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1. INTRODUCTION AND THE MAIN RESULTS

On " consider the spherical means of a continuous function [ defined by

[*a(x)= L f(x = y)da,(y), (L.1)

y|=¢

where o, is the normalized surface measure on the sphere §, = {y e B" :
|¥l = r}. Let ¥ be a class of functions on R". We say that a subset T
of B" & a set of injectivity for the spherical mean value operator in 7
if f*a(x)=0forall >0 and x € ' implies f =0 for every [ € V.
Determining sets of injectivity for the spherical means in various classes
of functions is an interesting and important problem which has received
considerable attention in recent times (see [2-4]).
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S66 NARAYANAN AND THANGAVELLU

For each A = () consider the function ¢, defined by
£a(0) = 22710 (3) AL 2441, o (),

where J,.,_ | is the Bessel function of order (3 —1). Then it i well
known that

@k o (X) = @u(r)pealx)

Therefore, if AR is a zero of the Bessel function J, , (1) then ¢, * o, van-
ishes on the sphere S for all r = (. Since ¢, € L"({R") for all p > :f”| the
above shows that splmrﬁ are not sets of injectivity for the ﬁpherical means
in LP(R") with p = ﬁ On the other hand, when p = A . spheres and,
more penerally, boundaries of bounded regions in B" are *;ets of injectivity
for the spherical means in L#(R"). This interesting result has been proved
recently by Agranovsky et al. [2].

It is natural to ask what happens if the ordinary spherical means are
replaced by twisted spherical means on C" Let u, be the normalized sur-
face measure on the sphere §, in " The twisted spherical means of a

function f on C* is then defined by
fxp(z)= |w|—rﬂz —t)et IR gy, (12)

These twisted spherical means are related to the spherical means on the
Heisenberg group, and they play an important role in some problems on
the Heisenberg group.

Let ¢, (z), k =10,1,2, ... be the Laguerre functions defined by

e (2) = LI (3]2P)e 1T, (13)
where LE" are the Laguerre polynomials of type (n — 1). Then it is well
known that [17]
Elln—1)!

e X p,(z) = mﬁﬂk{f'}‘;ﬂk{-‘!}- (1.4)
Therefore, if 1R? is a zero of L}™'(¢) then it follows that ¢, x p,(z) = 0
on the sphere Sg for all » = (. Since ¢, are Schwartz functions it follows
that spheres are not sets of injectivity for the twisted spherical means on
any LP{T").

Injectivity sets for the twisted spherical means have recently been studied
by Agranovsky and Rawat [4]. For € = 0 let I, , be the class of functions
f such that f(z)e!'*+91:" is in LP(C"). They showed that the boundary T
of any bounded domain in C" is a set of injectivity for the twisted spherical
means in V, .. In view of the examples we have, it is natural to expect that
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the same result i true with e = (1 as well. Unfortunately, their method does
not give this result, and it is still an open problem. In this paper we show
that when I is a sphere we can take e =0.

TueorEM 1.1, For 1 = p = oc, let V), be the space of functions satisfying
F(2)eVIEE e LP(T"). Then spheres are sets of injectivity for the twisted
spherical mean value operator in V.

This theorem was proved in [13] for » = 1. Here we treat the higher
dimensional case, using spherical harmonic expansions and a Hecke-
Bochner-type identity for the Weyl transform which is due to Geller [8].

As we said earlier, twisted spherical means are related to the spherical
means on the Heisenberg group H". Recall that " = C" x R with the
group law

[z, W uy ) =(z4+w, 54+ + il Im( z.air)).

Let p, be as above, but now it is considered as a measure on H" supported
on §, = {00} Then the spherical means of a function f on the Heisenberg
group is defined by

F*plz, )= fH'j"{h —u, -5 — 21 Imiza0)) dp,. (1.5)

Injectivity sets for the spherical mean value operator on " have been stud-
ied by Agranovsky and Rawat [4]. A different problem, namely the injectiv-
ity of the spherical mean value operator, was studied earlier by Apgranovsky
et al. [1] and Thangaveln [15].

On the Heisenberg group consider the functions e} given by

ef;{z, t)=¢ M"PE{EL
where ¢}(z) = ¢, (|A|'z). These are “elementary spherical functions” on
H", and they satisfy the equation

ki —1)!
(k+n—1)!

where @}(r) = Ly (3|Alr?)e VA2 Thus ef # p (2, 1) = 0 for all r > 0
if (z, t) belongs to the cylinder 'y = 55 x B, where %EMRZ is a zero of the
Laguerre polynomial L}~ L(h).

Note that e} € LP(H") only for p = oc. Therefore, it is natural to
expect that cylinders ', are all sets of injectivity for the spherical means in
LP(H"), 1 = p = oc. We prove that this is indeed the case.

eb  plz,1) = e (z 1) (16)

Tueorem 12, Let 1 = p =2 and let Uy = Sp x R. Then Uy is a set of
infectivity for the spherical means on H" in LP{H").
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The restriction p = 2 is imposed for technical reasons. We believe that
the theorem is true for all p,1 = p = o¢. Our method of proof requires
that we should be able to take the partial Fourier transform of f{z,¢) in
the ¢ variable. The theorem can be proved, for example, for all functions
in the mixed norm space LA9(H"),1 = p = 0o, 1 = g = 2, consisting of
functions for which

1A1g.e = [ ( [ e nr«m)”"dz —.

See Agranovsky and Rawat [4] for a version of the above theorem under a
different assumption on [.

In proving the main result in [2] the authors have used the wave equa-
tion associated to the Laplacian on R". In this paper we make use of the
heat equations associated to the sub-laplacian and the twisted Laplacian. If
wlz, t) is the solution of the heat equation

dou(z, 1) = —Lulz, 1), wiz, ) = fiz), (1.7

given by w(z, 1) = f = p(z), where p,(z)is the explicitly known heat kernel
for the operator L, then it can be shown that u(z, ¢) =0for all ¢ = O on S,
whenever [ x p.(z) =0 for all r = 0 on S. Therefore, Theorem 1.1 will
follow from the following result.

THEOREM 13. Let f eV, 1 = p = oo, where V), is as before If u(z, t) =
Fxpdzy=0forall t =0 ona sphere Sg then [ = (.

Similarly, Theorem 1.2 will follow once we prove the following unique-
ness theorem for the heat equation associated to the sub-Laplacian on i7"
Let g,(z, 5) be the heat kernel associated to ¥, whose Fourier transform in
the s variable is explicitly known.

Theorem 14, Let f e LP(H"), 1 = p=2. If w(z,5:8) = [ # gz, 5) =
O for all ¢ = O on a cylinder Uy, then [ =10,

There is an analogue of Theorem 1.3 also for the Hermite operator i =
—A+ |x|*. Let e be the Hermite semigroup generated by this operator,
so that u(x,t) = e~ f(x) solves the heat equation associated to H with
initial condition f. For 1 = p = oc¢ let B, be the space of continuous

functions f on B" for which f(x)e!V2H1 e Le(R"),

THEOREM 15. Let 1l = p=ooand fe B, If u(x, t) = e fxy=10
for all t = 0 on a sphere, then [ =10,

This theorem can be restated in terms of the Ornstein—Uhlenbeck semi-
group U,. This semigroup is given by the kernel

Kr{.L _}"} s TT—.H_."Z(I oo E—2[}—.IJ_,"IE—II."‘I—_'L'F;'{|—4."1‘]- {13}
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in the sense that U, f(x) = [ K.(x, ¥)f(y)dy(y) for f € LP(y). Here
LP(y) are the LP spaces taken with respect to the Gaussian measure

dy(x) = e *Fdx. It is easily checked that
e Upf(x) = elPF e F (),

where F(y) = f(y)e "2y|% Thus if f € LP(R") then the vanishing of
U, f(x) on asphere for all ¢ = ) implies that { = 0.

There is another notion of spherical means for functions on B" which is
related to the Hermite operator. This is defined by

M. f(x) = jl’ | e LDl £y 4 ) dp, (w), (1.9)
twl=r

where w = u + iv € C" This spherical means is nothing but Wi{w,)f and

has the expansion

> El{n—1)!
M) = T s e, (1.10)

k=0

where P, f(x) are the spectral projections of [ associated to the Her-
mite expansions. As shown by Ratnakumar and Thangavelu [11], these
means can be expressed in terms of the spherical means on the (reduced)
Heisenberg group. _

It can be shown that (see Section 3) the functions i, (x) = sz_l *
(|x})e~/ 2 satisfy the relation

(2N (n— 1)
M,y (x) = mﬁﬁzk{f'}'ﬁ’ﬂxl (L.11)
so that if R? is a zero of the polynomial L}*™' then M, (x) vanishes on
Sp for all ¥ = (. Therefore, the analogue of Theorem 1.1 for these means
is the following.

THEOREM 1.6, For 1 = p < oc let B, be as in the previous theorem. Then
spheres are sets of injectivity for the spherical mean value operator M, in B .

We will show that the vanishing of M, f{x) for all r = 0 is equivalent
to the vanishing of ¢ ™ f(x) for all ¢+ = 0. Thus Theorems 1.5 and 1.6
are equivalent.

Theorems 1.3, 1.4, and 1.5 will be proved in Section 3. In the next section
we collect all of the relevant material needed to prove our main results. We
closely follow the notations used in [16] and [17].

We are thankful to Alladi Sitaram for some useful discussions on the
representations of U{n).
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2. WEYL TRANSFORM AND SPHERICAL HARMONICS

To prove Theorem 1.5 we need some properties of spherical harmonics
and a Hecke-Bochner-type identity for the Hermite projection operators,
Let #,, be the space of solid harmonics of degree m. That is, the elements
of #,, are harmonic polynomials on B" which are homogeneous of degree
m. The restrictions of elements of #,, to the unit sphere $"~! are spherical
harmonics. We let =, stand for the space of spherical harmonics of degree
m. Then L*(§"'}) is the orthogonal direct sum of &, m = (. Given a
continuous function f on B", we have the spherical harmonic expansion
Flrx’)y = 22, fulrx’) where x = rx’ with x” € §"~!. We can express f,, in
terms of certain representations of O(n).

Let €}(n) be the orthogonal group whose natural action on §"~! defines
a unitary representation on L*($""!). The restriction of this to each 7,
defines an irreducible, unitary representation of (n), denoted by §,,. Let
Xm be the character and let d,, be the degree of d,,. The following propo-
sition has been proved by Helgason [Y].

Prorosinon 2.1, Let fix) = Yoy [u{x) be the sphercal harmonic
expansion of a continuous function [ on B". Then

Inx) =y [ xn(0)f(@-x)do

where do is the normalized Haar measure on O(n).

Applying the Peter-Weyl theorem to the function F{o) = f{o.x) on
(1), we obtain the decomposition

flxy= % diﬁ}f xslo)f(o.x)do.
B {n) e}
In Proposition 2.7 in Helgason [9] it is shown that the integrals in the above
decomposition survive only when § = &, for some m.

We need explicit formulas for P, f, . where f, are the components of f
appearing in the above decomposition. Let @, where « are multi-indices,
be the normalized Hermite functions on R" so that the projections £ f{x)
are given by

Pf(x)= % ( / m-)fbu{y)dy)dvum.
R
The following Hecke-Bochner-type identity has been proved in [16] (see
Theorem 3.4.1). For a function g defined on B* define
Nk +1y g~ e
Rifo) = 0 2 LE(r2)e (120 286+ gy
MO = trrst f, COHE)e

where L? are Laguerre polynomials of type 8.
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TheOREM 22, Assume that [(x) = g(|x)P(x), where P is a solid har-
monic of degree m. Then, if k= 2j + m we have

Pifulx) = RY(&)P(x)LF(|x[ e x,
where 8 = 5+ j+m and Py f,, =0 for all other values of k.

To prove Theorems 1.3 and 1.4 we need a Hecke-Bochner-type identity
for the Weyl transform which i related to the group Fourier transform
on the Heisenberg group. Recall that the irreducible, infinite-dimensional,
unitary representations of ™ are given by ,, where A is a non-zero real
number. All of these representations are realized on the same Hilbert space
L*(R") and given by

mlz, Nel(f) = El'-1rEI'A{x.gﬂlJ-'z}x_}.}ﬁm:é )

for ¢ € L*(R"). By suppressing the central variable, we let m(z) =
a, [z, 1), which defines a projective representation of the abelian group T

Given a function f e L'{C"), we define a family of operators G,(f) all
acting on L*(R") by the prescription

Ga(f) =j;, f(z)my(2)dz. (2.1)

When A = 1 the usual notation is W( ), which is called the Weyl transform
of f. Here we are using the notation employved by Geller in his paper [8].

Let f{A) be the group Fourier transform of f e L'(H") given by
f(A) =f f(z, O (z, O dz dt.
He

Then from the definition of 7, it follows that (7,( f*) = f'{.ﬁ.}, where

e s

)= f flz t)e' e 22)

—

is the partial inverse Fourier transform of [ in the ¢ variable.

For each A not equal to zero, define the A-twisted convolution of two
functions on C" by

f*,8(2) = f f(z — w)g(w)e P AImizil gy,
o
When A = 1 we simply call this the twisted convolution of [ and g and

denote it by [ = g. If [ and g are functions on A" their group convolution
is defined by

[wpiz, )= fH'j'{{z, O(w, 5) Dg(w, 5) dw ds.
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It is then easily checked that (f# g)(2) = f* %, g*(z). We make use of
this relation in transforming [ # p.(z,t) = () into the family of equations
f* %, w(2) = 0. We also note that G, (f #, g) = G, (/1G,(g) for any two
functions on ",

The A-twisted convolution of f with the constant function g = 1 is called
the A-symplectic Fourier transform. Explicitly,

F.f(2) = fgﬂz s w}E{J';'E}.J.Im{z.lil}d-w_

When A = 1 we omit the subscript and call it just the symplectic Fourier
transform. We then define the Weyl correspondence W, by setting W,(f) =
ENEN L ). The Hecke-Bochner-type identity which we need is the one
which gives a formula for the Weyl transform of certain functions defined
in terms of spherical harmonics. We will now recall relevant definitions
before stating this important formula.

For each pair of non-negative integers p and g let &, be the space of
all polynomials P in z and Z of the form

K= ¥ F egam

|exl=p |Bl=g

Let #,, = {P € ¥, : AP = 0}, where A is the standard Laplacian on
C*". Elements of #,, are called bigraded, solid harmonics on C". For non-
zero real A we let @4(x) = |A|"4d_(|A]"*x). By Li(r) we denote the kth
Laguerre polynomial of type § = —1. See Szego [14] for various properties
of these polynomials.

With the above notations we are now in a position to state Geller's result

concerning the Weyl transform [8].

THEOREM 23. Suppose gP € LY(C") or L*(C"), where g is a radial func-
tionand P e %, For A = 0, G (gP) = (—1)IW,(P)S, where the action of §
on ®;, is given as follows: ST, = ¢, where ¢, = 0fork < p,and for k = p,
it is given by

(k— p)l(n—1)! n_|+p+q(ﬂ ) —(A/a)|zF
e SRR T DL s (A2 ) 20p+a) g5

% = g tn=Ty Jo BIDE, | 512 Je |27+ dz
When A < 0 the roles of p and g are reversed in the definition of ¢, .

The Hermite functions @} are eigenfunctions of the operator H(A) =
—A + A%|x]* with eigenvalues (2|a| + n)|A|. If we let P,(A) stand for the
orthogonal projection onto the eigenspace spanned by {®! : |a] = &k} then

it is known that P,(A) = |A]"G(¢;) (see [17]). Using this relation in the
previous theorem, we obtain

Gi(gP % @x) = (1Y |A| Wi (P)SPL(X) = (=1)|A| ™", W (P)Py ().
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On the other hand, if we take

n— " ) W
82) = (@) = LI 312 Je W Olef

in the above theorem, then it follows that ¢; =0 for all j # k and ¢, =1,
which simply means that

Gl P) = (—1) W (P)Pi(A).
Thus we have the following corollary.

CoROLLARY 24, Suppose gP e LYC") or LYC"), where g is radial and
P e, . Then we have the formula

—1 . i )
(8P) %, 3(2) = e P()Ly_, " (3 IA| |2 )eOMIET,

where ¢, s as in the thearem.

We will now look at the spaces #, more closely. Let .'-fmi be the space
of functions which are restrictions to the unit sphere §"~! of functions
from 3. The elements of ¥, are called bigraded spherical harmonics.
The space L*($**"') is the orthogonal direct sum of ¥, as p and g range
over all non-negative integers. Given a continuous function [ on C", we can
expand the function f{w) = f(rw), where r = 0 and @ € 7! in terms of
spherical harmonics. Thus there is an expansion

fro)=Y ¥ [, (ro), (23)

k=l pg=k

with f, (rw) coming from ¥, We would like to express [, in terms of
certain representations of the unitary group U(n).

The natural action of [/(n) on the unit sphere $7*' defines a unitary
representation of U(n) on the Hilbert space L*{($**~'). When restricted to
Fpq it defines an irreducible representation, which we denote by §,,. Let
di p, q) be the dimension of ¥, and let y,, be the character associated
to 8,

Prorosmon 2.5, Given a continuows function [ on CTF the projections
foq appearing in the spherical harmonic expansion (2.3) are given by

Fou(2) = d(p.q) [ o Xpa @ (02)de,

where da v the normalized Haar measure on the group Un).
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The proof of this proposition is similar to that of P'rq:npq::siti:m 2.7
in Helgason [9], where the ordinary spherical harmonic expansion has
been considered. Let ¢ = U(n) and let G stand for the unitary dual of 7.
Then the Peter—Weyl theorem applied to the function F{o) = f(o.2) leads
to the expansion

f(z) = Zdl{ﬁ}f xs()f(o.2) do. (24)

Bely

Let K = U(n — 1) be considered as a subgroup of (7. As in Helgason [Y], we
can show that the integral [, x;(v)f(o.2) do is nonzero only if the group
S(K) has a non-zero fixed vector. For each pair (p, g) the representation
& o, has a unique K-fixed vector in # . Moreover, all such representations
are accounted for by these & . Thus the above expansion reduces to

F(z)= 2 d(p, G}j;, Xpglo)f(o2) do. (2.5)
P9 ;

This completes the proof of the proposition.

3. SPHERICAL MEANS AND HEAT EQUATIONS

In this section we prove our main results. We start by collecting some
information regarding the heat Kernels associated to the sub-Laplacian
and the twisted Laplacian. The sub-Laplacian ¥ which plays the role of
the Laplacian for H" is the second-order differential operator explicitly
given by

£ = _‘iz = 3'|z!2r?% - N&.-.'i

where A, is the Laplacian on T" and N is the rotation operator

" ‘;, &
rsgfad g2

= L ay;
The twisted Laplacian L and the sublaplacian ¥ are related by #(e"f x
(2)) = eBLf(z); or, explicitly, L = —A, + 1[z|* — iN

The spectral decomposition of L is explicitly given by the special Her-
mite expansion

Lf(z) = @)™ Y2k +n)f x gu(2),

k=0
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where ¢, are the Laguerre functions defined in (1.3). The heat kernel
associated to L is given by

=
piz) = 2m)™" Y e g, (2).
k=0

The series can be summed, and we get the formula (see [16])

| 1
p(2) = (@) "(sin ht) e 3t MNzE (3.1)

Thus p(z) is a radial function, and hence the solution u(z, 1) = f = p,(z)
of the heat equation for [ satisfies w(z,t) = 0 for all ¢ = (0 whenever
f = (z)=0for all » = () In view of this, once we prove Theorem 1.2,
Theorem 1.1 will follow.

The sublaplacian ¥ penerates a contraction semigroup e ', which is
given by a nice kernel g,(z, ) (see Folland [6]). The function w(z,s:t) =
[ # g,(z, 5) solves the equation

7z, 5 1) = —Fulz, s 1), Wiz, 5;:0) = f(z, 5).

Though g, itself is not explicitly known, its Fourier transform in the s vari-
able s known (see Gaveau [7] and Hulanicki [10]). Indeed,

"
R —~{1/4NAcat har)jz] i3
% (2) IT"(sin..fm:) : )

Note that g*(z) = b,A™"p,,(v/Az), and g, is a Schwartz class function.
Since g, is radial in z it follows that [ # g, (z, 5) can be expressed in terms of
[ #pz, 5), and hence f* gz, 5)=0forall ¢ = () whenever [+ p,(z,5) =
{} for all » = 0. Therefore, once we prove Theorem 1.4, Theorem 1.3 will
follow immediately.

We begin by proving Theorem 1.2. For the proof we require the follow-
ing result.

Prorosimon 3.1, Let f e LP(C"), 1 = p = oo If [ = pz) vanishes on
a sphere for all t = 0 then so does | = ¢ (2) for all & = 0.

Proof. Note that for a fived z the heat kernel p,(z) can be extended to
the right half-plane Re() = 0 as a holomorphic function. A simple calcula-
tion shows that | p,( z)| has exponential decay in z in that region. Therefore,
I = p(z) is well defined and holomorphicin Re() = (). Since [ = p, (z) =0
on a sphere for ¢ = 0 it follows that f = g, (z) =0 on the same sphere
for all 5 if ¢ = 0. Observe that  x p, ;(z) is given by the expansion

o .
f % pui(z) = Qm) " L e @i i f o o (2),
k=i
which vanishes for all s on a sphere for ¢ = 0 fixed. By calculating
the Fourier coefficients of f = p, .(z) as a function of s we obtain
I = ¢ (z) = 0on the same sphere. This proves the proposition.
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We remark that this proposition can be used to prove the equivalence of
Theorems 1.1 and 1.2. Indeed, as is well known (see [17]),
> kl(n—1)
£ —-n
£ x1ale) = @)™ T Gy e O  0a(2).
If [ = @ (z)=0for all &, then by the uniqueness theorem for the Laguerre
expansions it follows that [ x p.(z) =0 for all » = 0. Thus f = p(z) =0
for all ¢ = () is equivalent to f = p (2) =0 for all r = (.

If { were a radial function, then [ x ¢, (z) would reduce to

f % ox(2) = € ( . f:w)w:w}dw)mz}.

Suppose now j' ® [ z) vanishes on the sphere Sg. Slnce the Laguerre
polynomials L, ! have distinct zeros (see Szego [14]), Lj:_ ‘:IR'} can vanish
for at most one value, say k = K of &, and hence the above integral vanishes
for all k # K. This means that f(z) = Agex(z). But then f(z)elt/4N:=
cannot be in any L#(C"). This proves Theorem 1.2 if f were radial

To deal with the peneral case we assume, without loss of penerality, that
[ is continuous and expand [ in terms of bigraded spherical harmonics,

getting f(z) = ¥, [p(2). where

di{p, g)
Y. FrllzDPp(2), (3.3)

m=1

with P, e # .. Consider

fpg % wx(2) = Lﬂ erlz = w)eRIED £ (1) gy
which in view of Proposition 2.5 is equal to the integral

'[5' f'{n} el = w}e{_m}w{z'E}Xﬂq{"'}f{'T-w}da' du

Since ¢, (z) is radial and any ¢ € U'(n) preserves the symplectic form
Imiz.iv), we obtain the formula

foax @@= [ o X EDNp( ) do

Therefore, if [ x ¢, vanishes on a sphere Sg, then so does f,, x ¢, for
any pair p, g of non-negative integers.
As [, is given by the expression (3.3), using Corollary 2.4, we obtain

di p, ) T . g
Fog % €x(2) = ( Y e AR)PT(z })Lk_p PRIy MR (3.4)

m=1
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where the constants ¢, (k) are given by the integral

(k—p)tn— b | i
(k+q+n— 1)1] Fra(2DL,_ 7" E!.ZI1 g~ (AN | 2 2P +a) gz

If fo, % @4(z) vanishes on Sg, then, as before, since the zeros of L“ Pt

are distinct, we get

d(p, g)
} . (k)P (2) =0
=1
for all values of &, except possibly for one value, say, k = K. The restric-
tions of P to the unit sphere are orthonormal, and so the above implies
Cpglk) = ﬂ' for all m when k # K. This means that f,, x ¢, = 0 for all
.fc ;é K., and hence

d(p.g)

=il

The condition f(z)e!"/9EF e LP(C") holds good for f,, as well, and hence
the above is possible only when [, = 0. As this is true for all p and g we
conclude that f = 0. This completes the proof of Theorem 1.2,

The proof of Theorem 1.4 is similar. Apgain we can assume that [ is a
continuous function. Since [ # g,(z, 5) is assumed to be zero on 'y = S5 =
R, by taking the Fourier transform in the s variable we get f* %, g} (z) =0
for all A £ 0,¢ = 0, and z € Sg. As g}(z) is proportional to padvAz) we
obtain the equations f* #, ¢;(z) = 0 on S for all A # 0 and k = 0. Now
we expand f*(z) in terms of spherical harmonics, getting /* =3, , f7.(2).
and as before this leads to the equations [}, +, ¢3(z) = 0 on Sg.

Let us write f3,(2) = Yli" foi"(1z))P2(2), where P € #
Corollary 2.4 leads to the formula

g SO that

dp.q)
Tag *a@p(2) = ( AT ’"{.fc]P”[.,{z}) ”"””“f{zm!zi Yo~ (Al

m=1

Consider now the conditions [, #, ¢}(z) = 0on Sg. Foreach k, Ly~ '”’“" ®

|{ [A|R*) = 0 only for finitely many values of A. Thus there is a mumable
set =0 such that when A is not in &,

dp. g}
E AJJr{k}PﬂL(Z}zﬂ

mi=1

for all k. This in turn leads to the vanishing of c;]q.m{k} for all i and k.
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Consequently, 3. =0 for all p and g, which means that f*(z) = 0 for
all A not in % and z € C" But then the Fourier transform of f(z, 5) in
the s variable is supported on the countable set %, which contradicts the
assumption that [ & LP(H") unless [ = (). This completes the proof of
Theorem 1.4, and, as we mentioned earlier, Theorem 1.3 follows from this.

Finally, we take up Theorems 1.5 and 1.6. As in Proposition 3.1 we can
show that e~ f(x) = 0 for all ¢+ = 0 implies that P, f(x) = 0 for all k£ =
{}. Also, since M, f(x) is given by (1.10), by the uniqueness theorem for
Laguerre expansions we can conclude that P, f{x) =0 for all & = 0 if
M, f(x) =0 for all r = (. Thus it is enough to show that P, f(x)=0o0n a
sphere S for all k£ = 0 is not possible for functions f € B, unless f = 0.

Let @, (x,¥) = ¥ s P, (x)P,(y) be the kernel of P,. These are given
by the generating function

i b (x, y)= 71 - ) 2=+ P 2= D P Y2 (1= Dy
=)
(33)
By taking y = (0 we observe that the right-hand side of the above reduces
to the generating function for the Laguerre functions L} '(|x[2)e—{12)F
(see [16]). Therefore,

=
Z LY (| PyeDRE = 3 P, (x, 0),
k=0 k=0
and hence we get @, (x,0) = 0 and ®,,(x,0) = B (P P VR
Since
M, @y (x,0)= 3 MP(x)D,(0)=
|w|=2%

28 (n— 1)
S e (13,0,

we see that our assertion (1.11) is justified.

Let f = %>, f.(x) be the spherical harmonic expansion of f where
the components are given by Proposition 2.1. From (3.5) it i clear that
Py (ox, oy) =, (x, v) for all ¢ € O(n). Therefore,

Pifu()=d [ Pef(o)xnlo) dor

which shows that whenever P, f(x) vanishes on Sg so does P, [, (x) on the
same sphere. Now

Julx) = E m(lx)P,

where P}, are solid harmonics ufdegree mt. The rest of the proof proceeds
as in the twisted spherical means case. We make use of Theorem 2.2 to
conclude that [, = 0 for all . This completes the proofs of Theorems 1.5
and 1.6.
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