Proc. Indian Acad. Sci. (Math. Sci.), Vol. 111, No. 4, November 2001, pp. 381-397.
O Printed in India

Unitary tridiagonalization in M(4, C)

VISHWAMBHAR PATI
Stat.-Math. Unit, Indian Statistical Institute, RVCE P.O., Bangalore 560 059, India
MS received 7 April 2001; revised 4 September 2001

Abstract. A question of interest in linear algebra is whethermalk n complex
matrices can be unitarily tridiagonalized. The answer fonat 4 (affirmative or
negative) has been known for a while, whereas thecasé seems to have remained
open. In this paper we settle the= 4 case in the affirmative. Some machinery from
complex algebraic geometry needs to be used.
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1. Main Theorem

LetV = C", and(, ) be the usual euclidean hermitian inner producvorU (V) = U (n)
denotes the group of unitary automorphism#/okith respecttq , ). {e;}?_; will denote
the standard orthonormal basis¥of A € M (n, C) will always denote am x n complex
matrix.

A matrix A = [a;;] is said to betridiagonal if a;; = 0 for all 1 < i, j < n such that
li — j| > 2. Then we have:

Theorem 1.1.Forn < 4,andA € M(n, C), there exists a unitary/ € U (n) such that
UAU* is tridiagonal.

Remarkl.2. The case = 3, and counterexamples far> 6, are due to Longstaff, [3].

In the paper [1], Fong and Wu construct counterexamples fer5, and provide a proof

in certain special cases far= 4. The article 84 of [1] poses the = 4 case in general

as an open question. Our main theorem above answers this question in the affirmative. In
passing, we also provide another elementary proof forthe3 case.

2. Some Lemmas

We need some preliminary lemmas, which we collect in this section. In the sequel, we will
also use the letted to denote the unique linear transformation determined by the matrix
A = [a;;] (satisfyingAe; = Z?:l a;je;).

Lemma2.1.LetA € M(n, C). For all n, the following are equivalent
(i) There exists a unitary € U (n) such thaty AU* is tridiagonal.
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(i) There exists a flag (= ascending sequenc€aubspaces) of = C":
O=WocCcWiCWoC...CW, =V

such thadim W; =i, AW; Cc W;y1andA*W; C W1 forall0<i <n—1.
(iii) There exists a flag i

O=WocCcWiCWoC...CW, =V

such thadim W; =i, AW; C W41 andA(Wl.%rl) - W} forall0<i <n-—1.

Proof. (i) = (ii). SetW; = C-span(fi, f2,..., fi), where f; = U*e; ande; is the
standard basis df = C". Since the matrix#;;] := UAU* is tridiagonal, we have

Afi =bi—1ifi-1+bii fi + biyvifiyr, for 1<i<n
(whereb;; is understood to be- 0 fori, j < 0or> n 4+ 1). ThusAW; C W;;1. Since
{fi}7_, is an orthonormal basis far = C", we also have

A*fi =biiafi-a+Dbiifi +biis1fiy1 1<i<n
which showsA*(W;) c W;,1 for all i as well, and (ii) follows.

(i) = (iii). A*W; C Wiyq implies (A*W;)= > W1, for1 <i <n— 1. Butsince

(A*Wi)t = A=Y(W), we haveA(W;: ) ¢ Wi for 1 <i <n — 1and (i) follows.
(iii) = (i). Inductively choose an orthonormal bagisof V = C" so thatW; is the

span of{ f1, ..., fi}. SinceA(W;) C W;41, we have

Afi = ay fi+azi fa+ -+ aiv1i fi1. (1)
Since f; € (W;_1)*, and by hypothesia (W;- ;) ¢ W;-,, andW;-, = C-sparif;_1, f;.
..., fn), We also have

Afi=aivifica+aiifi+--+an fu (2
and by comparing the two equations (1), (2) above, it follows that

Afi = ai—1, fi-1+aii fi + aiv1i fi+a

for all i, and defining the unitary/ by U*e; = f; makesU AU* tridiagonal, so that (i)
follows. U

Lemma2.2. Letn < 4. If there exists &-dimensionalC-subspacéV of V = C" such that
AW C WandA*W C W, thenA is unitarily tridiagonalizable

Proof. If n < 2, there is nothing to prove. Faer = 3 or 4, the hypothesis implies
that A mapsW+ onto itself. Then, in an orthonormal bagig}?_, of V which satisfies

W = C-span(fi, f») andW+ = C-sparfs, ..., f,) the matrix ofA is in (1, 2) (resp.
(2, 2)) block-diagonal form for = 3 (resp.n = 4), which is clearly tridiagonal. O

Lemma2.3. Every matrixA € M (3, C) is unitarily tridiagonalizable
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Proof. For A € M (3, C), consider the homogeneous cubic polynomial ia (v1, v2, v3)
given by

F(v1, v2, v3) := det(v, Av, A*v).

Notev A Av A A*v = F(v1, v2, v3)e1 A e2 A e3. By a standard result in dimension theory
(see [4], p. 74, Theorem 5) each irreducible componerit @f) C IP% is of dimension

> 1, andV (F) is non-empty. Choose somg[: vz : v3] € V(F), and letv = (v, v2, v3)
which is non-zero. Then we have the two cases:

Casel. v is a common eigenvector fot and A*. Then the 2-dimensional subspace
W = (Cv)' is an invariant subspace for bathand A*, and applying the Lemma 2.2 to
W vyields the result.

Case2. v is not a common eigenvector farand A*. Say it is not an eigenvector fot
(otherwise interchange the rolesdtindA*). SetW; = Cv, W» = C-span(v, Av), W3 =
V = C3. ThendimW; =i, fori = 1, 2, 3, and the fact that A Av A A*v = 0 shows that
A*Wy C Wa. Thus, by (ii) of Lemma 2.1, we are done. m|

Note. From now onV = C* andA € M(4, C).
Lemma2.4. If A andA* have a common eigenvector, thérs unitarily tridiagonalizable

Proof. If v # 0 is a common eigenvector fof and A*, the 3-dimensional subspace
W = (Cv)* is invariant under botl andA*, and unitary tridiagonalization of|w exists
from then = 3 case of Lemma 2.3 byld; € U(W) = U(3). The unitaryU = 1@ U; is
the desired unitary it/ (4) tridiagonalizingA. m|

Lemma2.5. If the main theorem holds for all € S, whereS is any denséin the classical
topology subset oiM (4, C), then it holds for allA € M (4, C).

Proof. This is a consequence of the compactness of the unitary drodip Indeed, letr
denote the closed subset of tridiagonal (with respect to the standard basis) matrices.

Let A € M (4, C) be any general element. By the densitySothere exist4,, € S such
thatA, — A. By hypothesis, there are unitarie € U(4) such thatU, A, U = T,,
whereT,, are tridiagonal. By the compactnessidf4), and by passing to a subsequence
if necessary, we may assume ttigt — U € U(4). ThenU,A,U; — UAU*. That
is T, — UAU*. SinceT is closed, andl,, € T, we haveUAU* is in T, viz., is
tridiagonal. |

We shall now construct a suitable dense open subsetM (4, C), and prove tridiago-
nalizability for a general € S in the remainder of this paper. More precisely:

Lemma2.6. There is a dense open subset M (4, C) such that
(i) Aisnonsingular for allA € S.
(ii) A has distinct eigenvalues for all € S.
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(i) For eachA € S, the elementrnl + 1A + 1pA*) € M (4, C) has rank> 3 for all
(to, t1, 12) # (0,0, 0) in C3.

Proof. The subset of singular matrices Mi(4, C) is the complex algebraic subvariety
of complex codimension one defined By = {A : det A = 0}. Let Sy, (which is just
GL(4,C)) be its complement. Clearly; is open and dense in the classical topology (in
fact, also in the Zariski topology).

A matrix A has distinct eigenvalues iff its characteristic polynomiahas distinct roots.
This happens iff the discriminant polynomial ¢f, which is a 4th degree homogeneous
polynomial A(A) in the entries ofA, is not zero. The zero sef, = V(A) is again a
codimension-1 subvariety il (4, C), so its complemens, = (V(A))€ is open and dense
in both the classical and Zariski topologies.

To enforce (iii), we claim that the set defined by

Z3:={A e M4, C): rank(tgl +t1A + 1pA*) < 2 for some(rg, t1, 12)
#(0,0,0) in C3}

is a propereal algebraic subset dff (4, C). The proof hinges on the fact that three general
cubic curves ir’ﬂj% having a point in common imposes an algebraic condition on their
coefficients.

Indeed, saying that ranlgl + 1A + nA*) < 2 for some (o, 11, 12) # (0,0, 0) is
equivalent to saying that the third exterior povyg?(tol + 1A + rpA*) is the zero map,
for some(r, 11, r2) # 0. This is equivalent to demanding that there exigbary, r2) # 0
such that the determinants of all the<33-minors of (1ol + 11 A + 12 A*) are zero.

Note that the (determinants of) t{g x 3)-minors of (o + 11 A + t2A*), denoted as
M;;(A, 1) (where theith row andjth column are deleted) are complex valued, complex
algebraic an€’-homogeneous of degree Jie= (g, 11, 12), with coefficients real algebraic
ofdegree 3inthe variabléd,;;, Aij) (or, equivalently,inRei;;, Im A;;), whereA = [A;;].

We know that the space of all homogeneous polynomials of degree 3 with complex
coefficients in(zg, t1, t2) (up to scaling) is parametrized by the projective spﬁée(the
\eronese variety, see [4], p. 52). We first consider the complex algebraic variety:

X ={(P,Q,R,[1]) e PE x PA x P x PZ: P(1) = Q1) = R(t) = 0},

where ] := [to : 711 : t2], and (P, Q, R) denotes a triple of homogeneous polynomials.
Thisis justthe subsetofthose, Q. R, [1]) inthe producPg x P2 x P x P such that the
point [t] lies on all three of the plane cubic curvEsP), V(Q), V(R). SinceX is defined
by multihomogenous degree (1, 1, 1, 3) equations, it is a complex algebraic subvariety of
the quadruple product. Itsimage under the first projectios: 1(X) C Pg x P x P is
therefore an algebraic subvariety inside this triple product (see [4], p. 58, Theoréhis3).
a proper subvariety because, for example, the cubic polynomialsd, Q = 13, R = 13
have no common non-zero root.

Denote pairsi, j) with1 < i, j < 4 by capital letters liké, J, K etc. From the minorial
determinantd; (A, t), we can define variougal algebraicmaps:

Ok - MA,C — IP% X IP?; x Pg
A = (Mi(A,1),M;(A,t), Mk(A,1))
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for I, J, K distinct. Clearly,/\s(tol+t1A+t2A*) = Oforsome = (1g, 11, t2) # (0, 0, 0)
iff ©;,k (A) lies in the complex algebraic subvarigtyof PE x Pg x P, for all 7, J, K
distinct. Hence the subsgg c M (4, C) defined above is the intersection:

Zz= () ©77%xM),
1,J.K
wherel, J, K runs over all distinct triples of pairg, j), 1 <i, j < 4.

We claim thatZ3 is a proper real algebraic subset Mf(4, C). Clearly, since each
M (A, 1) is real algebraic in the variables Re;, Im A;; the map®;, ¢ is real algebraic.
SinceY is complex and hence real algebraic, its inverse irr(ag}:K(Y), defined by the
real algebraic equations obtained upon substitution of the compaWets ), M (A, t),
Mg (A, t) in the equations that defirng, is also real algebraic. Hence the &atis a real
algebraic subset aff (4, C).

To see thatZs is aproper subset ofM (4, C), we simply consider the matrix (defined
with respect to the standard orthonormal bas,igsj‘zl of C%:

01 00
010
0 0 1
0 0O

[eNeoNe]

Fort = (10, 11, t2) # 0, we see that

to 1 0 O
tp to0 1 O
0 1 nh n
0 0 1

tol + 1A+ 1pA* =

For the above matrix the minorial determinaf (A, ¢) = tf, whereasV14(A, 1) = t23.
The only common zeros to these two minorial determinants are paynt®[: 0]. Setting
t1 = t2 = 0 in the matrix above givesf;; (A,t) = tg for 1 < i < 4. Thustg must also
be 0 for all the minorial determinants to vanish. Hence the matiwbove lies outside the
real algebraic sets.

Itis well-known that a proper real algebraic subset in euclidean space cannot have a non-
empty interior. Thus the compleme#y is dense and open in the classical and real-Zariski
topologies. Takes = Z5.

Finally, set

3 c
S:=85N8SNS3= (UZ,')

i=1

which is also open and dense in the classical topology {4, C). Hence the lemma.O

Remark2.7. One should note here that Bmchmatrix A € M (4, C), there will be at leasta
curve of points{] =[tg: 11 : t2] € IP% (defined by the vanishing of depl +11 A +12A™*)),

on which(tpl + 1A + 12A*) is singular. Similarly for eacl there is at least a curve of
points on which the trace (I’/\S(tol + 1A+ tzA*)) vanishes, and so a non-empty (and
generally a finite) set on whidboththese polynomials vanish, by dimension theory ([4],
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Theorem 5, p. 74). Thus fagachA € M (4, C), there is at least a non-empty finite set
of points ] such that(xg! + 11A + 12A*) has 0 as a repeated eigenvalue. For example,
for the matrix A constructed at the end of the previous lemma, we see that the matrix
(tol +11A+12A™) is strictly upper-triangular and thus has 0 as an eigenvalue of multiplicity
4 for all (0, 11, 0) # 0, but nevertheless has rank 3 for@d, 71, r2) # (0, 0, 0).

Indeed, as (iii) of the lemma above shows, foin the open dense subsgtthe kernel
ker(tol + t1A + 12 A*) is at most 1-dimensiondbr all [t] = [tp: 71 : 12] € IP%.

3. The varietiesC, I', and D

Notation3.1. Inthe light of Lemmas 2.5 and 2.6 above, we shall henceforth as¢éumg
As is easily verified, this implied* € S as well. We will also henceforth assume, in view
of Lemma 2.4 above, that and A* have no common eigenvector@~or example, this
rules outA being normal, in which case we know that the main result4fas true by the
spectral theorem.) Also, in view of Lemma 2.2, we shall assumeitlaaid A* do not have
a common 2-dimensional invariant subspace.

In IP%, the complex projective space df = C% we denote the equivalence class of
v e V\Oby[v]. Fora] € P2, we defineW ([v]) (or simply W (v) when no confusion
is likely) by

W ([v]) ;= C-span{v, Av, A*v).

Since we are assuming thdendA* have no common eigenvectors, we have dinglv]) >
2forall [v] € PE.

Denote the four distinct points i[ﬁg representing the four linearly independent eigen-
vectors ofA (resp.A*) by E (resp. E*). By our assumption abové, N E* = ¢.

Lemma3.2.Let A € M (4, C) be as in3.1above. Then the closed subset
C={v]ePE:vAAvAA* =0}

is a closed projective variety. This variefyis precisely the subset pf] Pg for which
the dimensiomdim W ([v]) = dim (C-span{v, Av, A*v}) is exactly2.

Proof. ThatC is a closed projective variety is clear from the fact that it is defined as the set
of common zeros of all the fouB x 3)-minorial determinants of th€8 x 4)-matrix

v
A= Av
A*v

(which are all degree-3 homogeneous polynomials in the componentwitt respect to
some basis). Als@ is nonempty since it contains U E*.

Also, sinceA and A* are nonsingular by the assumptions in 3.1, the wedge product
v A Av A A*v of the three non-zero vectors Av, A*v vanishes precisely when the space
W([v]) = C-spanfv, Av, A*v) is of dimension< 2. Since by 3.14, A* have no common
eigenvectors, the dimension diti ([v]) > 2 for all [v] € P2, soC is precisely the locus
of [v] € [P% for which the spacéV ([v]) is 2-dimensional. m|
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Now we shall show that foA as in 3.1, the variet¢' defined above is of pure dimension
one. For this, we need to define some more associated algebraic varieties and regular maps.
DEFINITION 3.3
Let us define the bilinear map:
B:C*xC® - 4
(v, tg, 11, 12) = B, t) = (tol + A + 1pA")v.

We then have the linear mapgv, —) : C3 — C*forv € C* andB(—, 1) : C* — C3 for
teC3

Note that the image InB(v, —) is the span ofv, Av, A*v}, which was defined to be
W (v). For a fixedr, denote the kernel

K (1) ;= ker(B(—, 1) : C* > CH.
Denoting fo : 11 : 2] by [¢f] and [v1 : v2 : v3 : va] by [v] for brevity, we define
[ = {(v],[1]) e P2 x PZ: B(v,1) = 0}.
Finally, define the variety) by
D c P2 :={[r] € P4 : det B(—,1) = det(tol + 1A + 12A*) = 0}.
Let
7 PExPE > PE, mi P xPE — P2

denote the two projections.

Lemma3.4. We have the following facts
(i) 71(I') = C, andm2(I") = D.
(i) 71: T — Cis1-1, and the mag defined by

glznzon’l_l:C—)D

is a regular map so thalf is the graph of; and isomorphic as a variety t6.

(i) D c P% is a plane curve, of pure dimension one. The map I' — D is 1-1,
and the mapr; o 712_1 : D — C is the regular inverse of the regular mgpdefined
above in(ii). AgainT is also the graph of this regular inverge !, and D andT are
isomorphic as varieties. In particulaf; and D are isomorphic as varieties, and thus
Cisacurve in|]3>(33 of pure dimension one

(iv) InsidePg X IP%, each irreducible component of the intersection of the four divisors
D; = (Bi(v,t) = 0) fori = 1,2,3,4 (whereB;(v, t) is thei-th component of
B(v, t) with respect to a fixed basis 6f) occurs with multiplicityl. (Note thatl" is
set-theoretically the intersection of these four divisors, by defiition
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Proof. Itis clear thatt1(I') = C, becauseB(v, t) = tgv + t1Av + tpA*v = 0 for some
[to:11:10] € [P% iff dim W(v) < 2, and sinceA andA* have no common eigenvectors,
this means dimW (v) = 2. Thatis, p] € C.

Clearly [r] € m2() iff there exists a{] € IF% such thatB(v,t) = 0. That is, iff
dim ker B(—, t) > 1, thatis, iff

G(tg, t1, 12) '=det B(—,t) = 0.

Thus D = 72(I") and is defined by a single degree 4 homogeneous polynarmiaside
[P%. It is a curve of pure dimension 1 BP% by standard dimension theory (see [4], p. 74,
Theorem 5) because, for example:[0 : 0] ¢ D soD # IP%. Somy(I') = D, and this
proves (i).

To see (ii), for a giveny] € C, we claim there is exactly one][such that[v], [¢]) € T.
Note that([v], [¢]) € T iff the linear map:

Bv,—):C® — C*
t = (tol +11A + 1A%V

has a non-trivial kernel containing the lid&. That is, dim ImB(v, —) < 2. But the
image ImB(v, —) = W(v), which is of dimension 2 for alb € C by our assumptions.
Thus its kernel must be exactly one dimensional, defined byBker —) = Ct. Thus
([v], [¢]) is the unique point il lying in n'l_l[v], viz. for each p] € C, the vertical line
[v] x |]3>(23 intersectd” in a single point, call it[v], g[v]). Som : ' — Cis 1-1, andl’
is the graph of amag : C — D. Sinceg([v]) = nznl_l([v]) for [v] € C, andT is
algebraicg is a regular map. This proves (ii).

To see (iii), note that fors7] € D, by definition, the dimension dim keB(—, ) > 1.
By the fact thatd € S, and (iii) of Lemma 2.6, we know that dim ke#(—, ) < 1 for all
[£] € P%. Thus, denotind () := ker B(—, t) for [¢] € D, we have

dmK(¢) =1 forall reD. (3)

Hence we see that the unique projective linpdorresponding t€Cv = K (¢) yields the
unique element o€, such that([v], [¢]) € T'. Thusm, : ' — D is 1-1, and the regular
mapry o ;rgl : D — Cis the regular inverse to the mgpf (ii) above.T is thus also the
graph ofg~! and, in particular, is isomorphic tB. Sinceg is an isomorphism of curves,
andD is of pure dimension 1, it follows that is of pure dimension one. This proves (iii).

To see (iv), we need some more notation.

Note thatD c P2 \ {[1; 0; 0]}, (because there exists nd [ P such that’.v = 0!).
Thus there is a regular map:

0:D — P&
[to:t1:t2] = [r1:t2]. (4)

Let A(r1, 2) be the discriminant polynomial of the characteristic polynomjal 4,4+ of
1A+ rpA*. ClearlyA(t, 2) is a homogeneous polynomial of degree 4rint,), and it is
not the zero polynomial because, for exampél, 0) # 0, for A(1, 0) is the discriminant
of ¢4, which has distinct roots (=the distinct eigenvalueg\pby the assumptions 3.1 on
A. LetX C [P% be the zero locus ok, which is a finite set of points. Note that the fibre
6~1([1 : u]) consists of all{ : 1 : u] € D such that— is an eigenvalue oA + L A*,
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which are at most four in number. Similarly the fib@st ([ : 1]) are also finite. Thus
the subset oD defined by

F:=0"1®)

is a finite subset o. F is precisely the set of points][ = [70 : #1 : t2] such that
B(—,t) = (tol + 1A + t2A*) has 0 as a repeated eigenvalue.
Sincenp : I' — D is 1-1, the inverse image:

Fi=n,%F)CT

is a finite subset of.

We will now prove that for each irreducible componént of I", and each point =
([a], [b)) in Ty \ Fy, the four equation§B; (v, 1) = O}j‘:l are the generators of the ideal of
the varietyl',, in an affine neighbourhood of whereB; (v, t) are the components 8f(v, 1)
with respect to a fixed basis @*. SinceF; is a finite set, this will prove (iv), because
the multiplicity of ', in the intersection cycle of the four divisof3; = (B; (v, t) = 0) in
IP% X [F% is determined by generic points &g, for example all points of, \ F1. We will
prove this by showing that for = ([a], [b]) € [y \ F1, the four divisorsB; (v, ) = 0)
intersect transversely at

So letl', be some irreducible componentof with x = ([a], [b]) € Ty \ F1.

Fix ana € C* representingd] € C, = m1(T'y), and also fix» € C3 representing
[6] = g(la]) € g(Ca). Also fix a 3-dimensional linear compleme¥it := 7j,)(P3) ¢ C*
to a and similarly, fix a 2-dimensional linear complemént= T[;,](IP%) c C3tob. (The
notation comes from the fact thd,) (Pg) =~ C"™*1/Cv, which we are identifying non-
canonically with these respective compleménty These complements also provide local
coordinates in the respective projective spaces as follows. Set coordinatejchestsd
[a] € P2 by[v] = ¢ () := [a+u], andy around p] € P2 by [r] = ¥ (s) := [b+s], where
ueVy~C3 ands € Vo ~ C2 The images (V1) andy (V») are affine neighbourhoods
of [a] and [p] respectively. These charts are like ‘stereographic projection’ onto the tangent
space and depend on the initial choice dfesp.b) representingd] (resp. p]), and arenot
the standard coordinate systems on projective space, but more convenient for our purposes.

Then the local affine representation®fv, t) on the affine opetvy x Vo = C3 x C?,
which we denote by, is given by

B,s):=Bla+u,b+s).

Note that kerB(a, —) = Cb, where p] = g([a]), so thatB(a, —) passes to the quotient
as an isomorphism:

B(a,—): Vo = W(a), %)

whereW (a) is 2-dimensional.
Similarly, sinceB(—, b) has one dimensional kernék = K (b) c C*, by (3) above,
we also have the other isomorphism:

B(—,b): V1 = Im B(—,b), (6)

where ImB(—, b) is 3-dimensional, therefore.
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Now one can easily calculate the derivatig (0, 0) of g at (u,s) = (0,0). Let
(X,Y) € V1 x Vo. Then, by bilinearity ofB, we have

B(X,Y)—pB0,00 = B+ X,b+Y)—B(a,b)
= B(X,b)+ B(a,Y)+ B(X,Y).

Now sinceB(X, Y) is quadratic, it follows that

DB(0,0): Vi x Vo — C*
(X,Y) — B(X,b)+ B(a,Y). (7)

By egs (5) and (6) above, we see that the imagBg¢0, 0) is precisely ImB(—, b) +
W(a).

Claim. For ([a], [b]) € Ty \ F1, the space InB(—, b) + W(a) is all of 4.

Proof of Claim DenoteT := B(—, b) for brevity. Clearlya € W(a) by definition of
W(a). Also,a € kerT = K (b). We claimthat is notintheimage of. For,ifa e Im T,

we would haveu = Tw for somew ¢ K(b) = kerT andw # 0. In factw is not a
multiple ofa sinceTw = a # 0 whereas: € kerT. Thus we would havé?w = 0, and
completingfy =a =Tw, o =wtoa basis{f,-}f.‘:1 of C*, the matrix ofT" with respect
to this basis would be of the form:

o O oo
[l elNeN ]
* % ¥ ¥
* % ¥ ¥

ThusT = B(—, b) would have 0 as a repeated eigenvalue. But we have stipulated that
([a], [b)) € F1,sothath] ¢ F,andhence&(—, b) does nothave 0 as arepeated eigenvalue.
Hence the non-zero vectare W(a) is notin ImT. Since ImT is 3-dimensional, we have
C*=1mT + W(a), and this proves the claim. O

In conclusion, all the points df,, \ F; are in fact smooth points df,, and the local
equations foll',, in a small neighbourhood of such a point are precisely the four equations
Bi(u,s) =0,1<i < 4. This proves (iv), and the lemma. a

4. Some algebraic bundles

We construct an algebraic line bundle with a (regular) global section@v@&y showing

that this line bundle has positive degree, we will conclude that the section has zetbes in
Any zero of this section will yield a flag of the kind required by Lemma 2.1. One of the
technical complications is that none of the bundles we define below are allowed to use the
hermitian metric orV, orthogonal complements, orthonormal bases etc., because we wish
to remain in theC-algebraic category. As a general reference for this section and the next,
the reader may consult [2].
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DEFINITION 4.1

For 0 v € V = C* we will denote the pointy] € IP’% by v, whenever no confusion is
likely, to simplify notation. We have already denoted the vector subspace

C-span(v, Av, A*v) C C* asW(v). Further defineWs(v) = W(v) + AW (v), and
Wa(v) := W(v) + A*W (v). Clearly bothWs(v) and Ws(v) containW (v).

SinceA andA* have no common eigenvectors, we have difw) > 2 for all v € P2,
and dimW (v) = 2forallv € C, because of the defining equation Av A A*v = 0 of C.
Also, since dimW (v) = 2 =dim AW (v) forv € C,and since G4 Av € W(v)NAW (v),
we have dimWz(v) < 3forallv € C. Similarly dim V~V3(v) < 3forallveC.

If there exists a € C such that dimWs(v) = 2, then we are done. For, in this case
Ws(v) must equal (v) since it containg¥ (v). Then the dimension diniz(v) = 2 or
= 3. Ifitis 2, W(v) will be a 2-dimensional invariant space for bothand A*, and the
main theorem will follow by Lemma 2.2. If dirrV~V3(v) = 3, then the flag:

O=WoCWi=CvC Wo=W() CWg=Wav)CWa=V

satisfies the requirements of (ii) in Lemma 2.1, and we are done. Similarly, if there exists
av € C with dim W3(v) = 2, we are again done. Hence we may assume that:

dim W3(v) = dim Wa(v) =3 forall veC. (8)

In the light of the above, we have the following:

Remarlk4.2. We are reduced to the situatign where the following condition holds: For each
veCC,dmWw) =2, dm W3z(v) = dim Wz(v) = 3.
Now our main task is to prove that there exists @ C such that the two 3-dimensional
subspace®3(v) and W3(v) are thesame In that event, the flag
O=WoCcW1=CvCcWo=Ww)C Wag=W(@)+ AW(W) = W(v)
+A*WW) C Wa=V
will meet the requirements of (ii) of the Lemma 2.1. The remainder of this discussion is
aimed at proving this.

DEFINITION 4.3

Denote the trivial rank 4 algebraic bundle B by 0;3 , with fibre vV = C* at each point
C

(following standard algebraic geometry notation). Similaﬂag is the trivial bundle on

C.In (’)43, there is the tautological line- subbuneﬂﬁms( 1), whose fibre ab is Cv. Its

restnctlon to the curv€ is denoted a3V; ;= O¢c(-1).

There are also the line subbundmpe,( 1) (respectivelyA* O I]3,3( 1)) of (943,Whose

fibre atv is Av (respectivelyA*v). Both are isomorphic té?lp(g:( 1) (viathe gIobaI linear
automorphismsA (resp. A*) of V). Similarly, their restrictionsAO¢(—1), A*O¢(-1),

both isomorphic t@¢ (—1). Note that throughout what follows, bundle isomorphism over
any varietyX will mean algebraic isomorphism, i.e. isomorphism of the corresponding
sheaves of algebraic sections@g-modules
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Denote the rank 2 algebraic bundle with fibigv) Cc V atv € C asWs. Itis an
algebraic sub-bundle aﬁ)"’ for its sheaf of sections is the restriction of the subsheaf

Opg (1) + AOps (—1) + A*Ops (=1) C Oﬂﬁ%

to the curveC, which is precisely the subvariety B’@ on which the sheaf above is locally
free of rank 2 (=rank 2 algebraic bundle).

Denote the rank 3 algebraic sub- bundIe(@‘ct with fibre W3(v) = W(v) + AW (v)
(respectlvelng(v) W () + A*W (v)) by W3 (respectlvelwvg) BothWs andW3 are
of rank 3 onC because of Remark 4.2 above and both corﬁtﬁgnas a sub-bundle. We
denote the line bundlqé\ Wz by L2, and/\ Ws (resp. /\ Wa) by £3 (resp £3). Then
Lo is a line sub-bundle 0/\ O3, andl3, £3 are line sub-bundles q‘f\ (94

Finally, for X any variety, with a bundl€ on X which is a sub-bundle of atnvial bundle
Oy, theannihilator of £ is defined as

AnnE = {¢ € homy (O%, Ox) : ¢p(€) = 0}.
Clearly, by taking hom (—, Ox) of the exact sequence

0—~&— O0f - 0%/ — 0,
the bundle

Ann€E >~ homy (0% /€, Ox) = (0% /&),
wherex always denotes the (complex) dual bundle.

Lemmad.4. Denote the bundI&Vs/ W, (resp. Wg/Wz) by A (resp. A). Then we have
the following identities of bundles af:

0]
- Wo—->W3—> A—0
—>W2—>VT/3—>X—>0

—>L3—i>AnnW21>A*—>O

o O O o

= T3 -> Annw, > X* > 0,
(i)

L3>~L>®A and Zg:£2®7\,
(iii)

2

2
/\ AnnW, ~ /\ W,
(iv)
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v)
Lo~ A®Oc(=1) ~A®Oc(-1),

(vi)
home (L3, A%) ~ L5 ® A*2? ~ £33 ® Oc(-2).

Proof. From the definition ofA, we have the exact sequence:
O—-Wo—->W3—>A—>0

from which it follows that:
0— A— Of/Wp — O /W3 — 0

is exact. Taking hom(—, O¢) of this exact sequence yields the exact sequence:
0 — AnnW3 — AnnWs — A* — 0.

Now, via the canonical isomorphis/iq3 V — V*which arises from the non-degenerate
pairing

3 4
/\V®V—>/\V:C,

it is clear that Ani/z ~ /\3 Wz = La.

Thus the first and third exact sequences of (i) follow. The proofs of the second and fourth
are similar. From the first exact sequence in (i), it follows t}“@th ~ /\2 Wo ® A.
This implies the first identity of (ii). Similarly the second exact sequence of (i) implies the
other identity of (ii).

Since for every line bundlg, y ® y* is trivial, we get from the first identity of (ii) that
Lo ~ L3 ® A*. From third exact sequence in (i) it follows th,é\l2 AnnWV, >~ L3 @ A*,
and this implies (jii).

To see (iv), note that
Wo + AW N AW»

Wo T AWLN W,

The automorphisr ~* of V makes the last bundle on the rightisomorphic to the line bundle
Wa/ W2 A=) (note all these operations are happening inside the rank 4 trivial bundle
(94C). Similarly, Ais isomorphic (via the global isomorphisat —* of V) to the line bundle
Wa/(WonNA*~Dy). Butforeachy € C, W(v)NA~IW (v) = Cv = W()NA* 1w (v),
from which it follows that the line sub-bundlé$, N A~DA% and W, N A* DA, of Wy
are the same=£ Wy ~ O¢(—1)). ThusA ~ A, proving (iv).

To see (v), we need another exact sequence. Foreacti, we noted in the proof of
(iv) above thatCv = W (v) N A~1W (v). Thus the sequence of bundles:

Wa
00— Oc(—1) > Wo — m —-0

is exact. But, as we noted in the proof of (iv) above, the bundle on the right is isomorphic
to A, so that

0= Oc(-1) >Wr— A—0

A >~
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is exact. Henc&, = /\2 Wso >~ A ® Oc(—1). The other identity follows from (iv), thus
proving (v).
To see (vi) note that we have by (6 ~ £5 ® A*. Thus

home (L3, A*) ~ L3® A* o~ L5 A" ® A
However, since by (iv)A =~ A, we have homa(L3, A*) ~ £ ® A*2. Now, substituting
A* = L5 ® Oc(—1) from (v), we have the rest of (vi). Hence the lemma. m|

We need one more bundle identity:

Lemmad.5. There is a bundle isomorphism

L2~0c(=2)®g"Op(1).
Proof. When f] = [r0 : 11 : 2] = g(v]), we saw in (5) that the linear map
B(v, —) : C3 - C*acquires a 1-dimensional kernel, which is precisely thelinavhich
is the fibre ofOp(—1) at [¢]. The image ofB(v, —) was the 2-dimensional spa¥(v) of

v, Av, A*v, as noted there. Thus fore C, B(—, —) induces a canonical isomorphism of
vector spaces:

Oc(-Du ® (C3/0p(-D) = W) =W,

which, being defined by the global m#&gi—, —), gives an isomorphism of bundles:
Oc(-1) @ g* (0}/Op(=D) = Wa

From the short exact sequence:
0— Op(-1) — 03 — 03,/Op(=1) > O,

it follows that A%(03,/Op(~1)) =~ Op(1). Thus:

2 2
Ly = /\Wg ~>0c(-2)®g" (/\(O%/OD(—]-))>

12

Oc(=2) ® g"Op (D).

This proves the lemma. ]

5. Degree computations

Inthis section, we compute the degrees of the various line bundles introduced in the previous
section.

DEFNITION 5.1

Note that anrreducible complex projective curv€, as a topological space, is a canon-
ically oriented pseudomanifold of real dimension 2, and has a canonical genegator
Hy(C,7) = 7. Ind~eed, it is the image, iz, wherer : C — C is the normalization
map, andugs € Ha(C, Z) = Z is the canonical orientation class for the smooth connected
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compact complex manifold, wherern, : H2(5, 7) — Hz(C, Z) is an isomorphism for
elementary topological reasons.

If ¢ = U,_,Cqy is a projective curve of pure dimension 1, with the curégsas
irreducible components, then since the intersectitns) Cg are finite sets of points (or
empty), H»(C, Z) = ®4H2(Cy, 7). Letting u, denote the canonical orientation classes
of C, as above, there is@nique classuc = ), no € H2(C, Z). Thinking of C as an
oriented 2-pseudomanifolg,c is just the sum of all the oriented 2-simplices@f

If Fis a complex line bundle 0@, it has a first Chern class(F) € H3(X, Z), and the
degreeof F is defined by

deg? = (c1(F), uc) € Z.

It is known that a complex line bundle on a pseudomanifold is topologically trivial iff its

first Chern class is zero. In particular, if an algebraic line bundle on a projective variety

has non-zero degree, then it is topologically (and hence algebraically) non-trivial.
Finally, if i : C — Pg is an (algebraic) embedding of a curve in some projective space,

we define the degree of the bundl®- (1) = i*Oﬂ:D’é (1) as thedegree of the curve (in

Pg). We note that{] := i.(uc) € H2(Pg, Z) is called thefundamental classf C in

P¢, and by definition deg = (c1(Oc (D), uc) = <C]_(O[p>é(1)), [C]>. Geometrically, one

intersect<C with a generic hyperplane, which interse€taway from its singular locus in

a finite set of points, and then counts these points of intersection with their multiplicity.
More generally, a complex projective varieXy C P, of complex dimensiom: has a

unique orientation clasgy € Ho, (X, Z). Its image inHo,, (P%, Z) is denoted K], and

the degree del of X is defined a%(cl(opré @)™, [X]>. It is known that ifX = V (F)

for a homogeneous polynomial of degreed, then degX = d.
We need the following remark later on.

Remarls.2. If f : C — Disaregularisomorphism of complex projective cur@eandD,
both of pure dimension 1, andf is a complex line bundle ofy, then degf*F = degF.
This is becaus¢, (uc) = wp, so that

degF = (c1(F), up) = (c1(F), furrc) = (f*c1(F), uc) = {ca(f*F), uc) = degf*F.

Now we can compute the degrees of all the line bundles introduced.

Lemmab.3. The degrees of the various line bundles above are as fallows
(i) degO¢c(1) =degC =6
(i) degOp(1) =degh =4
(i) deg L3 =
(iv) deg homy (L3, A*) = deg(L33 ® Oc(—2)) = 12.
Proof. We denote the image of orientation clags of the curvel” (see Definition 3.3 for

the definition ofl") in HZ(P?: X [F'%, 7) by [I"]. By the part (iv) of Lemma 3.4, we have that
the homology clasd]] is the same as the homology class of the intersection cycle defined
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by the four divisorsD; := (B;(v,t) = 0) insideHz(P% X [P%, 7). By the generalized
Bezout theorem imﬂ% X IP%, the homology class of the last-mentioned intersection cycle
is the homology class Poiné&udual to the cup product

d:=d1UdyUd3zUdy,

whered; is the first Chern class of the the line bundlg corresponding td;, fori =
1,2, 3,4 (see[4], p. 237, EX. 2).
Since eachB; (v, t) is separately linear im, ¢, the line bundle defined by the divisor
D; is the bundlenf(’)ﬂj,g(l) ® n;@nm(z:(l), wherery, mp are the projections t@g and
[P% respectively. If we denote the hyperplane classes which are the generators of the
cohomologies2(P3, Z) and H2(PZ, Z) by x andy respectively, we have

di = c1(L;) =y (x) + 75 (y).

Then we have, from the cohomology ring structure®pfandP2 thatx Ux Ux Ux =
yUyUy = 0. Hence the cohomology classkf (P2 x P2, Z) given by the cup-product
of d; is

d:=diUdyUd3Udy = (w} (x) + 15 () = 4 ()5 () + 675 (xD)7s (v?),

wherex® = x Ux U x... etc. By part (ii) of Lemma 3.4, the map, : I' — C is an
isomorphism, so applying the Remark 5.2 to it, we have

degOc(l) = degniOc(1)

(103 (@p3 W), 1)

(e1(ni (O3 (@) U d, [PE x P2])

= (ri U (4150 + 611 (D3 (D) [PE x FR)
<6nf(x3) Um3(yd). [P x uz%])

= 6, )

where we have used the Poingatuality cap-product relation] = [PZ x P2] Nd
mentioned above, and thaf (x3) U 75 (y?) is the generator oH/0(P2 x PZ,7), so
evaluates to 1 on the orientation claﬁ%[x [F'%], andx* = 0. This proves (i).

The proof of (ii) is similar, we just replac€ by D, andry by 72, andr; (x) by 75 (y) in
the equalities of (9) above, and get 4 (as one should expect, Biikdefined by a degree
4 homogeneous polynomial i?’é). This proves (ii).

For (iii), we use the identity of Lemma 4.5 th8b = O¢(—2) ® ¢*Op(1), and the
Remark 5.2 applied to the isomorphism of curgesC — D (part (iii) of Lemma 3.4)
to conclude that ded, = degD — 2degC = 4 — 12 = —8, by (i) and (ii) above, so that
degl} = 8.

For (iv), we have by (vi) of Lemma 4.4 that hert s, 7\*) ~ £§3 ® Oc(—2), so that
its degree is 3deg; — 2degC = 24— 12 = 12 by (i) and (iii) above.

This proves the lemma. |

From (iv) of the lemma above, we have the following.



Unitary tridiagonalization inM (4, C) 397
COROLLARY 5.4

The line bundléhome (L3, A*) is a non-trivial line bundle

6. Proof of the main theorem

Proof of Theoreni.1. By the third and fourth exact sequences in (i) of Lemma 4.4, we
have a bundle morphisgof line bundles orC defined as the composite:

ANNWs3 = L3 -> AnnW, 25 K* = AnnW,/AnniVs

which vanishes at € C if and only if the fibre AntWs , is equal to the fibre Anﬂig,v
inside AniW, ,. At such a pointv € C, we will have AntWs, = AnnVA\'/3,U, so that
Wa(v) = Way = W) + AW (v) = Way = W(v) + A*W(v) = Wa(v).

Now, this morphisny is a global section of the bundle herCs, A*), which is not a
trivial bundle by Corollary 5.4 of the last section. Thus there does exist &, satisfying
s(v) = 0, and consequently the flag

OcWi:=Wi, = CvcCWyi=W,,=W(@)=C-spadv, Av, A*v}
CWs = Wa3w)=WW) +AWQ) = W) + A*W(v)
= Waw)CcWs=V==C*

satisfies the requirements of (ii) of Lemma 2.1, (as noted after Remark 4.2) and the main
theorem 1.1 follows. a

Remarlk6.1. Note that since din@® = 1, the set of points € C such thak(v) = 0, where

s is the section above, will be a finite set. Then the set of flags that satisfy (ii) of Lemma
2.1 which tridiagonalizet of the kind considered above (via. satisfying the assumptions

of 3.1), will only be finitely many (at most 12 in number!).
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