̃ h̃) is
in H⊥. But this difference equals (δµΘEh, M̃h̃− Ñ∗h− µ2Eh). Using µ2 + δ2 = 1 and the
trivial identity M̃h̃− Ñ∗h = Eh for h ∈ H2

K, this vector equals (δµΘEh, δ2Eh) = (µΘf, δf),
where f = δEh. This is in H⊥ by definition.

This completes our description of Tµθ. Now define U : H2
L ⊕H2

K → H by

Ug =





(δg,−µΘ∗g) if g ∈M
(g, 0) if g ∈M⊥

(0, g̃) if g ∈ H2
K.

Since Θ is an isometry and δ2 +µ2 = 1, U is clearly a unitary operator. Put T [µ] = U∗TµθU .
Since T [µ] is unitarily equivalent to Tµθ, by Sz.-Nagy–Foias theory it is a cnu contraction
whose characteristic function coincides with µθ. The formule (2.1), (2.2), (2.3) transform to
the following description of T [µ]:

T [µ]g =





Mg for g ∈M
Mg − (1− δ)ΘEΘ∗Mg for g ∈M⊥

(−µΘEg)⊕ (N∗g) for g ∈ H2
K.

Since −Θ is an isometry, it defines an unitary operator from H2
K onto M which carries the

range of E (viz. the subspace of H2
K consisting of constant functions) onto coker(M22). If

we identify K with coker(M22) via this map, then the above becomes the description of T [µ]
given in the statement of the theorem. 2

2.3 Remark: From the description of T [µ] given in the above theorem it is clear that
both M and M⊕ H2

K are invariant for T [µ]. The compression of T [µ] to the co-invariant
subspaceM⊥ is M11 = T . Also, it is easy to verify that the restriction of T [µ] to the invariant
subspace M⊕H2

K is the direct sum of dim K copies of the bilateral weighted shift Tµ with
weight sequence {. . . , 1, 1, µ, 1, 1, . . .}. By [1], the characteristic function of T [µ]|M⊕H2

K
is the

constant function µIK. Since µθ = (θ)(µIK) is an instance of inner outer factorisation, the
above theorem may be viewed as an elaboration of Theorem VI.1.1 in [7].

3 The characteristic function of the twisted Bergman

shifts

Recall that for λ > 0, the twisted Bergman shift M (λ) is the multiplication operator on H(λ)

and Dλ denotes the discrete series representation of Möb on H(λ). We now prove :
Theorem 3.1 For λ > 1, the characteristic function of M (λ) coincides with the function
θλ : ID → B(H(λ+1),H(λ−1)) defined by θλ(z) = 1√

λ(λ−1)
Dλ−1(ϕz)∗∂∗Dλ+1(ϕz). (Here ∂∗ is

the adjoint of the differentiation operator ∂ : H(λ−1) → H(λ+1).)

Proof: It is slightly easier to prove that the characteristic function θ∗λ of the adjoint M (λ)∗

is given by the formula

θ∗λ(z) =
1√

λ(λ− 1)
Dλ+1(ϕ∗z)

∗∂Dλ−1(ϕ∗z), (3.1)
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where ϕ∗z(w) = ϕz(w̄). Notice that M (λ) is a pure contraction, so that its defect spaces
are both equal to the whole of H(λ). Define the unitary operators Γ : H(λ) → H(λ+1) and
Λ : H(λ−1) → H(λ) by Γ(e(λ)

n ) = e
(λ+1)
n , Λ(e(λ−1)

n ) = e
(λ)
n for n ≥ 0. (Here {e(λ)

n }, for
instance, is the standard orthonormal basis of H(λ)defined in section 1.11.) Define θ : ID →
B(H(λ−1),H(λ+1)) by θ(z) = −Γθ̃(z)Λ, where θ̃ : ID → B(H(λ)) is the characteristic function
of M (λ)∗. Clearly, θ coincides with θ̃. Now, one verifies that θ∗λ defined by (3.1) is also given
by

(θ∗λ(z)f)(w) =
1√

λ(λ− 1)
f ′(w)−

√
λ− 1

λ

z

1− zw
f(w) (3.2)

for z, w ∈ ID, f ∈ H(λ−1). To verify this one uses the two trivial identities obtained by
differentiating ϕ∗z

−1 ◦ϕ∗z = id once and twice and the identity ϕ∗z
′′(w)/ϕ∗z

′(w) = 2z/(1− zw).
To verify that θ̃ is also given by the RHS of (3.2), note that (3.2) holds for f = e

(λ−1)
n , n ≥ 0

and that both sides of (3.2) are bounded operators in f . So, θ∗λ = θ̃. 2

Theorem 3.2 The Sz.-Nagy–Foias model of M (λ) (λ > 1) is precisely the compression of
M (1) ⊗ I on H(1) ⊗H(λ−1) to the orthocomplement of the subspace of functions vanishing on
the diagonal. In consequence, the minimal isometric dilation of M (λ) is M (1) ⊗ I.

Proof: Since M (λ), λ ≥ 1, is in the class C·0, its characteristic function θλ (given by
(1.8)) is an inner function. Hence to describe the model operator T , it suffices to determine
the invariant subspace M of H(1) ⊗ H(λ−1) corresponding to the inner function θλ. Recall
that M is the closure of the range of the operator Θλ : H(1)⊗H(λ+1) → H(1)⊗H(λ−1) given
by (Θλf)(z) = (θλ(z)f(z)), z ∈ ID, f ∈ H(1) ⊗ H(λ+1). (Here we are viewing elements of
H(1) ⊗ H(λ+1) as H(λ+1) - valued analytic functions on ID, but later in this proof we view
the same elements as scalar valued analytic functions on the bidisc ID× ID.) Of course, this
amounts calculating (kerΘ∗

λ)⊥. Note that Θ∗
λf is the orthogonal projection into H(1)⊗H(λ+1)

of the element (z, ·) 7→ θ∗λ(z̄)f(z, ·) of L2(T) ⊗H(λ+1). Consequently, equation (3.2) implies
that

(Θ∗
λf)(z, w) =

1√
λ(λ− 1)

∂

∂w
f(z, w)−

√
λ− 1

λ
P

(
(z, w) 7→ z̄

1− z̄w
f(z, w)

)
,

where P is the orthogonal projection onto the space H(1) ⊗H(λ+1). An easy calculation in
terms of the monomial basis leads to the formula

(Θ∗
λf)(z, w) =

1√
λ(λ− 1)

∂

∂w
f(z, w)−

√
λ− 1

λ

f(z, w)− f(w, w)
z − w

.

Therefore the kernel of Θ∗
λ consists of all f ∈ H(1) ⊗ H(λ−1) satisfying the differential

equation

∂

∂w
f(z, w) = (λ− 1)

f(z, w)− f(w,w)
z − w

.

Another calculation with the monomial basis shows that the solutions to this equation
form the closed linear span of {fk : k = 0, 1, . . .} where the elements fk of H(1) ⊗H(λ−1) are
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as in Equation (4.2) below. Since we show in subsection 4.1 that this is the orthocomplement
of the subspace of functions vanishing on the diagonal, we are done. 2

4 A continuum of new homogeneous operators from the

twisted Bergman shifts

4.1 In this section we analyse the twisted Bergman shift M (λ) in the light of results of the
previous two sections. Fix λ > 1, and let L = H(λ−1). So, H2

L ∼= H(1) ⊗H(λ−1) is naturally
identified with a Hilbert space of analytic functions on the bi-disc. Let M be the subspace
of all functions in H(1)⊗H(λ−1) which vanish on the diagonal {(z, w) ∈ ID× ID : z = w}. Let
M = M (1) ⊗ I be the operation of multiplication by the first co-ordinate on H(1) ⊗H(λ−1).
Thus, by Theorem 3.2, M (λ) is the compression of M to M⊥. As in notation 2.1, we write

M =

(
M11 0
M21 M22

)
with respect to the decomposition M⊥ ⊕M of H(1) ⊗ H(λ−1). Thus

M11 = M (λ). For integers k ≥ ` ≥ 1, let ek,` ∈ H(1) ⊗H(λ−1) be defined by

ek,`(z, w) = (λ−1)1/2`−1/2

(
` + λ− 1

`

)−1/2



`−1∑

j=0

(
j + λ− 2

j

)
zk−jwj −

(
` + λ− 2

`− 1

)
zk−`w`


 ,

(4.1)
z, w ∈ ID. For integers k ≥ 0, define fk ∈ H(1) ⊗H(λ−1) by

fk(z, w) =

(
k + λ− 1

k

)−1/2 k∑

j=0

(
j + λ− 2

j

)
zk−jwj , z, w ∈ ID. (4.2)

We have the orthogonal decomposition H(1) ⊗H(λ−1) = ⊕k≥0Hom(k), where Hom(k) is the
space of all homogeneous polynomials of degree k (in two variables z, w). In view of the well
known identity

`−1∑

j=0

(
j + λ− 2

j

)
=

(
` + λ− 2

`− 1

)
, (4.3)

it is easy to verify that {ek,` : 1 ≤ ` ≤ k} is an orthonormal set of vectors in Hom(k)∩M and
fk is a unit vector orhogonal to all ek,`, 1 ≤ ` ≤ k. Since Hom(k)∩M is clearly a co-dimension
1 subspace of the (k + 1)-dimensional space Hom(k), it follows that {fk : k = 0, 1, 2, . . .} is
an orthonormal basis of M⊥ and {ek,` : k = 1, 2, . . . , ` = 1, . . . , k} is an orthonormal basis of
M. (The special case λ = 2 of this computation occurs in [4].)

(To verify (4.3), note that both sides are polynomials in λ, so it is enough to verify it for
positive integral values λ. In this case,

(`+λ−2
`−1

)
is the number of subsets of {1, 2, . . . , `+λ−2}

of size λ−1, while
(j+λ−2

j

)
is the number of such subsets with maximum element = λ+j−1.)

It is easy to verify that the action of M = M (1) ⊗ I on these basis elements is given by

M(ek,`) = ek+1,`, M(fk) =

√
k + 1
k + λ

fk+1 +

√
λ− 1
k + λ

ek+1,k+1.
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This yields the following description of the operators Mij :

M11 : fk →
√

k + 1
k + λ

fk+1, k ≥ 0,

M21 : fk →
√

λ− 1
k + λ

ek+1,k+1, k ≥ 0,

M22 : ek,` → ek+1,`, ` ≥ 1, k ≥ `.

(This again identifies M11 with M (λ).)
In particular, K := coker(M22) is spanned by {e`,` : ` ≥ 1}. Let {g`,m : ` ≥ 1,m ≥ 0} be

the orthonormal basis of H2
K defined by g`,m(w) = wme`,`, w ∈ ID. With respect to this basis

the actions of the operator E : H2
K → L = H(1) ⊗ H(λ−1) given by Ef = f(0), and of the

adjoint N∗ of the multiplication (by co-ordinate function) operator N on H2
K are as follows

E : g`,m →
{

e`,` if m = 0, ` ≥ 1
0 if m ≥ 1, ` ≥ 1

N∗ : g`,m →
{

0 if m = 0, ` ≥ 1
g`,m−1 if m ≥ 1, ` ≥ 1.

Thus in view of Theorem 2.1 we have all the ingredients for the description of the operators
M (λ)[µ], λ > 1, 0 < µ < 1. However, for the sake of clarity, and to be consistent with Remark
2.3, it is better to rename the basis elements as follows. Put

hk,` =
{

g`,−k for k ≤ 0, ` ≥ 1
ek+`−1,` for k ≥ 1, ` ≥ 1.

Thus we get the following description of the operator M (λ)[µ] (with δ =
√

1− µ2) : This
operator acts on a Hilbert space with orthonormal basis

{fk : k = 0, 1, 2, . . .} ∪ {hk,` : k = 0,±1,±2, . . . , ` = 1, 2, . . .} (4.4)

by the rule

M (λ)[µ] :





fk →
√

k+1
k+λfk+1 + δ

√
λ−1
k+λh1,k+1

hk,` →
{

µhk+1,` if k = 0, ` ≥ 1
hk+1,` if k = ±1,±2, . . . , ` ≥ 1.

(4.5)

4.2 Recall that a cnu contraction T is said to be in the class C·0 if T ∗nx → 0 for all x,
and it is said to be in the class C·1 if T ∗nx 6→ 0 for all x 6= 0. T is in class C·0 if and only if its
characteristic function θ is inner (i.e., θ is almost surely isometry valued on the boundary of
ID) and T is in class C·1 if and only if its characteristic function θ is outer (i.e., the operator
Θ given by (1.1) has dense range). For an arbitrary cnu contraction T on a Hilbert space H,
let M⊥ be the subspace of H consisting of all x for which T ∗nx → 0. Clearly, M is invariant
for T. Let T1 be the compression of T to M⊥ and let T2 be the restriction T to M. Thus with

respect to the decomposition M⊥⊕M of H, T has a canonical triangularization

(
T1 0
X T2

)

where T1 is in C·0 and T2 is C·1. T1 and T2 are called the C·0 part of T and the C·1 part of
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T , respectively. Clearly, the bilateral shifts Tµ, 0 < µ < 1, mentioned in Remark 2.3 are in
the class C·1. In view of this remark, it follows that if T is in class C·0 then the C·0 part of

the operator T [µ] of Theorem 2.1 is T while the C·1 part is
(

M22 µE
0 N∗

)
. The latter is the

direct sum of dimK copies of Tµ.
Lemma 4.1 If T is a cnu contraction in the class C·0 then ϕ(T ) is a cnu contraction in the
same class for every ϕ in Möb.

Proof: Let θ be the characteristic function of T . Thus θ is inner. Since ϕ maps T onto
itself and sends null sets (with respect to arc length measure) to null sets, it follows that
θ ◦ ϕ−1 is also inner. Hence by (1.3) ϕ(T ) is in the class C·0. 2

4.3 Let T be an operator on a Hilbert space H and let π be the representation of Möb on
H. Recall from [1] that π is said to be associated to T if the spectrum of T is contained in
the closed unit disc and π(ϕ)∗Tπ(ϕ) = ϕ(T ) for all ϕ in Möb. Clearly, if T has an associated
(projective unitary) representation then T is homogeneous. In [6], the converse statement
was shown to hold for irreducible operators.

Proposition 4.2 Let T be a (homogeneous ) cnu contraction with associated projective rep-
resentation π. Let T1 and T2 be the C·0 and C·1 part of T respectively. Then there are
projective representations π1 and π2 of Möb such that π = π1⊕π2 and πj is associated to Tj,
for j = 1, 2. In consequence, T1 and T2 are homogeneous operators. More generally, letting

T =

(
T1 0
X T2

)
be the canonical triangularisation of T (cf. section 4.2 above), one gets that

for any scalar t ≥ 0, the operator

(
T1 0
tX T2

)
is homogeneous with associated representation

π.

Proof: Let M be the domain of T2. It is sufficient to show that M (or equivalently M⊥)
is reducing subspace for π, so that π breaks up as π1 ⊕ π2 along H = M⊕M⊥. The rest of
the statement will then be immediate consequence of [1, Proposition 2.4].

Fix ϕ in Möb. Since T1 ∈ C·0, by Lemma 4.1 we get ϕ(T1) ∈ C·0. That is, ϕ(T1)∗nx =
(ϕ∗(T1))∗nx → 0 for all x ∈ M⊥. But ϕ(T1)∗ is the restriction of ϕ(T )∗ to M⊥. So we get
ϕ(T )∗nx → 0 for each x ∈ M⊥. That is, π(ϕ)∗T ∗nπ(ϕ)x → 0 as n → ∞. Since π(ϕ) is
unitary this implies T ∗nπ(ϕ)x → 0. Thus π(ϕ)x ∈M⊥. Since this holds for all x ∈M⊥ and
all ϕ in Möb, this means that M⊥ is invariant (hence reducing) under π. 2

Theorem 4.3 For any three real numbers λ > 0, µ > 0, δ > 0, let M (λ)[µ, δ] be the operator
defined by the right hand side of (4.5). (So we have removed the restrictions λ > 1, µ < 1
and δ =

√
1− µ2).) Then M (λ)[µ, δ], λ > 0, µ > 0, δ > 0, are mutually unitarily inequivalent

homogeneous operators.

Proof: First take 0 < µ < 1, δ =
√

1− µ2. Then the C·0 part of the operator
M (λ)[µ, δ] = M (λ)[µ] is M (λ), while the C·1 part is the direct sum of infinitely many copies
of Tµ. But M (λ) has associated representation Dλ, while Tµ has associated representation
D1⊕D2 by a result in [1]. It follows that the C·1 part has associated representation E, where
E is the direct sum of infinitely many copies of D1 ⊕D2. So, by Proposition 4.2, M (λ)[µ, δ]
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has associated representation π = Dλ ⊕ E. The point is that there is a projective represen-
tation π, independent of all parameters, such that π is associated with M (λ)[µ,

√
1− µ2] for

each fix µ in the range 0 < µ < 1. but replacing the X part in the canonical triangulariza-
tion of M (λ)[µ,

√
1− µ2] by an arbitrary positive scalar multiple has the effect of replacing

M (λ)[µ,
√

1− µ2] by M (λ)[µ, δ] for an arbitrary δ > 0. So, by Proposition 4.2, M (λ)[µ, δ] is
homogeneous with the same associated projective representation π for all such µ, δ. That is,
π(ϕ)∗M (λ)[µ, δ]π(ϕ) = ϕ(M (λ)[µ, δ]) for all µ, δ with 0 < µ < 1, δ > 0. But both sides of this
equation are real analytic functions of µ for each fixed δ > 0. So, by analytic continuation,
the equation holds with the same associated representation π for µ > 0, δ > 0. (One might
object that this argument is incorrect: ϕ(M (λ)[µ, δ]) may not be defined for arbitrary µ, δ.
This objection is overruled by noting that, according to [1, Lemma 2.2], to establish homo-
geneity of an operator T , it is enough to show that ϕ(T ) is unitarily equivalent to T for all
ϕ in an arbitrarily small neighborhood of identity in Möb.) We omit the messy proof of the
irreducibility and unitary inequivalence of these operators. 2
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