ON IDEALS IN BANACH SPACES

TSE5REKE. RAOQ

ABSTRACT. In this paper we study the notion of an ideal,
which was introduced by Godefroy, Kalton and Saphar in
[7] and was called “locally one complemented” in [11], for
injective amd projective tensor products of Banach spaces. For
& Banach space X and an ideal ¥ in X, we show that the
injective tensor product space ¥ &: Z is an ideal in X & 2
for any Banach space 2. This as a consequence gives us & WAy
of proving some known results about intersection properties of
balls amd extensions of operators on injective tensor product
spaces ina unified way that does not involvwe any vector-valued
Chogquet theory, We also exhibit classes of Banach spaces in
which every ideal is the range of & porm one projection.

Introduction. Let ¥ be a closed subspace of a Banach space X
Y is said to be an ideal in X if ¥+ (the amihilator of ¥ in the
dual space X* of X) & the kernel of a projection of norm one in X*.
When X is embedded in X** via the map J : X — X** defined by
J(z)z*) = z*(z), the natural projection & — A|J(X) in X*** iz of
norm one and its kernel is J{X)1. Thus X is isometric to an ideal in
X**. 5ims and Yast have proved in [21] that for any separable subspace
YV C X there exists a separable subspace 2 such that ¥V © 2 € X and
Z isan ideal in X'. Saab and Saab in the past have studied Banach space
properties of injective tensor product spaces and extensions of operators
defined on injective tensor product spaces where one of the spaces in
the tensor product is an L'-predual (see [16], [17], [18]). Their method
consisted of wsing vector-valued Choqguet theory developed in [19]. The
anthors of [14] also use these methods to study intersection properties
of balls in injective tensor product spaces. In Section 1 of this paper
we first note that the injective tensor product space X @, Z is an ideal
in ¥ ®@. Z whenever ¥ iz an ideal in X. This allows us to give a new
and simpler proof of a result from [14] that for an L'-predual space
X and for a space Z having the almost nk. intersection property, the
space X ®@. £ also has the almost n k. intersection property. Using the
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observation that an operator defined on an ideal extends in a norm-
preserving way to the entire space (the ranpge however pets enlarged),
we extend a result of Saab and Saab ([18]) to general injective tensor
product spaces.

Turning to projective tensor product spaces, we show that if ¥V is an
ideal in X then for any 2, the projective tensor product space ¥V &, 2
is indeed a subspace of, and is an ideal in, X @, £. Cilia proved in
[1] that, for the space of Bochner integrable functions, L'(p, X**) is
wometric to a subspace of L' (p, X)** that contains J(L'(p, X)), We
extend this to general projective tensor products by showing that if ¥V
has the metric approximation property, then (¥ @, X'**) is isometric
to a subspace of (¥ @, X)** that contains J{Y @, X). It is known that
in general L1{p, X) & not a complemented subspace of cabv (g, X)), the
space of X-walued countably additive measures of bounded variation
that are absolutely continous with respect to p (see [4]). It follows
from our results that L' (p, X)) is always an ideal in cabwv (g, X,

In Section 2 we consider examples of spaces in which every ideal is
actually the range of a norm one projection. Banach spaces X which
are M-ideals (L-summands) in their bidual (under the embedding J)
provide a rich class of examples. In the former, it turns out that
every ideal is the range of a norm one projection. This provides a new
characterization of the space cp(I') (functions vanishing at infinity on a
discrete space I, equipped with the supremum norm) and also has some
implications to the M-structure of the space of compact operators. We
note that if ¥ is an ideal in the predual of a von Neumann alpebra,
then V¥ is the range of a norm one projection. This section depends
heavily on concepts from the M-structure theory that can be found in
(9.

Most of our notation and terminology is standard and can be found in
[3] (the only exception being the use of = and 7 to denote the injective
and projective tensor products). For a Banach space X by X, we
denote its closed unit ball. All Banach spaces are considered over the
real scalar field and are of infinite dimension.

We will be using several times the following characterization of an
ieal due to Lima [11]. As remarked by him in that paper, the
corresponding isomorphic notion was studied by Kalton and Fakhoury
(see the reference in [11]).
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Theorem (Lima). Let ¥ be a closed subspace of X. TFAE.
1. YV iz an ideal in X,
2. Y is the mange of a norm one projection in X**.

3. If Fis a finite dimensional subspace of X and = = 0, there exists
an operator T : F — Y such that

Ty=y forye FNn¥Yand |T|<1+c=

Note that it follows immediately from 3) that f ¥V C Z2 C X and V is
an ideal in X, then ¥ is an ideal in 2.

Section 1. We first collect some properties of an ideal that we will
be needing later in the form of alemma. Let ¥ C X be an ideal. Let
P : X* — X* be a projection of norm one with Ker P = Y. For
any y* € ¥* and for any Hahn-Banach extension =* of ¢*, y* — P(z*)
s 8 welkdefined linear map and since P is of norm one, by taking a
norm-preserving Hahn-Banach extension, we see that V" is isometric
to P{X*). We call this the canonical embedding of ¥*.

Lemma 1. Let X be a Banach space and ¥ an ideal in X

(1) If under the canonical embedding of Y in X*, ¥ is w*-dense
in X[, then X is tsometric to a subspace of Y by an isometry whose
restriction to Y is the embedding JJ on Y. Conversely if X is isometric
to a subspace of ¥** containing J(Y), then Y is an ideal in X in the

ahove sense.

(i) If T :V — Z is a bounded linear operator, then there exvists a
norm preserving extension § 0 X — Z%. When Z is a dual space,
there exists an extension that takes values in 2.

Proof (i) Assume that ¥* is canonically embedded in X*. Define
$: X — V** by &(z) = z|V*. Since ¥}* is w*-dense in X7, clearly & iz
an izometry and its restriction to ¥ is the embedding J. Now ignoring
the isometry on X and J, suppose ¥ C X < ¥**. Define P: X* — X*
in the following way. For any z* € X* put ¢* = z*|¥. Since ¢* acts
as a continnows linear functional on Y**, put Pl{x*) = ¢*|X. Clearly
F is a projection of norm one whose kernel is ¥+, Since the unit ball
of ¥* is a w*-dense subset of ¥***, we get the desired conclusion.
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(i) Let P : X** — X** he a norm one projection with Hanpe P =
Y = ¥** Now T**oPoJ = §: X — Z** is clearly an extension of
T and, sinee |P| = 1, we have |5 = |T]|. When £ iz a dual space,
one composes S with the canonical norm one projection from the triple
dual of a space to its dual to pet the desired conclusion.

Remark 1. Let X = C([0,1]) and Y = {f € C([0,1]) : f([0,1/2]) =
0}. Since p — p|[1/2,1] is a narm one projection in C([0, 1])* whose
kernel is Y4, we get that ¥ is an ideal in X. However, the unit ball
of Y* is not w*-dense in the mit ball of C{[0,1])*. Moreover, since
this is an L projection, there is no other projection in X* of norm
one whose kernel is Y1 (see [9, Proposition 1.1.2)]. Therefore, the
hypothesis of (i) is not satisfied. We will ako give an example later on
{(after Proposition 1) to show that it is essential for X to contain the
copy J(Y) of ¥ for the wlidity of the statement in (i).

However, there are several naturally oceurring examples where the
hypothesis of (i) is satisfied (see also (i) of Theorem 1 below).

Example 1. If ¥ has the metric approximation property (MAP)
then for any Banach space X, it follows from Lemma 1 of [8] that the
space of compact operators (X, Y) is an ideal in £{ X, ¥). the space
of bounded operators.

Since functionak of the form » ® ¢* defined by (z @ *)(T) =
Ty Ne), e e Xy, " € ¥, T € L(X,Y), in K(X,Y)* determine the
norm of an operator, and since the projection defined in Lemma 1 of [8]
i an identity on these objects, it & easy to see that the hy pothesis of (i)
s satisfied. Clearly any subspace of operators that contams (X, V)
satizsfies these conditions.

Example 2. Let K be any compact set and let WK, X)) denote
the space of X -valued functions on K that are continuons when X has
the weak topology, equipped with the supremum norm. Let O K, X))
denote the space of norm continnous functions.

We note that for any f & WK, X)), there corresponds a weakly
compact operator T @ X* — ((K) defined by T{z*)(k) = =*( f(k)).
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This association is a linear isometry and, when f is continnows with
respect to norm, we get a compact operator. Since (K] has the
metric approximation property, following the arguments given during
the proof of Lemma 1 in [8], it & easy to canstruct a norm one projection
P:WCO(K, X — WC(K,X)* such that Ker P = C(K, X)*. Again,
since functionals of the form M &) @ z*, & € K, 2% € X|, defined by
($E)@2z™)W 1 =z (f{k))in C{K, X" determine the norm of a function
in WC'(K, X), it follows that the hypothesis of (i) is satisfied. See [2]
for another construction of such a projection using properties of weakly
compact subsets of a Banach space.

Example 3. Let (2, 4, u) be a finite measure space. In the class
of Bochner integrable functions, L> (g, X'*) as a subspace of LY g, X)*
satisfies the hypothesis of (i), To see this, we can uwse the dentification
of LYp, X)® as L(L'(p), X*) (see [3]): under this identification the
space of representable operators pets mapped onto L™{p, X*). Since
L™ (p) has the MAP, using the results from (8], this time with respect to
the domain space, one pets the conclusion following the line of reasoning
given in Example 1.

It iz well known in tensor product theory that for Banach spaces X
and ¥, the projective tensor product space X @, ¥V is a subspace of
X @, ¥** (see (3]). Cilia prowed in [1] that for any finite measure
space (12, 4, 1), the space of Boclmer integrable functions L', Y**) is
wometric to asubspace of L1 p, ¥Y)** . Qur first theorem is an extension
of both of these results.

Theorem 1. (i) Let X and Z be Banach spaces and Y an ideal in
2 then X @, Y is a subspace of X @, Z and is an ideal

(i) If X has the MAP, then for any Banach space ¥, X @, Y*" i
isometric to a subspace of (X @, Y that contains J(X @, Y.

Proof. (i) Consider the identity embedding of X @, Y in X @, Z.
For u € X @, ¥, choose T € (X @, V)* = L(X.Y*) such that
]l = T{u), |T|| = 1. Since ¥* canonically embeds in 2%, we have
Te LIX.2%) = (X2, Z2) and |T) = 1. Therefore the identity

embedding is an sometry. If P & a norm one projection in Z* with
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Ker P =Y, then the mapping T — Po T is a projection of norm one
in (X @z Z)* whose kernel is (X @, ¥)*. Hence X ®, Y & an ideal in
X@.Z.

(ii) Suppose X has the metric approximation property. From the
first part we know that X ®, Y & an ideal in X @, ¥Y**. We shall now
werify that the hypothesis of (1) of Lemma 1 is satisfied here, and then
the conclusion follows.

With the usual identifications
(X @ Y"™") =LX Y =L(X,YYa(Xa. Y

since X has the MAP, it follows from Corollary 3.3 of [20] that the unit
ball of Z{ X, ¥*) & w*-dense in the wnit ball of £( X, Y***) (since we are

working on a dual unit ball, weak® -operator-dense implies w*-dense).

Corollary 1. For any measure space (2,4, 0), LYp, X**) is iso-
metric to a subspoce of LY, X )% that contains J{ LY p, X)),

Proof. Note that L'{p, X**) = LY (p) @, X** and L'{p) has the MAP.

Remark 2. For a finite measure space (€2, 4, 1) and Banach space X
ket cabv (@, X) denote the space of X-valued countably additive mea-
sures on A of bounded variation that are absoltely continnous with
respect to g, The noncomplementahbility of L' (g, X) in cabv (g, X) has
recently attracted considerable attention (see [4] and references listed
there). It follows from the proof of the theorem and the remarks preced-
ing it in [12] that caby (p, X) € L' (p, X)* and contains J{ L' (p, X)).
Therefore L {p, X) is always an ideal in cabv (p, X).

We next consider ideals in injective tensor product spaces. One of
the motivations here is to show that some results of Saab and Saab
[17], (18] that have been proved for L'-predual spaces, using methods
of vector-valued Choquet theory, can be done easily (and in & more
peneral way) under this scheme. We also obtain a new proof of the
main result in [14].

We first state a result that characterizes L'-predual spaces. One part
of this, 3 = 1, has been remarked by Lima in [11] and the other parts
can be proved wsing standard facts from L'-predual theory, see [10].
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Proposition 1. For any Banach space X, TFAE.

(1) If Y is such that X is isometric to a subspece of ¥V, then X is
an tdenl in Y.

(i) X is isometric to an ideal in some C{K) space, (for a compact
set K.

(iii) X is an L'-predual space.
We first use this to pive the example promised earlier.

Example 4. There is a standard way of embedding o into any (K
space for an mfinite compact set K (see [10, p. 112]). Let K = [0,1].
By the above proposition we have that such a copy of oy is an ideal
in C{[0,1]). On the other hand, C{[0,1]) being a separable space is
wometric to a subspace of the hidual of o), pamely ™. However, if
the unit ball of the range of a norm one projection P with Ker P = 7
{under any embedding) is dense in C'{[0,1])7, then using Lemma 1 one
can conclude that ([0, 1]) is isometric to a subspace of [ containing
Jlep). Sinee ¢ is an M-ideal in ™ under the embedding J, we get
that o is isometric to an M-ideal of C([0,1]). Smce any M-ideal in
C([0,1]) is of the form {f € C{[0,1]) : f(E) = 0} for some closed set

E < [0,1] (see [9, Chapter 1]), we get a contradiction.

Lemma 2. Let X and Z be Banach spaces, and let ¥ be an ideal in
Z. Then the injective tensor product ¥ 2. X s an ideal in 2 2. X

Proof. Let P : Z* — Z* be a norm one projection with Ker P = Y1,

For any & € (Z®. X)* and = € X, define &, : & — R hy
b (z)=Fzm )

Define Q : (Z®, X)* — (Z®, X)" by @)}z ® ;) =
Yim1 P(22,)(z4).

It & easy to verify that () is a projection of norm one.

If® e (Y@ X), then ®,.(y) = 0 for all y € ¥ so that P($,) =0
and hence () = 0. On the other hand, if Q{¥) = 0, then for any
z€ X and y €Y, since (&, — P(®,)) € Y, we gt By @ ) = 0.
Hence, (Y @. X)* = Ker Q.
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Therefore, ¥ @ X is an ideal in £ @, X.

In the first part of the next theorem, for the sake of completeness
we give the proof due to Emmanuele [5] of a result remarked by Saab
and Saab in [17]. The second part extends Proposition 2 of (18] to a
general Banach space.

Theorem 2. (i) Let X be an infinite dimensional L' predual space.,
If X @. Y contains a complemented copy of Y, then ¥ contains a
complementel copy of 4.

(1) Suppose X is an ideal in Y. For any Banach space 2y, Z5, any
bounded linear operator T : X ®. 2} — Z3 has a norm preserving
extension 5 Y @, £ — Z3%.

Proof (i) Let K be any compact space such that X © C{K). By
Proposition 1, X is an ideal in C'(K). Therefore by Lemma 2, X @. ¥
s an ideal in O(K) ®. ¥V = C{K.Y). Therefore C(K,Y)* contains an

wometric copy of (X ®. ¥)* canonically.

Henee if ' & complemented in X @. Y, then (X @. Y)*, and hence
C{K.Y)", contain a copy of cg. It now follows from the proof of
Theorem 1 in [16] that ¥* contains a copy of ¢y. Therefore ¥ contains
a complemented copy of [

(i) Apain we have that X ®. Z; is an ideal in ¥V ®. Z; therefore by
part (ii) of Lemma 1, we get the desired norm-preserving extension.

Remark 3. Under some special conditions on X one can make
the extension in (ii) to take walues in Z3. If X is suwch that every
unconditionally converging operator on X & weakly compact, then one
can imitate the arguments given during the proof of (i) in Theorem 3
in [18] to prove that if T is unconditionally converging, then S takes
values in Za. Also if K & any compact space (not necessarily the dual
wnit ball) such that X is an ideal in C{ K, then since the domain of
5is C(K. Z1), one can exploit the knowledpe of operators defined on
this domain.

Let K be a compact Choquet simplex and let A(K, X)) denote
the space of X-valued affine continnous functions, equipped with the
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supremum norm. Using the identification of the space A(K, X)) with the
space of w*-weak continuous compact operators from A(K) to X, we
have observed in [13] that A(K, X) is in the canonical way, isometric
to A(K) ®. X. We use this in the next corollary to give a proof of
Corollary 1 in [16] that does not use any vector-valued Choquet theory.

Corollary 2. Let K be a compact Choguet simpler.  If ALK, X))

contains a complemented copy of [Y, then X contains o complemented
copy of [

Proof. Since K is a Choquet simplex, A(K) is an L'-predual space.
Also A(K, X)) = A(K) ®. X. Therefore the conclusion follows from

part i) of the above theorem.

Remark 4. It can be verified that when K is a Choquet simplex,
A(K) as asubspace of C'(K') satisfies the hypothesis of (i) in Lemma 1.

The authors of [14] have studied intersection properties of balls in
injective tensor product spaces using the machinery developed by Saab
i [19]. We next present an easy proof of (i) = (ii) in Theorem 3.1
that depends only on the ideas developed here.

First we need some definitions due to Lima (see [14] and the references
listed there).

A Banach space X has the almost n k. intersection property (ank 1P
for short ) if, for every family { B(z;,~; )}, of n closed balls in X such
that any k of them intersect, we have M_, B(z;,7; + £) # ¢ for all
g =

Corollary 3. Let X be an L'-predual space. If E is any Banach
space with the almost nk 1P, then X @, E also has the ank 1P,

Proof Let K be any compact space such that X is an ideal in C{ K.
It follows from Lemma 1 of [14] (see also the remark following the
proof of that lemma that sugpests an easier proof) that C( K, E) has
the a.n.kLP.

As before, X ®@. F is an ideal in C(K, E). To conclude the result now

we only need to observe that, if a Banach space 2 has the ank 1P
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and ¥ < £ & an eal, then ¥ has the ankLP To see this, let
{B(y;j.7i)} =1 be n closed balls in ¥ such that any k of them intersect.
Let £ = (. Choose § = minj<j<.{=/(2v; + =) }. Now consider n closed
balls in £ with centers at y; and radius ;. Clearly any & of them still
intersect. Since Z has the an k LP, there exists z in Z such that

|z —wll £7vi+ 5 forall j

B3| ™

Now let F be the finite dimensional subspace of Z spammed by
{z,%,.-« \¥u}. Since ¥ is an ideal in Z, by the result of Lima quoted
in the introduction, we have a linear map T': F' — ¥ soch that

T <14+6 and Ty=y forye FNY.
Put 3y =T(z). Now

la; =T = 11T(w;) = (2]
<@+8)(v+3)

=7 +e

Therefore, ¥ has the an k1P

Section 2. In this section we consider the question, “when is (every)
an ideal, the range of a norm one projection”™ For a discrete space
L, let (") denote the space of functions on ' vanishing at infinity,
equipped with the supremum norm. We give a new characterization of
cpll) in terms of ideak. Several of the results require concepts from
M-structure theory which can be found in [9].

Suppose ¥ is a Banach space that is isometric to the range of 4 norm
one projection in some dual space. This implies that ¥ & the range
of a norm one projection, say (), in ¥** (under the embedding J).
Therefore, if ¥ is an ideal in X, with P as a norm one projection in
X** whose range is Y1 = ¥**, then @ o P| X is a norm one projection
from X onto Y. In particular, if a dual space V' i an ideal in a space X,
then ¥ is actually the range of 4 norm one projection in X. Therefore
in & reflexive Banach space X, every ideal is the range of a norm one
projection in that space. Also note that if every closed subspace of
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a Banach space X is an ideal, then we have in particular every finite
dimensional subspace is the range of & norm one projection, and it then
follows from a result of Kakutani (see [10]) that X is isometric to a
Hilbert space.

Two natural generalizations of reflexivity that have been well studied
recently are the notions of X being an M-ideal in X** and that of X
being an L-summand in its bidual. See Chapters 3 and 4 of (9] for a
detailed account of these properties. Our first result extends the above
remark to spaces X that are M-ideals in X'** and has some interesting
consequences in M-structure of operator spaces.

Proposition 2. If X is an M-ideal in X%, then every tdeal in X
is the range of @ norm one projection.

Proof Let Y o X be an ideal and P a norm one projection in X*
with Ker P= YL

Since X* is an L-summand in its bidual, it folows from Proposi-
tion 1.5 in [9, p. 161] that the range of P is again an L-summand in its
bidual. Since X is an M-embedded space, applying Proposition 1.10
in [9, p. 164], we conclude that range of P is a w*-closed subspace of
X*. Since the kernel and the ranpge of P are w*-closed, by duality we
conclude that ¥ is the range of 3 norm one projection.

Corollary 4. Let ¥ be an ideal in X,
(1) If KiX) is an M-ideal in (X)), then K(Y) is an M-ideal in
LY.
(i) For a dual space Z%, if K( X, Z%) is an M-ideal in C(X | Z*), then
KiY, Z%) is an M-ideal in (Y, Z%).

Proof. (1) Suppose K(X) is an M-ideal in £{X). By Proposition 4.4
i [9, p. 201], it follows that X is an M-ideal in its bidual. Therefore, ¥
is the ranpge of a norm one projection in X. Hence, by Proposition 4.2
m [9, p. 200], we get that K(Y) is an M-ideal m £(Y).

(ii) From part (ii) of Lemma 1, we get that operators in K(Y, 27)
(L(¥, Z2*)) have norm preserving extensions in (X, Z2%)(Z(X, Z2*)).

Therefore the conchsion can be derived from the “3-ball property”



GG T.S5RK. RAOQ

characterization of M-ideak and the hypothesis.

An important example of a Banach space that is an M-ideal in
itz bidual is the space (') for a discrete set . Before stating a
characterization of this space, we need a lemma that can be proved by
modifying the arpuments given during the proof of Proposition 2.6 in
f9, p. 119].

Lemma 3. Let X be a Banach space. Every M-ideal in X is an
M-summand if and only if X is isometric to the cp-direct sum ©X
for some family {X;} of Banach spaces where, for each i, X; has no
nontrivial M -ideals,

Proof. Let {X;} be a family of Banach spaces such that X; has no
nontrivial M-ideals for each i. Put ¥V = &X;. Since any M-ideal in a
space is left imariant by M-projections, using coordinate projections
in Y it is easy to see that every M-ideal in Y is an M-summand.

For the converse part we only indicate the modification required.
Following the notation in [9], for an extreme paint p of X, by our
assumption the L-summand complementary to N, is w*-closed and, for
the same reason, f N, # N, then NynN, = {0}. Put X; = (M) and
I the quotient of the extreme points of X7 after identifyving p and g for
which N, = N,. X, clearly has no nontrivial M-ideals and arguments
identical to the ones given during the proof of Proposition 2.6 in [9],
giving the desired conclusion.

Our next proposition extends Proposition IIL2.7 in [9].

Proposition 3. Let X be a Banach space. X s isometric to op(1)
for some discrete space T if and only if every tdeal in X is the mange
of a norm one projection and

A={fed.X]: line{f}, isan L-summand}

(here line { f} stands for the one-dimensional space spanned by { f} and
X} stands for the set of extrerne points) s w”-dense in 3.X7.

Proof. Since (eg(T))* = I'(T'), the “only if” part follows immediately
from Proposition 2. Conversely, since any M-ideal M in X by definition
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i an ideal, we have from the hypothesis that M is the range of a norm
one projection. It now follows from Corollary L1.3 in [9] that M is
an M-summand. Let T now be A quotiented by the same equivalence
relation. By hypothesis again, N, = line {p}, p € A. Since A is dense
in 8. X] and M, is of codimension one, we conclude that X is isometric
to ep ().

Remark 5. If X is a Banach space such that X* is isometric to an
L'-space, then for any f € 8.X7, line{f} & an L-summand. Thus cur
result extends Proposition IIL2.7 in [9]. We do not know an answer to
the following question which is in a sense a noncommutative version of
the above proposition.

Question. What are those C* algebras in which every ideal is the
range of a projection of norm one?

Remark 6. The range of a projection of norm one in a C* alpebra is
called a JB* triple (see [9, p. 256]). See [9, Proposition I11.2.9] for the
structure of a C'* alpebra that is an M-ideal in its bidual.

It follows from Proposition 1 in Section 1 that ¢y is an ideal in every
Banach space that contains it; also, as noted before, it is an M-ideal
in its bidual. Using this anslogy, we next pive an abstract version of
Proposition 11.2.120 in [9].

Proposition 4. Let X be an M-ideal in its bidual. Suppose X C Y
as an ideal. Then there is a renorming of ¥V which agrees with the
original norm on X, and X is an M-ideal in ¥ under this new norm.

Proof. Since X is an ideal in ¥, there exdsts a projection P* - Y™ —
X+ of norm one. As in the proof of Proposition 11.2.10 in (9], we can
renorm Y to make P* an M-projection. This norm clearly aprees with
the original norm on X. Since X is an M-ideal in X = X** we get
that it is an M-ideal in ¥ with respect to the new norm.

Let X be an L-summand o its bidual and let ¥ < X be an ideal. If
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Y is again an L-summand in its bidual, then since ¥ in particular is
the range of a norm one projection in a duoal space we hawe that ¥ is
the range of a norm one projection in X. We do not know if such a
Vs always an L-summand in its bidual. This, however, & troe for an
important class of Banach spaces that are L-summands in their biduals.

Proposition 5. Let X be the predual of a von Newmann algebra. If
Y © X s an ideal, then ¥ is the range of a norm one projection in X,

Proof. Let P be a norm one projection m X* with Ker P = ¥, Since
X* is a von Neumann alpebra, it follows that Range P has a unique
predual and the predoal & a Banach space that is an T-summand in its
bidual (see the discussion i [9, p. 225]). Therefore ¥ is an L-summand
in its bidual and hence & the range of a norm one projection in X.

As a consequence of this proposition, we give another proof of a result
of Haagerup from [6).

Corollary 5. Let X be the predual of a von Newmann algebra.
Let ¥V © X be a separable subspace.  There exists a separable 1-
complemented subspace Z such that ¥V © 2 C X

Proof. It follows from the results of Sims and Yost [21] that there is
a separable subspace £ with ¥V € 2 € X, and Z is an ideal in X. The
conclusion thus follows from the above proposition.
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