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Abstract. A question of interest in linear algebra is whether alln × n complex
matrices can be unitarily tridiagonalized. The answer for alln 6= 4 (affirmative or
negative) has been known for a while, whereas the casen = 4 seems to have remained
open. In this paper we settle then = 4 case in the affirmative. Some machinery from
complex algebraic geometry needs to be used.
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1. Main Theorem

LetV = C
n, and〈 , 〉 be the usual euclidean hermitian inner product onV . U(V ) = U(n)

denotes the group of unitary automorphisms ofV with respect to〈 , 〉. {ei}ni=1 will denote
the standard orthonormal basis ofV . A ∈ M(n,C) will always denote ann× n complex
matrix.

A matrix A = [aij ] is said to betridiagonal if aij = 0 for all 1 ≤ i, j ≤ n such that
|i − j | ≥ 2. Then we have:

Theorem 1.1. For n ≤ 4, andA ∈ M(n,C), there exists a unitaryU ∈ U(n) such that
UAU∗ is tridiagonal.

Remark1.2. The casen = 3, and counterexamples forn ≥ 6, are due to Longstaff, [3].
In the paper [1], Fong and Wu construct counterexamples forn = 5, and provide a proof
in certain special cases forn = 4. The article §4 of [1] poses then = 4 case in general
as an open question. Our main theorem above answers this question in the affirmative. In
passing, we also provide another elementary proof for then = 3 case.

2. Some Lemmas

We need some preliminary lemmas, which we collect in this section. In the sequel, we will
also use the letterA to denote the unique linear transformation determined by the matrix
A = [aij ] (satisfyingAej = ∑n

i=1 aij ei).

Lemma2.1. LetA ∈ M(n,C). For all n, the following are equivalent:

(i) There exists a unitaryU ∈ U(n) such thatUAU∗ is tridiagonal.
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(ii) There exists a flag (= ascending sequence ofC-subspaces) ofV = C
n:

0 = W0 ⊂ W1 ⊂ W2 ⊂ . . . ⊂ Wn = V

such thatdim Wi = i, AWi ⊂ Wi+1 andA∗Wi ⊂ Wi+1 for all 0 ≤ i ≤ n− 1.

(iii) There exists a flag inV :

0 = W0 ⊂ W1 ⊂ W2 ⊂ . . . ⊂ Wn = V

such thatdim Wi = i, AWi ⊂ Wi+1 andA(W⊥
i+1) ⊂ W⊥

i for all 0 ≤ i ≤ n− 1.

Proof. (i) ⇒ (ii ). SetWi = C-span(f1, f2, . . . , fi), wherefi = U∗ei and ei is the
standard basis ofV = Cn. Since the matrix [bij ] := UAU∗ is tridiagonal, we have

Afi = bi−1,ifi−1 + biifi + bi+1,ifi+1, for 1 ≤ i ≤ n

(wherebij is understood to be= 0 for i, j ≤ 0 or ≥ n + 1). ThusAWi ⊂ Wi+1. Since
{fi}ni=1 is an orthonormal basis forV = C

n, we also have

A∗fi = bi,i−1fi−1 + biifi + bi,i+1fi+1 1 ≤ i ≤ n

which showsA∗(Wi) ⊂ Wi+1 for all i as well, and (ii) follows.
(ii ) ⇒ (iii ). A∗Wi ⊂ Wi+1 implies (A∗Wi)

⊥ ⊃ W⊥
i+1 for 1 ≤ i ≤ n − 1. But since

(A∗Wi)
⊥ = A−1(W⊥

i ), we haveA(W⊥
i+1) ⊂ W⊥

i for 1 ≤ i ≤ n− 1 and (iii) follows.
(iii ) ⇒ (i). Inductively choose an orthonormal basisfi of V = C

n so thatWi is the
span of{f1, . . . , fi}. SinceA(Wi) ⊂ Wi+1, we have

Afi = a1if1 + a2if2 + · · · + ai+1,ifi+1. (1)

Sincefi ∈ (Wi−1)
⊥, and by hypothesisA(W⊥

i−1) ⊂ W⊥
i−2, andW⊥

i−2 = C-span(fi−1, fi,

. . . , fn), we also have

Afi = ai−1,ifi−1 + aiifi + · · · + anifn (2)

and by comparing the two equations (1), (2) above, it follows that

Afi = ai−1,ifi−1 + aiifi + ai+1,ifi+1

for all i, and defining the unitaryU by U∗ei = fi makesUAU∗ tridiagonal, so that (i)
follows. 2

Lemma2.2. Letn ≤ 4. If there exists a2-dimensionalC-subspaceW ofV = C
n such that

AW ⊂ W andA∗W ⊂ W , thenA is unitarily tridiagonalizable.

Proof. If n ≤ 2, there is nothing to prove. Forn = 3 or 4, the hypothesis implies
thatA mapsW⊥ onto itself. Then, in an orthonormal basis{fi}ni=1 of V which satisfies
W = C-span(f1, f2) andW⊥ = C-span(f3, . . . , fn) the matrix ofA is in (1, 2) (resp.
(2, 2)) block-diagonal form forn = 3 (resp.n = 4), which is clearly tridiagonal. 2

Lemma2.3. Every matrixA ∈ M(3,C) is unitarily tridiagonalizable.
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Proof. ForA ∈ M(3,C), consider the homogeneous cubic polynomial inv = (v1, v2, v3)

given by

F(v1, v2, v3) := det(v, Av,A∗v).

Notev ∧Av ∧A∗v = F(v1, v2, v3)e1 ∧ e2 ∧ e3. By a standard result in dimension theory
(see [4], p. 74, Theorem 5) each irreducible component ofV (F) ⊂ P2

C is of dimension
≥ 1, andV (F) is non-empty. Choose some [v1 : v2 : v3] ∈ V (F), and letv = (v1, v2, v3)

which is non-zero. Then we have the two cases:

Case1. v is a common eigenvector forA andA∗. Then the 2-dimensional subspace
W = (Cv)⊥ is an invariant subspace for bothA andA∗, and applying the Lemma 2.2 to
W yields the result.

Case2. v is not a common eigenvector forA andA∗. Say it is not an eigenvector forA
(otherwise interchange the roles ofA andA∗). SetW1 = Cv, W2 = C-span(v, Av),W3 =
V = C

3. Then dimWi = i, for i = 1, 2, 3, and the fact thatv∧Av∧A∗v = 0 shows that
A∗W1 ⊂ W2. Thus, by (ii) of Lemma 2.1, we are done. 2

Note.From now on,V = C
4 andA ∈ M(4,C).

Lemma2.4. If A andA∗ have a common eigenvector, thenA is unitarily tridiagonalizable.

Proof. If v 6= 0 is a common eigenvector forA andA∗, the 3-dimensional subspace
W = (Cv)⊥ is invariant under bothA andA∗, and unitary tridiagonalization ofA|W exists
from then = 3 case of Lemma 2.3 by aU1 ∈ U(W) = U(3). The unitaryU = 1 ⊕ U1 is
the desired unitary inU(4) tridiagonalizingA. 2

Lemma2.5. If the main theorem holds for allA ∈ S, whereS is any dense(in the classical
topology) subset ofM(4,C), then it holds for allA ∈ M(4,C).

Proof. This is a consequence of the compactness of the unitary groupU(4). Indeed, letT
denote the closed subset of tridiagonal (with respect to the standard basis) matrices.

LetA ∈ M(4,C) be any general element. By the density ofS, there existAn ∈ S such
thatAn → A. By hypothesis, there are unitariesUn ∈ U(4) such thatUnAnU∗

n = Tn,
whereTn are tridiagonal. By the compactness ofU(4), and by passing to a subsequence
if necessary, we may assume thatUn → U ∈ U(4). ThenUnAnU∗

n → UAU∗. That
is Tn → UAU∗. SinceT is closed, andTn ∈ T , we haveUAU∗ is in T , viz., is
tridiagonal. 2

We shall now construct a suitable dense open subsetS ⊂ M(4,C), and prove tridiago-
nalizability for a generalA ∈ S in the remainder of this paper. More precisely:

Lemma2.6. There is a dense open subsetS ⊂ M(4,C) such that:
(i) A is nonsingular for allA ∈ S.

(ii) A has distinct eigenvalues for allA ∈ S.
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(iii) For eachA ∈ S, the element(t0I + t1A + t2A
∗) ∈ M(4,C) has rank≥ 3 for all

(t0, t1, t2) 6= (0, 0, 0) in C
3.

Proof. The subset of singular matrices inM(4,C) is the complex algebraic subvariety
of complex codimension one defined byZ1 = {A : detA = 0}. Let S1, (which is just
GL(4,C)) be its complement. ClearlyS1 is open and dense in the classical topology (in
fact, also in the Zariski topology).

A matrixA has distinct eigenvalues iff its characteristic polynomialφA has distinct roots.
This happens iff the discriminant polynomial ofφA, which is a 4th degree homogeneous
polynomial1(A) in the entries ofA, is not zero. The zero setZ2 = V (1) is again a
codimension-1 subvariety inM(4,C), so its complementS2 = (V (1))c is open and dense
in both the classical and Zariski topologies.

To enforce (iii), we claim that the set defined by

Z3 := {A ∈ M(4,C) : rank(t0I + t1A+ t2A
∗) ≤ 2 for some(t0, t1, t2)

6= (0, 0, 0) in C
3}

is a properreal algebraic subset ofM(4,C). The proof hinges on the fact that three general
cubic curves inP2

C having a point in common imposes an algebraic condition on their
coefficients.

Indeed, saying that rank(t0I + t1A + t2A
∗) ≤ 2 for some(t0, t1, t2) 6= (0, 0, 0) is

equivalent to saying that the third exterior power
∧3
(t0I + t1A + t2A

∗) is the zero map,
for some(t0, t1, t2) 6= 0. This is equivalent to demanding that there exist a(t0, t1, t2) 6= 0
such that the determinants of all the 3× 3-minors of(t0I + t1A+ t2A

∗) are zero.
Note that the (determinants of) the(3 × 3)-minors of(t0I + t1A + t2A

∗), denoted as
Mij (A, t) (where theith row andj th column are deleted) are complex valued, complex
algebraic andC-homogeneous of degree 3 int = (t0, t1, t2), with coefficients real algebraic
of degree 3 in the variables(Aij , Āij ) (or, equivalently, in ReAij , ImAij ), whereA = [Aij ].

We know that the space of all homogeneous polynomials of degree 3 with complex
coefficients in(t0, t1, t2) (up to scaling) is parametrized by the projective spaceP9

C (the
Veronese variety, see [4], p. 52). We first consider the complex algebraic variety:

X = {(P,Q,R, [t ]) ∈ P9
C × P9

C × P9
C × P2

C : P(t) = Q(t) = R(t) = 0},

where [t ] := [t0 : t1 : t2], and(P,Q,R) denotes a triple of homogeneous polynomials.
This is just the subset of those(P,Q,R, [t ]) in the productP9

C×P9
C×P9

C×P2
C such that the

point [t ] lies on all three of the plane cubic curvesV (P ), V (Q), V (R). SinceX is defined
by multihomogenous degree (1, 1, 1, 3) equations, it is a complex algebraic subvariety of
the quadruple product. Its image under the first projectionY := π1(X) ⊂ P9

C ×P9
C ×P9

C is
therefore an algebraic subvariety inside this triple product (see [4], p. 58, Theorem 3).Y is
a proper subvariety because, for example, the cubic polynomialsP = t30,Q = t31, R = t32
have no common non-zero root.

Denote pairs(i, j)with 1 ≤ i, j ≤ 4 by capital letters likeI, J,K etc. From the minorial
determinantsMI(A, t), we can define variousreal algebraicmaps:

2IJK : M(4,C) → P9
C × P9

C × P9
C

A 7→ (MI (A, t),MJ (A, t),MK(A, t))
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for I, J,K distinct. Clearly,
∧3
(t0I+ t1A+ t2A∗) = 0 for somet = (t0, t1, t2) 6= (0, 0, 0)

iff 2IJK(A) lies in the complex algebraic subvarietyY of P9
C × P9

C × P9
C, for all I, J,K

distinct. Hence the subsetZ3 ⊂ M(4,C) defined above is the intersection:

Z3 =
⋂
I,J,K

2−1
IJK(Y ),

whereI, J,K runs over all distinct triples of pairs(i, j), 1 ≤ i, j ≤ 4.
We claim thatZ3 is a proper real algebraic subset ofM(4,C). Clearly, since each

MI(A, t) is real algebraic in the variables ReAij , ImAij the map2IJK is real algebraic.
SinceY is complex and hence real algebraic, its inverse image2−1

IJK(Y ), defined by the
real algebraic equations obtained upon substitution of the componentsMI(A, t),MJ (A, t),

MK(A, t) in the equations that defineY , is also real algebraic. Hence the setZ3 is a real
algebraic subset ofM(4,C).

To see thatZ3 is a proper subset ofM(4,C), we simply consider the matrix (defined
with respect to the standard orthonormal basis{ei}4

i=1 of C
4):

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
For t = (t0, t1, t2) 6= 0, we see that

t0I + t1A+ t2A
∗ =


t0 t1 0 0
t2 t0 t1 0
0 t2 t0 t1
0 0 t2 t0

 .
For the above matrix the minorial determinantM41(A, t) = t31, whereasM14(A, t) = t32.
The only common zeros to these two minorial determinants are points [t0 : 0 : 0]. Setting
t1 = t2 = 0 in the matrix above givesMii(A, t) = t30 for 1 ≤ i ≤ 4. Thust0 must also
be 0 for all the minorial determinants to vanish. Hence the matrixA above lies outside the
real algebraic setZ3.

It is well-known that a proper real algebraic subset in euclidean space cannot have a non-
empty interior. Thus the complementZc3 is dense and open in the classical and real-Zariski
topologies. TakeS3 = Zc3.

Finally, set

S := S1 ∩ S2 ∩ S3 =
(

3⋃
i=1

Zi

)c
which is also open and dense in the classical topology inM(4,C). Hence the lemma.2

Remark2.7. One should note here that foreachmatrixA ∈ M(4,C), there will be at least a
curve of points [t ] = [t0 : t1 : t2] ∈ P2

C (defined by the vanishing of det(t0I+ t1A+ t2A∗)),
on which(t0I + t1A + t2A

∗) is singular. Similarly for eachA there is at least a curve of

points on which the trace tr
(∧3

(t0I + t1A+ t2A
∗)
)

vanishes, and so a non-empty (and

generally a finite) set on whichboth these polynomials vanish, by dimension theory ([4],
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Theorem 5, p. 74). Thus foreachA ∈ M(4,C), there is at least a non-empty finite set
of points [t ] such that(t0I + t1A + t2A

∗) has 0 as a repeated eigenvalue. For example,
for the matrixA constructed at the end of the previous lemma, we see that the matrix
(t0I+ t1A+ t2A∗) is strictly upper-triangular and thus has 0 as an eigenvalue of multiplicity
4 for all (0, t1, 0) 6= 0, but nevertheless has rank 3 for all(t0, t1, t2) 6= (0, 0, 0).

Indeed, as (iii) of the lemma above shows, forA in the open dense subsetS, the kernel
ker(t0I + t1A+ t2A

∗) is at most 1-dimensionalfor all [t ] = [t0 : t1 : t2] ∈ P2
C.

3. The varietiesC,0, and D

Notation3.1. In the light of Lemmas 2.5 and 2.6 above, we shall henceforth assumeA ∈ S.
As is easily verified, this impliesA∗ ∈ S as well. We will also henceforth assume, in view
of Lemma 2.4 above, thatA andA∗ have no common eigenvectors. (For example, this
rules outA being normal, in which case we know that the main result forA is true by the
spectral theorem.) Also, in view of Lemma 2.2, we shall assume thatA andA∗ do not have
a common 2-dimensional invariant subspace.

In P3
C, the complex projective space ofV = C

4, we denote the equivalence class of
v ∈ V \ 0 by [v]. For a [v] ∈ P3

C, we defineW([v]) (or simplyW(v) when no confusion
is likely) by

W([v]) := C-span(v, Av,A∗v).

Since we are assuming thatAandA∗ have no common eigenvectors, we have dimW([v]) ≥
2 for all [v] ∈ P3

C.
Denote the four distinct points inP3

C representing the four linearly independent eigen-
vectors ofA (resp.A∗) byE (resp.E∗). By our assumption above,E ∩ E∗ = φ.

Lemma3.2. LetA ∈ M(4,C) be as in3.1above. Then the closed subset:

C = {[v] ∈ P3
C : v ∧ Av ∧ A∗v = 0}

is a closed projective variety. This varietyC is precisely the subset of[v] ∈ P3
C for which

the dimensiondimW([v]) = dim (C-span{v,Av,A∗v}) is exactly2.

Proof. ThatC is a closed projective variety is clear from the fact that it is defined as the set
of common zeros of all the four(3 × 3)-minorial determinants of the(3 × 4)-matrix

3 :=
 v

Av

A∗v


(which are all degree-3 homogeneous polynomials in the components ofv with respect to
some basis). AlsoC is nonempty since it containsE ∪ E∗.

Also, sinceA andA∗ are nonsingular by the assumptions in 3.1, the wedge product
v ∧Av ∧A∗v of the three non-zero vectorsv,Av,A∗v vanishes precisely when the space
W([v]) = C-span(v, Av,A∗v) is of dimension≤ 2. Since by 3.1,A,A∗ have no common
eigenvectors, the dimension dimW([v]) ≥ 2 for all [v] ∈ P3

C, soC is precisely the locus
of [v] ∈ P3

C for which the spaceW([v]) is 2-dimensional. 2
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Now we shall show that forA as in 3.1, the varietyC defined above is of pure dimension
one. For this, we need to define some more associated algebraic varieties and regular maps.

DEFINITION 3.3

Let us define the bilinear map:

B : C
4 × C

3 → C
4

(v, t0, t1, t2) 7→ B(v, t) := (t0I + t1A+ t2A
∗)v.

We then have the linear mapsB(v,−) : C
3 → C

4 for v ∈ C
4 andB(−, t) : C

4 → C
3 for

t ∈ C
3.

Note that the image ImB(v,−) is the span of{v,Av,A∗v}, which was defined to be
W(v). For a fixedt , denote the kernel

K(t) := ker(B(−, t) : C
4 → C

4).

Denoting [t0 : t1 : t2] by [t ] and [v1 : v2 : v3 : v4] by [v] for brevity, we define

0 := {([v], [t ]) ∈ P3
C × P2

C : B(v, t) = 0}.
Finally, define the varietyD by

D ⊂ P2
C := {[t ] ∈ P2

C : detB(−, t) = det(t0I + t1A+ t2A
∗) = 0}.

Let

π1 : P3
C × P2

C → P3
C, π2 : P3

C × P2
C → P2

C

denote the two projections.

Lemma3.4. We have the following facts:

(i) π1(0) = C, andπ2(0) = D.

(ii) π1 : 0 → C is 1-1, and the mapg defined by

g := π2 ◦ π−1
1 : C → D

is a regular map so that0 is the graph ofg and isomorphic as a variety toC.

(iii) D ⊂ P2
C is a plane curve, of pure dimension one. The mapπ2 : 0 → D is 1-1,

and the mapπ1 ◦ π−1
2 : D → C is the regular inverse of the regular mapg defined

above in(ii) . Again0 is also the graph of this regular inverseg−1, andD and0 are
isomorphic as varieties. In particular,C andD are isomorphic as varieties, and thus
C is a curve inP3

C of pure dimension one.

(iv) InsideP3
C × P2

C, each irreducible component of the intersection of the four divisors
Di := (Bi(v, t) = 0) for i = 1, 2, 3, 4 (whereBi(v, t) is the i-th component of
B(v, t) with respect to a fixed basis ofC

4) occurs with multiplicity1. (Note that0 is
set-theoretically the intersection of these four divisors, by definition).
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Proof. It is clear thatπ1(0) = C, becauseB(v, t) = t0v + t1Av + t2A
∗v = 0 for some

[t0 : t1 : t2] ∈ P2
C iff dim W(v) ≤ 2, and sinceA andA∗ have no common eigenvectors,

this means dimW(v) = 2. That is, [v] ∈ C.

Clearly [t ] ∈ π2(0) iff there exists a [v] ∈ P3
C such thatB(v, t) = 0. That is, iff

dim kerB(−, t) ≥ 1, that is, iff

G(t0, t1, t2) := detB(−, t) = 0.

ThusD = π2(0) and is defined by a single degree 4 homogeneous polynomialG inside
P2

C. It is a curve of pure dimension 1 inP2
C by standard dimension theory (see [4], p. 74,

Theorem 5) because, for example [1 : 0 : 0] 6∈ D soD 6= P2
C. Soπ2(0) = D, and this

proves (i).
To see (ii), for a given [v] ∈ C, we claim there is exactly one [t ] such that([v], [t ]) ∈ 0.

Note that([v], [t ]) ∈ 0 iff the linear map:

B(v,−) : C
3 → C

4

t 7→ (t0I + t1A+ t2A
∗)v

has a non-trivial kernel containing the lineCt . That is, dim ImB(v,−) ≤ 2. But the
image ImB(v,−) = W(v), which is of dimension 2 for allv ∈ C by our assumptions.
Thus its kernel must be exactly one dimensional, defined by kerB(v,−) = Ct . Thus
([v], [t ]) is the unique point in0 lying in π−1

1 [v], viz. for each [v] ∈ C, the vertical line
[v] × P2

C intersects0 in a single point, call it([v], g[v]). Soπ1 : 0 → C is 1-1, and0

is the graph of a mapg : C → D. Sinceg([v]) = π2π
−1
1 ([v]) for [v] ∈ C, and0 is

algebraic,g is a regular map. This proves (ii).
To see (iii), note that for [t ] ∈ D, by definition, the dimension dim kerB(−, t) ≥ 1.

By the fact thatA ∈ S, and (iii) of Lemma 2.6, we know that dim kerB(−, t) ≤ 1 for all
[t ] ∈ P2

C. Thus, denotingK(t) := ker B(−, t) for [t ] ∈ D, we have

dimK(t) = 1 for all t ∈ D. (3)

Hence we see that the unique projective line [v] corresponding toCv = K(t) yields the
unique element ofC, such that([v], [t ]) ∈ 0. Thusπ2 : 0 → D is 1-1, and the regular
mapπ1 ◦ π−1

2 : D → C is the regular inverse to the mapg of (ii) above.0 is thus also the
graph ofg−1 and, in particular, is isomorphic toD. Sinceg is an isomorphism of curves,
andD is of pure dimension 1, it follows thatC is of pure dimension one. This proves (iii).

To see (iv), we need some more notation.
Note thatD ⊂ P2

C \ {[1; 0; 0]}, (because there exists no [v] ∈ P3
C such thatI.v = 0!).

Thus there is a regular map:

θ : D → P1
C

[t0 : t1 : t2] 7→ [t1 : t2]. (4)

Let1(t1, t2) be the discriminant polynomial of the characteristic polynomialφt1A+t2A∗ of
t1A+ t2A∗. Clearly1(t1, t2) is a homogeneous polynomial of degree 4 in(t1, t2), and it is
not the zero polynomial because, for example,1(1, 0) 6= 0, for1(1, 0) is the discriminant
of φA, which has distinct roots (=the distinct eigenvalues ofA) by the assumptions 3.1 on
A. Let6 ⊂ P1

C be the zero locus of1, which is a finite set of points. Note that the fibre
θ−1([1 : µ]) consists of all [t : 1 : µ] ∈ D such that−t is an eigenvalue ofA + µA∗,
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which are at most four in number. Similarly the fibresθ−1([λ : 1]) are also finite. Thus
the subset ofD defined by

F := θ−1(6)

is a finite subset ofD. F is precisely the set of points [t ] = [t0 : t1 : t2] such that
B(−, t) = (t0I + t1A+ t2A

∗) has 0 as a repeated eigenvalue.
Sinceπ2 : 0 → D is 1-1, the inverse image:

F1 = π−1
2 (F ) ⊂ 0

is a finite subset of0.
We will now prove that for each irreducible component0α of 0, and each pointx =

([a], [b]) in 0α \F1, the four equations{Bi(v, t) = 0}4
i=1 are the generators of the ideal of

the variety0α in an affine neighbourhood ofx, whereBi(v, t)are the components ofB(v, t)
with respect to a fixed basis ofC

4. SinceF1 is a finite set, this will prove (iv), because
the multiplicity of0α in the intersection cycle of the four divisorsDi = (Bi(v, t) = 0) in
P3

C × P2
C is determined by generic points on0α, for example all points of0α \F1. We will

prove this by showing that forx = ([a], [b]) ∈ 0α \ F1, the four divisors(Bi(v, t) = 0)
intersect transversely atx.

So let0α be some irreducible component of0, with x = ([a], [b]) ∈ 0α \ F1.
Fix an a ∈ C

4 representing [a] ∈ Cα := π1(0α), and also fixb ∈ C
3 representing

[b] = g([a]) ∈ g(Cα). Also fix a 3-dimensional linear complementV1 := T[a](P
3
C) ⊂ C

4

to a and similarly, fix a 2-dimensional linear complementV2 = T[b](P
2
C) ⊂ C

3 to b. (The
notation comes from the fact thatT[v](P

n
C) ' C

n+1/Cv, which we are identifying non-
canonically with these respective complementsVi .) These complements also provide local
coordinates in the respective projective spaces as follows. Set coordinate chartsφ around
[a] ∈ P3

C by [v] = φ(u) := [a+u], andψ around [b] ∈ P2
C by [t ] = ψ(s) := [b+s], where

u ∈ V1 ' C
3, ands ∈ V2 ' C

2. The imagesφ(V1) andψ(V2) are affine neighbourhoods
of [a] and [b] respectively. These charts are like ‘stereographic projection’ onto the tangent
space and depend on the initial choice ofa (resp.b) representing [a] (resp. [b]), and arenot
the standard coordinate systems on projective space, but more convenient for our purposes.

Then the local affine representation ofB(v, t) on the affine openV1 × V2 = C
3 × C

2,
which we denote byβ, is given by

β(u, s) := B(a + u, b + s).

Note that kerB(a,−) = Cb, where [b] = g([a]), so thatB(a,−) passes to the quotient
as an isomorphism:

B(a,−) : V2 −̃→ W(a), (5)

whereW(a) is 2-dimensional.
Similarly, sinceB(−, b) has one dimensional kernelCa = K(b) ⊂ C

4, by (3) above,
we also have the other isomorphism:

B(−, b) : V1 −̃→ Im B(−, b), (6)

where ImB(−, b) is 3-dimensional, therefore.
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Now one can easily calculate the derivativeDβ(0, 0) of β at (u, s) = (0, 0). Let
(X, Y ) ∈ V1 × V2. Then, by bilinearity ofB, we have

β(X, Y )− β(0, 0) = B(a +X, b + Y )− B(a, b)

= B(X, b)+ B(a, Y )+ B(X, Y ).

Now sinceB(X, Y ) is quadratic, it follows that

Dβ(0, 0) : V1 × V2 → C
4

(X, Y ) 7→ B(X, b)+ B(a, Y ). (7)

By eqs (5) and (6) above, we see that the image ofDβ(0, 0) is precisely ImB(−, b) +
W(a).

Claim. For([a], [b]) ∈ 0α \ F1, the space ImB(−, b)+W(a) is all of C
4.

Proof of Claim. DenoteT := B(−, b) for brevity. Clearlya ∈ W(a) by definition of
W(a). Also,a ∈ kerT = K(b). We claim thata is not in the image ofT . For, ifa ∈ Im T ,
we would havea = Tw for somew 6∈ K(b) = kerT andw 6= 0. In factw is not a
multiple ofa sinceTw = a 6= 0 whereasa ∈ kerT . Thus we would haveT 2w = 0, and
completingf1 = a = Tw, f2 = w to a basis{fi}4

i=1 of C
4, the matrix ofT with respect

to this basis would be of the form:
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 .
ThusT = B(−, b) would have 0 as a repeated eigenvalue. But we have stipulated that

([a], [b]) 6∈ F1, so that [b] 6∈ F , and henceB(−, b)does not have 0 as a repeated eigenvalue.
Hence the non-zero vectora ∈ W(a) is not in ImT . Since ImT is 3-dimensional, we have
C

4 = Im T +W(a), and this proves the claim. 2

In conclusion, all the points of0α \ F1 are in fact smooth points of0α, and the local
equations for0α in a small neighbourhood of such a point are precisely the four equations
βi(u, s) = 0, 1≤ i ≤ 4. This proves (iv), and the lemma. 2

4. Some algebraic bundles

We construct an algebraic line bundle with a (regular) global section overC. By showing
that this line bundle has positive degree, we will conclude that the section has zeroes inC.
Any zero of this section will yield a flag of the kind required by Lemma 2.1. One of the
technical complications is that none of the bundles we define below are allowed to use the
hermitian metric onV , orthogonal complements, orthonormal bases etc., because we wish
to remain in theC-algebraic category. As a general reference for this section and the next,
the reader may consult [2].
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DEFINITION 4.1

For 0 6= v ∈ V = C
4, we will denote the point [v] ∈ P3

C by v, whenever no confusion is
likely, to simplify notation. We have already denoted the vector subspace

C-span(v, Av,A∗v) ⊂ C
4 asW(v). Further defineW3(v) := W(v) + AW(v), and

W̃3(v) := W(v)+ A∗W(v). Clearly bothW3(v) andW̃3(v) containW(v).

SinceA andA∗ have no common eigenvectors, we have dimW(v) ≥ 2 for all v ∈ P3
C,

and dimW(v) = 2 for all v ∈ C, because of the defining equationv∧Av∧A∗v = 0 ofC.
Also, since dimW(v) = 2 = dim AW(v) for v ∈ C, and since 06= Av ∈ W(v)∩AW(v),
we have dimW3(v) ≤ 3 for all v ∈ C. Similarly dimW̃3(v) ≤ 3 for all v ∈ C.

If there exists av ∈ C such that dimW3(v) = 2, then we are done. For, in this case
W3(v) must equalW(v) since it containsW(v). Then the dimension dim̃W3(v) = 2 or
= 3. If it is 2,W(v) will be a 2-dimensional invariant space for bothA andA∗, and the
main theorem will follow by Lemma 2.2. If dim̃W3(v) = 3, then the flag:

0 = W0 ⊂ W1 = Cv ⊂ W2 = W(v) ⊂ W3 = W̃3(v) ⊂ W4 = V

satisfies the requirements of (ii) in Lemma 2.1, and we are done. Similarly, if there exists
av ∈ C with dim W̃3(v) = 2, we are again done. Hence we may assume that:

dim W3(v) = dim W̃3(v) = 3 for all v ∈ C. (8)

In the light of the above, we have the following:

Remark4.2. We are reduced to the situation where the following condition holds: For each
v ∈ C, dim W(v) = 2, dim W3(v) = dim W̃3(v) = 3.

Now our main task is to prove that there exists av ∈ C such that the two 3-dimensional
subspacesW3(v) andW̃3(v) are thesame. In that event, the flag

0 = W0 ⊂ W1 = Cv ⊂ W2 = W(v) ⊂ W3 = W(v)+ AW(v) = W(v)

+A∗W(v) ⊂ W4 = V

will meet the requirements of (ii) of the Lemma 2.1. The remainder of this discussion is
aimed at proving this.

DEFINITION 4.3

Denote the trivial rank 4 algebraic bundle onP3
C by O4

P3
C
, with fibreV = C

4 at each point

(following standard algebraic geometry notation). Similarly,O4
C is the trivial bundle on

C. In O4
P3

C
, there is the tautological line-subbundleOP3

C
(−1), whose fibre atv is Cv. Its

restriction to the curveC is denoted asW1 := OC(−1).

There are also the line subbundlesAOP3
C
(−1) (respectivelyA∗OP3

C
(−1)) of O4

P3
C
, whose

fibre atv isAv (respectivelyA∗v). Both are isomorphic toOP3
C
(−1) (via the global linear

automorphismsA (resp.A∗) of V ). Similarly, their restrictionsAOC(−1), A∗OC(−1),
both isomorphic toOC(−1). Note that throughout what follows, bundle isomorphism over
any varietyX will mean algebraic isomorphism, i.e. isomorphism of the corresponding
sheaves of algebraic sections asOX-modules.



392 Vishwambhar Pati

Denote the rank 2 algebraic bundle with fibreW(v) ⊂ V at v ∈ C asW2. It is an
algebraic sub-bundle ofO4

C , for its sheaf of sections is the restriction of the subsheaf

OP3
C
(−1)+ AOP3

C
(−1)+ A∗OP3

C
(−1) ⊂ O4

P3
C

to the curveC, which is precisely the subvariety ofP3
C on which the sheaf above is locally

free of rank 2 (=rank 2 algebraic bundle).
Denote the rank 3 algebraic sub-bundle ofO4

C with fibre W3(v) = W(v) + AW(v)

(respectivelyW̃3(v) = W(v)+A∗W(v)) by W3 (respectivelyW̃3). BothW3 andW̃3 are
of rank 3 onC because of Remark 4.2 above, and both containW2 as a sub-bundle. We
denote the line bundles

∧2 W2 by L2, and
∧3 W3 (resp.

∧3
W̃3) by L3 (resp.L̃3). Then

L2 is a line sub-bundle of
∧2 O4

C , andL3, L̃3 are line sub-bundles of
∧3 O4

C .
Finally, forX any variety, with a bundleE onX which is a sub-bundle of a trivial bundle

Om
X , theannihilatorof E is defined as

AnnE = {φ ∈ homX(Om
X,OX) : φ(E) = 0}.

Clearly, by taking homX(− ,OX) of the exact sequence

0 → E → Om
X → Om

X/E → 0,

the bundle

AnnE ' homX(Om
X/E,OX) = (Om

X/E)∗,
where∗ always denotes the (complex) dual bundle.

Lemma4.4. Denote the bundleW3/W2 (resp. W̃3/W2) by3 (resp. 3̃). Then we have
the following identities of bundles onC:

(i)

0 → W2 → W3 → 3 → 0

0 → W2 → W̃3 → 3̃ → 0

0 → L3
i→ AnnW2

π→ 3∗ → 0

0 → L̃3
ĩ→ AnnW2

π̃→ 3̃∗ → 0,

(ii)

L3 ' L2 ⊗3 and L̃3 ' L2 ⊗ 3̃,

(iii)

2∧
AnnW2 '

2∧
W2,

(iv)

3 ' 3̃,
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(v)

L2 ' 3⊗ OC(−1) ' 3̃⊗ OC(−1),

(vi)

homC(L3, 3̃
∗) ' L∗

2 ⊗ 3̃∗ 2 ' L∗ 3
2 ⊗ OC(−2).

Proof. From the definition of3, we have the exact sequence:

0 → W2 → W3 → 3 → 0

from which it follows that:

0 → 3 → O4
C/W2 → O4

C/W3 → 0

is exact. Taking homC(−, OC) of this exact sequence yields the exact sequence:

0 → AnnW3 → AnnW2 → 3∗ → 0.

Now, via the canonical isomorphism
∧3

V → V ∗ which arises from the non-degenerate
pairing

3∧
V ⊗ V →

4∧
V ' C,

it is clear that AnnW3 ' ∧3 W3 = L3.
Thus the first and third exact sequences of (i) follow. The proofs of the second and fourth

are similar. From the first exact sequence in (i), it follows that
∧3 W3 ' ∧2 W2 ⊗ 3.

This implies the first identity of (ii). Similarly the second exact sequence of (i) implies the
other identity of (ii).

Since for every line bundleγ , γ ⊗ γ ∗ is trivial, we get from the first identity of (ii) that
L2 ' L3 ⊗3∗. From third exact sequence in (i) it follows that

∧2 AnnW2 ' L3 ⊗3∗,
and this implies (iii).

To see (iv), note that

3 ' W2 + AW2

W2
' AW2

AW2 ∩ W2
.

The automorphismA−1 ofV makes the last bundle on the right isomorphic to the line bundle
W2/(W2∩A−1W2) (note all these operations are happening inside the rank 4 trivial bundle
O4
C). Similarly,3̃ is isomorphic (via the global isomorphismA∗ −1 of V ) to the line bundle

W2/(W2∩A∗ −1W2). But for eachv ∈ C,W(v)∩A−1W(v) = Cv = W(v)∩A∗ −1W(v),
from which it follows that the line sub-bundlesW2 ∩ A−1W2 andW2 ∩ A∗ −1W2 of W2

are the same (= W1 ' OC(−1)). Thus3 ' 3̃, proving (iv).
To see (v), we need another exact sequence. For eachv ∈ C, we noted in the proof of

(iv) above thatCv = W(v) ∩ A−1W(v). Thus the sequence of bundles:

0 → OC(−1) → W2 → W2

W2 ∩ A−1W2
→ 0

is exact. But, as we noted in the proof of (iv) above, the bundle on the right is isomorphic
to3, so that

0 → OC(−1) → W2 → 3 → 0
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is exact. HenceL2 = ∧2 W2 ' 3⊗ OC(−1). The other identity follows from (iv), thus
proving (v).

To see (vi) note that we have by (ii)L∗
3 ' L∗

2 ⊗3∗. Thus

homC(L3, 3̃
∗) ' L∗

3 ⊗ 3̃∗ ' L∗
2 ⊗3∗ ⊗ 3̃∗.

However, since by (iv),3 ' 3̃, we have homC(L3, 3̃
∗) ' L∗

2 ⊗3∗ 2. Now, substituting
3∗ = L∗

2 ⊗ OC(−1) from (v), we have the rest of (vi). Hence the lemma. 2

We need one more bundle identity:

Lemma4.5. There is a bundle isomorphism:

L2 ' OC(−2)⊗ g∗OD(1).

Proof. When [t ] = [t0 : t1 : t2] = g([v]), we saw in (5) that the linear map
B(v,−) : C

3 → C
4 acquires a 1-dimensional kernel, which is precisely the lineCt , which

is the fibre ofOD(−1) at [t ]. The image ofB(v,−) was the 2-dimensional spanW(v) of
v,Av,A∗v, as noted there. Thus forv ∈ C, B(−,−) induces a canonical isomorphism of
vector spaces:

OC(−1)v ⊗
(
C

3/OD(−1)
)
g(v)

→ W(v) = W2,v

which, being defined by the global mapB(−,−), gives an isomorphism of bundles:

OC(−1)⊗ g∗
(
O3
D/OD(−1)

)
' W2.

From the short exact sequence:

0 → OD(−1) → O3
D → O3

D/OD(−1) → 0,

it follows that
∧2
(O3

D/OD(−1)) ' OD(1). Thus:

L2 =
2∧

W2 ' OC(−2)⊗ g∗
(

2∧
(O3

D/OD(−1))

)
' OC(−2)⊗ g∗OD(1).

This proves the lemma. 2

5. Degree computations

In this section, we compute the degrees of the various line bundles introduced in the previous
section.

DEFNITION 5.1

Note that anirreducible complex projective curveC, as a topological space, is a canon-
ically oriented pseudomanifold of real dimension 2, and has a canonical generatorµC ∈
H2(C,Z) = Z. Indeed, it is the imageπ∗µC̃ , whereπ : C̃ → C is the normalization
map, andµC̃ ∈ H2(C̃,Z) = Z is the canonical orientation class for the smooth connected
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compact complex manifold̃C, whereπ∗ : H2(C̃,Z) → H2(C,Z) is an isomorphism for
elementary topological reasons.

If C = ∪rα=1Cα is a projective curve of pure dimension 1, with the curvesCα as
irreducible components, then since the intersectionsCα ∩ Cβ are finite sets of points (or
empty),H2(C,Z) = ⊕αH2(Cα,Z). Lettingµα denote the canonical orientation classes
of Cα as above, there is aunique classµC = ∑

α µα ∈ H2(C,Z). Thinking ofC as an
oriented 2-pseudomanifold,µC is just the sum of all the oriented 2-simplices ofC.

If F is a complex line bundle onC, it has a first Chern classc1(F) ∈ H 2(X,Z), and the
degreeof F is defined by

degF = 〈c1(F), µC〉 ∈ Z.

It is known that a complex line bundle on a pseudomanifold is topologically trivial iff its
first Chern class is zero. In particular, if an algebraic line bundle on a projective variety
has non-zero degree, then it is topologically (and hence algebraically) non-trivial.

Finally, if i : C ↪→ PnC is an (algebraic) embedding of a curve in some projective space,
we define the degree of the bundleOC(1) = i∗OPnC

(1) as thedegree of the curveC (in
PnC). We note that [C] := i∗(µC) ∈ H2(P

n
C,Z) is called thefundamental classof C in

PnC, and by definition degC = 〈c1(OC(1)), µC〉 =
〈
c1(OPnC

(1)), [C]
〉
. Geometrically, one

intersectsC with a generic hyperplane, which intersectsC away from its singular locus in
a finite set of points, and then counts these points of intersection with their multiplicity.

More generally, a complex projective varietyX ⊂ PnC of complex dimensionm has a
unique orientation classµX ∈ H2m(X,Z). Its image inH2m(P

n
C,Z) is denoted [X], and

the degree degX of X is defined as
〈
(c1(OPnC

(1)))m, [X]
〉
. It is known that ifX = V (F)

for a homogeneous polynomialF of degreed, then degX = d.
We need the following remark later on.

Remark5.2. Iff : C → D is a regular isomorphism of complex projective curvesC andD,
both of pure dimension 1, and ifF is a complex line bundle onD, then degf ∗F = degF .
This is becausef∗(µC) = µD, so that

degF = 〈c1(F), µD〉 = 〈c1(F), f∗µC〉 = 〈
f ∗c1(F), µC

〉 = 〈
c1(f

∗F), µC
〉 = degf ∗F .

Now we can compute the degrees of all the line bundles introduced.

Lemma5.3. The degrees of the various line bundles above are as follows:

(i) degOC(1) = degC = 6

(ii) degOD(1) = degD = 4

(iii) degL∗
2 = 8

(iv) deg homC(L3, 3̃
∗) = deg

(L∗3
2 ⊗ OC(−2)

) = 12.

Proof. We denote the image of orientation classµ0 of the curve0 (see Definition 3.3 for
the definition of0) inH2(P

3
C ×P2

C,Z) by [0]. By the part (iv) of Lemma 3.4, we have that
the homology class [0] is the same as the homology class of the intersection cycle defined
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by the four divisorsDi := (Bi(v, t) = 0) insideH2(P
3
C × P2

C,Z). By the generalized
Bezout theorem inP3

C × P2
C, the homology class of the last-mentioned intersection cycle

is the homology class Poincaré-dual to the cup product

d := d1 ∪ d2 ∪ d3 ∪ d4,

wheredi is the first Chern class of the the line bundleLi corresponding toDi , for i =
1, 2, 3, 4 (see [4], p. 237, Ex. 2).

Since eachBi(v, t) is separately linear inv, t , the line bundle defined by the divisor
Di is the bundleπ∗

1OP3
C
(1) ⊗ π∗

2OP2
C
(1), whereπ1, π2 are the projections toP3

C and

P2
C respectively. If we denote the hyperplane classes which are the generators of the

cohomologiesH 2(P3
C,Z) andH 2(P2

C,Z) by x andy respectively, we have

di = c1(Li) = π∗
1 (x)+ π∗

2 (y).

Then we have, from the cohomology ring structures ofP3
C andP2

C thatx ∪ x ∪ x ∪ x =
y ∪ y ∪ y = 0. Hence the cohomology class inH 8(P3

C × P2
C,Z) given by the cup-product

of di is

d := d1 ∪ d2 ∪ d3 ∪ d4 = (π∗
1 (x)+ π∗

2 (y))
4 = 4π∗

1 (x
3)π∗

2 (y)+ 6π∗
1 (x

2)π∗
2 (y

2),

wherex3 = x ∪ x ∪ x . . . etc. By part (ii) of Lemma 3.4, the mapπ1 : 0 → C is an
isomorphism, so applying the Remark 5.2 to it, we have

degOC(1) = degπ∗
1OC(1)

=
〈
c1(π

∗
1 (OP3

C
(1)), [0]

〉
=

〈
c1(π

∗
1 (OP3

C
(1)) ∪ d, [P3

C × P2
C]
〉

=
〈
π∗

1 (x) ∪
(
4π∗

1 (x
3)π∗

2 (y)+ 6π∗
1 (x

2)π∗
2 (y

2)
)
, [P3

C × P2
C]
〉

=
〈
6π∗

1 (x
3) ∪ π∗

2 (y
2), [P3

C × P2
C]
〉

= 6, (9)

where we have used the Poincaré duality cap-product relation [0] = [P3
C × P2

C] ∩ d

mentioned above, and thatπ∗
1 (x

3) ∪ π∗
2 (y

2) is the generator ofH 10(P3
C × P2

C,Z), so
evaluates to 1 on the orientation class [P3

C × P2
C], andx4 = 0. This proves (i).

The proof of (ii) is similar, we just replaceC byD, andπ1 byπ2, andπ∗
1 (x) byπ∗

2 (y) in
the equalities of (9) above, and get 4 (as one should expect, sinceD is defined by a degree
4 homogeneous polynomial inP2

C). This proves (ii).
For (iii), we use the identity of Lemma 4.5 thatL2 = OC(−2) ⊗ g∗OD(1), and the

Remark 5.2 applied to the isomorphism of curvesg : C → D (part (iii) of Lemma 3.4)
to conclude that degL2 = degD − 2degC = 4 − 12 = −8, by (i) and (ii) above, so that
degL∗

2 = 8.
For (iv), we have by (vi) of Lemma 4.4 that homC(L3, 3̃

∗) ' L∗3
2 ⊗ OC(−2), so that

its degree is 3degL∗
2 − 2degC = 24− 12 = 12 by (i) and (iii) above.

This proves the lemma. 2

From (iv) of the lemma above, we have the following.
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COROLLARY 5.4

The line bundlehomC(L3, 3̃
∗) is a non-trivial line bundle.

6. Proof of the main theorem

Proof of Theorem1.1. By the third and fourth exact sequences in (i) of Lemma 4.4, we
have a bundle morphisms of line bundles onC defined as the composite:

AnnW3 = L3
i→ AnnW2

π̃→ 3̃∗ = AnnW2/AnnW̃3

which vanishes atv ∈ C if and only if the fibre AnnW3 ,v is equal to the fibre AnñW3 ,v

inside AnnW2 ,v. At such a pointv ∈ C, we will have AnnW3,v = AnnW̃3,v, so that
W3(v) = W3,v = W(v)+ AW(v) = W̃3,v = W(v)+ A∗W(v) = W̃3(v).

Now, this morphisms is a global section of the bundle homC(L3, 3̃
∗), which is not a

trivial bundle by Corollary 5.4 of the last section. Thus there does exist av ∈ C, satisfying
s(v) = 0, and consequently the flag

0 ⊂ W1 := W1 ,v = Cv ⊂ W2 := W2 ,v = W(v) = C-span{v,Av,A∗v}
⊂ W3 := W3(v) = W(v)+ AW(v) = W(v)+ A∗W(v)

= W̃3(v) ⊂ W4 = V = C
4

satisfies the requirements of (ii) of Lemma 2.1, (as noted after Remark 4.2) and the main
theorem 1.1 follows. 2

Remark6.1. Note that since dimC = 1, the set of pointsv ∈ C such thats(v) = 0, where
s is the section above, will be a finite set. Then the set of flags that satisfy (ii) of Lemma
2.1 which tridiagonalizeA of the kind considered above (viz.A satisfying the assumptions
of 3.1), will only be finitely many (at most 12 in number!).

Acknowledgments

The author is grateful to Bhaskar Bagchi for posing the problem, and to B V Rajarama
Bhat and J Holbrook for pointing the relevant literature. The author is also deeply grateful
to the referee, whose valuable comments have led to the elimination of grave errors, and a
substantial streamlining of this paper.

References

[1] Fong C K and Wu P Y, Band Diagonal Operators,Linear Algebra Appl.248(1996) 195–204
[2] Hartshorne R, Algebraic Geometry, Springer GTM 52 (1977)
[3] Longstaff W E, On tridiagonalisation of matrices,Linear Algebra Appl.109(1988) 153–163
[4] Shafarevich I R, Basic Algebraic Geometry, 2nd Edition (Springer Verlag) (1994) vol. 1


