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ABSTRACT 

In this paper we study the injectivity and injectivity sets for the twisted 

spherical means on C n . These results are then used to study the same 

problems on the reduced Hiesenberg group. 

1. I n t r o d u c t i o n  

Inject ivi ty  of the spherical  mean  value opera to r  has been studied by several 

authors  [1], [8], [12]. In  [12] the second au thor  has considered the p rob lem in 

the set-up of L p spaces on R n and on the Heisenberg group H '~. Let  us briefly 

recall the known results. L e t / t r  be the normalised surface measure  on the sphere 

Ixl = r in R '~ and consider the spherical  means  of a continuous function 

f * #r(x) = ; f ( x  - y)d#~(y). 
Jly ]---r 

I f  we take 
, .  J~/2--, (.Xt~l) 
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where J~ is the Bessel function of order a ,  then it is well known tha t  

where : ~ ( r )  s tands for : ~ ( y )  with [Yl = r. Therefore, if r is a zero of ~ ( t )  

then f * #~ = 0. Note tha t  ~ C LP(]~n), for p > 2n/(n - 1) and therefore, on 

LP(R'~),p > 2n/(n - 1) the spherical mean value operator  is not  injective. In [12] 

it was shown tha t  when 1 << p < 2n/(n - 1) the spherical mean value operator  is 

indeed injective on LP(](n). 
The si tuat ion on the Heisenberg group is different. Let H n = C n • R be the 

Heisenberg group with the group law 

1 Im(z .~ ) )  = (z + w , t  + + 

and let #~ be the normalised surface measure on {(z, 0) : Iz[ = r} and consider 

f , #~(z,t) = f f ( ( z , t ) ( - w , - s ) ) d p r ( w ) .  
Jr~ 

Let 
r = L '~ - l ( l  lzl2)e -�88 

be the Laguerre functions of type (n - 1). Define e~k(z,t) = ei;~t~k(Z)~ where 

~ (z) = ~k( V / ~ z )  and consider the equation 

where 
1 

e (r, 0) = V (r) = L -l( JAIr2)e-i 

This follows from the fact tha t  % axe spherical functions on the Heisenberg group 

(see [14]). I f  we choose ~ and r so tha t  ~k~(r) = 0 then we have e~ * f ( z , t )  = O. 
Note tha t  e k ~ C LP(H u) only when p = co. As one can expect, it was shown in 

[12] tha t  on LP(H n) with p < co the spherical mean value operator  is injective. 

For LCC(H n) there is a two radius theorem (see [1]). 

In  this paper  we look at the same problem in the context of the reduced 

Heisenberg group Hn~ed . This is simply the set C ~ • S 1 equipped with the group 

law 
(z, eit)(w, e i8) = (z + w, ei( +8+�89 Im(z 

If  #r  is as before and if A is an integer, then ek ~ is a function on H ~  d which satisfies 

�9 #~(z, e it) = 0 whenever ~k~(r) = 0. Note tha t  the functions e k are now in all e k 
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LP(Hrned) and so the spherical means are not injective on any L p space. However, 

we will show that  on suitable subclasses of functions the spherical means will be 

injective. In view of the counter examples these classes seem to be optimal. 

Recently, a slightly different problem has received considerable attention. 

Given a set S c R n consider the condition 

f * / t r ( X )  = 0 , X E S  

for all r > 0. We say that  the set S is a set of injectivity for the spherical mean 

value operator ("spherical Radon transform") if the above condition implies that  

f = 0. Note that  we are assuming f �9 ttr(x) -- 0 for all values of r > 0 but only 

on the set S. In the case of R 2 this problem has been studied by Agranovsky and 

Quinto [3, 4]. In the set-up of L p spaces Agranovsky et al. [2] have shown that  

the boundary of any bounded domain in Rn is a set of injectivity for L p spaces 

as long as 1 <_ p < 2n/(n - 1). They have also considered the case of symmetric 

spaces of non-compact type. See also the recent work of Rawat and Sitaram [9]. 

In this article we look at the problem of injectivity sets for the spherical mean 

value operator on the Heisenberg group. The problem naturally leads to the study 

of twisted spherical means on C '~. Recently, Agranovsky and Rawat [5] have 

studied this problem and they have shown that  the boundary of any bounded 

domain in C ~ is a set of injectivity for the twisted spherical means in a class 

of functions having some exponential decay. When n = 1 we obtain an optimal 

class of functions for which spheres are sets of injectivity for the twisted spherical 

means. It  would be interesting to get a complete characterisation of such sets; 

but the problem needs new ideas and techniques. 

The organisation of this paper is as follows. In the next section we study 

injectivity of twisted spherical means and also treat  the problem of inectivity sets 

for them. In the last section we use these results to s tudy analogous problems 

in the context of Heisenberg groups. We study the twisted spherical means by 

using various properties of special Hermite and Laguerre functions. For the facts 

used we refer to the monographs [13] and [14]. 

2. T w i s t e d  spher ica l  m e a n s  

Let #r be the normalised surface measure on the sphere Izl -- r and let f • g 

stand for the twisted convolution 

f • g(z) -~ f f ( z - w ) g ( w ) e  "~Im(z'~)dw. 
dc n 
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The twisted spherical means of a continuous function f is then defined by 

f X #r(Z) -~ f f (Z  -- w)e �89 Im(z'~)dttr(w ). 
I=r 

If ~k are the Laguerre functions introduced in the previous section, then it follows 

that  

k!(n - 1)! 
(2.1) ~k x #r(z) - (~-_~_-i-_-~!~k(r)~k(z) 

and therefore ~k x #r(z) = 0 whenever ~k(r) = 0. Note that the functions ~k 

are all Schwartz class functions. 

We need to recall several facts concerning the special Hermite functions. These 

functions {O~,~} indexed by a , /~ E N n form an orthonormal basis for L2(Cn). 

The special Hermite expansion 

f (z )  ---- E E (f '  Oa,l~)~2a,fl (z) 
a f l  

of an L 2 function f can be put in the compact form 

o o  

f ( z )  = (2zi')-n E f X ~k(Z). 
k=O 

We have the orthogonality relations 

r x ,:I,~,,~, = (27r)n/25~,,~, ,  

and 

which will be used in the sequel. The functions ~k can be represented as 

= 

I~l=k 

Since the special Hermite functions are all Schwartz class functions, the special 

Hermite expansion of any tempered distribution f is well defined and it converges 

in the topology of tempered distributions. Note that ~k x f are also well defined 

for tempered distributions. 

Consider the action of the torus T n on C ~ given by eiO z -- (e i~ Z l , . . . ,  e i~ zn) 
where e i~ = (e~~ e ie~). We say that a function f is m-homogeneous where 
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m = ( m l , . . . ,  mE) is an n-tuple of integers if f(eiOz) = eim'~ for all 0 E R '~. 

I t  is known that  the special Hermite functions (I)~,/~ are homogeneous: 

,~.,~(e~~ z) = e~(~-~)'~ 

Given a continuous function f on C n we can form the multiple Fourier series 

f(ei~ z) -: Z Rmf(z)eim'O 
m 

where 
F 

Rmf(Z)  = ]Tn f(ei~ z)e-im'~ 

are the Fourier coefficients of f (ei~ Note that  R m f  are m-homogeneous; they 

are called the m-homogenisation of the function f .  

We say that  a function f on C ~ is of polynomial type if the coefficients fro(z) 
are homogeneous polynomials. Examples of such functions are ~k(z)e llz12 . We 

also define the symplectic Fourier transform of a function f on C n by 

f s ( z )  = f • i(z)  = f f ( z  - w)e�89 Im(z'~)dw. 
gc n 

The functions (I)~,/~ and qok are all eigenfunctions of the symplectic Fourier trans- 

form with eigenvalues (-1)l~b and ( -1 )  k respectively. Since we have 

f x :k(Z) ---- ~ ~ (f,  (I),,f~)(I),,,(z) 

the projections f x ~k are eigenfunctions of the symplectic Fourier transform. 

We also note that  the symplectic Fourier transform and the ordinary Fourier 

transform on R 2n are related by ] s (z )  = ] ( - y / 2 ,  x /2)  where z = x + iy. We are 

now ready to state and prove our results. 

THEOREM 2.1: Let f be a tempered continuous function such that  f • l~r = 0 for 
some r > O. Then (i) f is an eigenfunction of the symplectic Fourier transform, 
and (ii) f ( z ) e  llzl: is a function of polynomial type. 

Proof: Taking the twisted convolution of qsk with the equation f • #r = 0 and 

using the property (2.1) we get 

*k(T) f  • Vk(Z) = 0 

for all k 0, 1, 2, .. Since the Laguerre polynomials n-1 ---- .. L k (t) have distinct zeros, 

in the above equation qOk(r ) ~- 0 for at most one value of k, say for k = j .  This 
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means that  f • ~k = 0 for all values of k other than j .  But then f will be 

proportional to f • ~j and so it is an eigenfunction of the symplectic Fourier 

transform. 

Now, we claim that  f(z)e�88 I~1~ is of polynomial type. First we observe that  

R m ( f  • ~j)  = R m ( f )  x ~i 

and therefore, as f = (2fr ) -~f  x ~j, we have the relation 

n m ( f )  = (27r)-nRm(f)  x ~j. 

But then 

R m ( f )  x ~j(z)  = ~ ,  R m ( l )  x ~, ,~(z)  

i~l=j 

and, since R m ( f )  is m-homogeneous, it follows that  

R m ( f )  x ~j (z)  = E (f,  O, -m,u)O~-m, , (z ) .  
f~l=J 

This shows that  

R,~(f(z)e�88 ~) = ~ C , O , - m , , ( z )  e�88 

i~l =J 

Finally, since ~ , ~  (z)e�88 fzl~ are polynomials we get part  (ii) of the theorem. II 

COROLLARY 2.2: Suppose f is a continuous function such that f(z)e�88 i~l: is in 

LP ( C n) for some 1 < p <<_ cx~. I f  f x #~ = 0 for some 7" > 0 then f = O. 

Proo~ By the theorem f is a function of polynomial type: 

R m ( I ) ( z )  = fzj2. 

Now 

 m(z) = 

shows that  Pm C LP(C n) whenever f(z)e�88 IzI2 E LP(C"). This forces P m =  0 for 

all m and consequently f = O. | 

Using conclusion (i) of the theorem we can identify several classes of functions 

on which the twisted spherical mean value operator is injective. Let us call a 

space V of tempered functions a Paley-Wiener class if f ,  i s  E V implies f = O. 
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COROLLARY 2.3: The twisted spherical mean value operator is injective on any 
Paley-Wiener class of functions. 

We have several examples of Paley-Wiener classes. By the classical Paley- 

Wiener theorem for the Fourier transform C ~  (C '~) is a Paley-Wiener class. By 

a theorem of Benedicks [6] on the Fourier transform pairs the class of functions 

whose supports have finite Lebesgue measures is a Paley-Wiener class. Another 

example is given by Hardy's theorem [10]: the class of functions such that If(z)[ < 

Ce -Mzl2 for some a > �88 On all these spaces the spherical mean value operator 

is injective. 

Another class of fmlctions with the Paley-Wiener property can be constructed 

using the following result of Beurling; see HSrmander [8]. 

THEOREM 2.4: Let f be an integrable fimction such that 

f :  / ~  If( )]( elXYldxdy x y)l 
O 0  

Then f = O. 

THEOREM 2.5: Define V = {f(z): If(z)] < g(z)e-�88 E LI(C'~)}. Then V is 
a Paley Wiener class. 

Proof'. We prove this theorem by applying Beurling's theorem to the Radon 

transform of f .  Recall that the Radon transform of a function f on ]R n is defined 

by (see Folland [7]) 

Rf(s,w) = / f(x)dx 
[t 

d x  . 0 3 ~ 8  

where s C R, w E S "-1 and dx is the (n - 1)-dimensional Lebesgue measure on 

the hyperplane x.w = s. The relation between the Fourier transform and the 

Radon transform is given by f(pw) = I~f(p, w), where/~f  is the one-dimensional 
Fourier transform of R f  in the s variable. 

If we assume that f(z)e�88 Izl2 is integrable, then it follows that Rf(s,w)e�88 P E 
LI(•) for almost every w e S 2n-1. If f s  E V then we have 

I](z)l--I]s(-2y,-2x)l_ g(z): N2, 

where g is integrable on C. This translates into the condition It~f(p,w)[e p2 C 
LI(R). Finally 

/ /,Rf(s,w),,Rf(p,w),e'~P'dsdp<_ / /,Rf(s,w),e�88 ~ 
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Therefore, R f ( s ,  w) = 0 for almost all s and w. By the inversion theorem for the 

Radon transform we get f = 0. | 

We now consider injectivity sets for the twisted spherical means. Recently, the 

folowing theorem has been proved by Agranovsky and Rawat [5]: 

THEOREM 2.6: For e > 0 and 1 <_ p <<_ oc let 

Vp,e = {f(z) :  f ( z ) e  (�88 �9 LP(Cn)}. 

Then the boundary F of any bounded domain f~ in C n is a set of  injectivity for 

the twisted spherical mean value operator on Vp,e. 

This theorem is proved by studying radial eigenfunctions of the special Hermite 

operator L. Since the only functions known to satisfy f x #r(z) = 0 for all 

r > 0 on a set F are the Laguerre functions qok which have the property that  

~k(z)e�88 Iz12 are polynomials, it is natural  to conjecture that  the above theorem 

is true even when e = 0. However, an a t tempt  to use the techniques developed 

in [2] (which uses the wave equation) failed as the condition f(z)e�88 Iz12 E LP(C a) 

is not invariant under twisted translations. There is at least one special case in 

which the conjecture is true; see Theorem 2.9 below. 

The following simple observation leads to a strengthening of the above result. 

The symplectic Fourier transform of a function can be written as i s  : f x 1 and 

hence 

]s  x # r ( z ) =  f • l • #r(Z). 

But 

and therefore 

 -l(rlzl) 
1 • # r ( Z )  = cn (rlzl) _ 1 

X IZr(Z) = Cn I']C f ( g -  w)e~Imz'~'[- ( [ I~_,~_lj',W,,dw is 
. (rlwl) n-x �9 

The above reduces to the integral 

fo ~ , , J n - l ( r s )  2n-1-- Cn y X #s(z)  (rs)n_-------- i s as. 

From this it follows that  

]s • : o 

on F whenever f x #8 (z) = 0 on F for all s > 0. So, if either f or f s  satisfies the 

conditions of Theorem 2.6 then F will be an injectivity set. 
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COROLLARY 2.7: Suppose V is a class of functions such that either f ( z ) e  alzl2 

or ]s(z)e  alz$2 belongs to LP(C ~)  for some a > �88 Then the boundary F o[ any 

bounded domain fl is a set o f  injectivity for the twisted spherical means on V. 

We remark tha t  the corollary treats  a certain class of functions which cannot  

have any exponential  decay. This is the case when V is the image under Fourier 

t ransform of the class C ~ ( C n ) .  Indeed, any f in this class cannot  have any 

exponential  decay in view of Hardy ' s  theorem [10]. But  for this class the boundary  

of any bounded  domain is a set of injectivity. 

W h e n  ~t is a ball in C ~ ,  the following theorem gives a class of functions for 

which f x #r(z)  cannot  vanish on the boundary  for all values of r. 

THEOREM 2.8: Let Vp(~) be the space of continuous functions f on C ~' for which 

/(z)e�88162 L (C 

and f ( r  r O. Then f x Mr(z) cannot vanish on any sphere Iz - r -= R for all 
values of r > O. 

Proo~ Withou t  loss of generality we can very well assume tha t  ~ = 0. Consider 

the radialisation 

R f ( z )  = [ f ( a z )  da 
dv 

of f .  Since Iz] = R is invariant under the act ion of U(n) it follows tha t  f x #r(z)  = 

0 on Iz] = R implies R f  • #r(z)  = 0 on [z I = R as well. But  now R f  is a radial 

function and therefore 

R f  x , r ( z )  = R I  x = r .  

This means tha t  R f  x #R(w) --= 0 for all w. Note tha t  Rf(z)e�88 E LB(C ~) and 

by Corollary 2.2 we conclude tha t  R f  = 0. But  then f (0)  = Rf(O) r 0, which is 

a contradiction. II 

In  the special case when n = 1 and f~ is a ball we prove the above mentioned 

conjecture in the affirmative. In the proof  of the theorem below we make use 

of the specific knowledge of the zeros of Laguerre polynomials.  In the higher 

dimensional case we have to deal with the zero sets of special Hermite functions 

which are not well understood.  

THEOREM 2.9: Let n = 1 and let Vp(~) be as in the previous theorem. Then 

any sphere [z - ~[ = R is a set of  injectivity for the twisted spherical means on 
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Proof'. Again  we m a y  assume tha t  ~ = 0. Let  R m f  be the m- r a d i a l | s a t | on  of f .  

Then  f x #r(Z) = 0 on the sphere Izl = R implies  t ha t  R m f  • # r (z )  = 0 on the  

same sphere.  F rom this it  follows t ha t  Rmf  x ~Ok(Z) ---- 0 on Izl = R for any  k. 

But  now R m f  is m-homogeneous  and therefore 

R m f  x ~Ok(Z) = (Rmf, 42k-m,k)Ok-m,k(Z). 

We know tha t  (see Theorem 1.3.5, [13]) 

~k-m,k(z) = ckzmn~_m(~lzl2)e -�88 

for k _> m > 0, and  when m _< 0 

! rn m 1 ~ 2 C k _ m , k ( Z ) = C - 2 -  L -  ( - Iz l2~e-~l~l  
a k ~2' ] " 

We use the  fact t h a t  the  zeros of L~(t) are all  d i s t inc t  (see Szego [11]). There-  

fore, Rm f  x # r ( z )  = 0 on the sphere Izl = R implies  tha t  (Rmf, Ok-m,k) = 0 for 

all values of k except  poss ib ly  for one value, say k = j .  This  means  t ha t  

R i n d ( z )  = ( R m f  , (~ j - -m , j ) (~ j - rn , j (Z )  �9 

But  now, on the one hand,  Rmf(z)e�88 Iz12 is in LP(C) and, on the  o ther  hand,  

Oj_m,j(z)e�88 Iz12 cannot  be in LP(C). This  forces R m f  = 0 for all  values of  m and 

hence f = 0. | 

A n  examina t i on  of the  above proof  shows t ha t  the  following is t rue.  

THEOREM 2.10:  Let F be any unbounded rotation invariant subset of C. Then 
it is a set of injectivity for the twisted spherical means  on LP(C), 1 _< p _< oc. 

Proof'. Proceed ing  as above, we arr ive a t  

Rmf  • qok(z) = ck(Rmf, g2k-m,k)Ok-m,k(Z). 

Since r can vanish only on a finite number  of spheres,  we conclude t ha t  

R m f  x ~ok = 0 for all m and k. Hence f = 0. | 

3. S p h e r i c a l  m e a n s  o n  t h e  H e i s e n b e r g  g r o u p  

In this  sect ion we prove some resul ts  concerning the spher ical  means  on the  

Heisenberg groups.  F i r s t  we consider  the  in jec t iv i ty  of the  spher ical  mean  value 



Vol. 122, 2001 I N J E C T I V I T Y  OF T W I S T E D  S P H E R I C A L  MEANS ON C a 89 

operator on the reduced Heisenberg group H~ d. Recall that  the spherical means 

of a function on the reduced Heisenberg group is given by 

f *#r(z,t) -- f f(z-w,e~(t-�89 
I----r 

As before, #r is the normalised surface measure on the sphere 

s r  = { ( z , 0 ) :  Izl = r} .  

Using the results of the previous section we can prove the following 

THEOREM 3 . 1  : Let f be a continuous fimction on the reduced Heisenberg group 
such that f(z ,  t)e alzl: is integrable /'or all a > O. If  f * #r = 0 for some r > 0 

then f = O. 

Proof: The convolution equation f �9 #r = 0 is transformed into a family of 

twisted convolution equations by taking the Fourier series in the t variable. In 

fact, 

L 2~ f �9 = 0 #r(Z, t )e-ikt dt 

gives, after a calculation, the equations 

fk *k #r(Z) = 0 

o11 C ~ where fk  are the Fourier coefficients 

ff i f ( z )  = f(z,  t)e-~ktdt 

and fk *k #r(z) is the k-twisted convolution 

fk  *k #r(Z) ---- ~ fk(z  -- w)e~kIm(z'~)d#r(w). 

Note that  when k -- 0 the k-twisted convolution reduces to the ordinary 

convolution on C n. When k r 0, the equation fk  *k #r(Z) ---- 0 together with 

the condition f k ( z ) e ~  Izl2 C LI(C ~) implies that  fk  __ 0. The case k -- 1 was 

treated in the previous section and the proof in the general case is similar. When 

k -- 0 we have f0 , #r = 0 and, by taking the Fourier transform and noting 

that  fir is an entire function, we conclude that  f0 __ 0. Thus, all the Fourier 

coefficients of f are zero and hence f = 0. | 

We now consider the problem of injectivity sets for the spherical means. We 

first prove an analogue of Theorem 2.8 for the reduced Heisenberg group. 
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THEOREM 3.2: Let F = SR(()  x S 1 where SR(()  is the sphere of radius R 

centered at ~. Suppose f is a continuous function on Hled which satisfies the 

condition [f(z, t)[ _< Ce -alz-r for every a > O. Then f * #~(z, t) = 0 on F for 

all r implies f = O. 

Proof: Again by taking the Fourier series in the t variable we get 

f k  *k t) = 0, (z, t) r > 0. 

lb2 2 
Since Ifk(z)l <<_ Ce -  4 z we can appeal to an analogue of Theorem 2.8 for 

k-twisted convolutions to conclude that  fk  = 0. By the result of [2], fo  = 0 as 

well. Hence the theorem. | 

On the Heisenberg group H '~, spherical means of the function ek ~ vanish on 

sets of the form SR x R. Here the radius R cannot be arbitrary; it is related to 

the zeros of the Laguerre polynomials n - t  L k (t). So, only for finitely many values 

of R does the above property hold. By a clever choice of a and ~- we can show 

that  sets of the form 

r = xR)  u(s  

are sets of injectivity for the spherical means on the Heisenberg group for L p 

spaces. 

THEOREM 3.3: Let n = 1 and let F be as above, Assume that a2/T  2 is not a 

quotient of zeros of L~(t) for any k and a >_ O. Suppose f ( z ,  t) is integrable in 

the t-variable and f~ C LP(C ~) for any A. I f  f * IZr(Z,t) = 0 on F for all r > 0 

then f = O. 

Proof: The integrability assumption in the t variable allows us to take the 

Fourier transform in that  variable which reduces the equation f * #r (z, t) = 0 to 

a family of twisted convolution equations. Thus we have 

f~  ,~ #r(z) = O, z e S~ U S~ 

for all values of r > 0 and A C •. Now proceeding as in the proof of Theorem 

2.8 we arrive at 

Rmf~  *~O~k(Z)=O, zES~USr. 

This leads to the equations 
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for m > 0, and for m < 0 

Since a2/T  2 is not a quotient of zeros of L~(t),  the above equations force 

R , ~ f  x .~ ~ ( z )  = ( C o n s t ) ( R m f  ~, ~k -m ,k )~k -m ,k (Z )  = 0 

for any k and m. So we get f~ = 0 for all A r 0. Hence f = 0, which proves the 

theorem. | 

I t  would be interesting to see if an analogue of the above theorem holds in the 

higher dimensional case. We are in the same situation as in the n-dimensional 

analogue of Theorem 2.8. 

Note  added in Proof'. For the n-dimensional analogue of Theorem 2.9 see: E. 

K. Narayanan and S. Thangavelu, Inject ivi ty  sets for the spherical means on the 

Heisenberg gronp, preprint (2000). 
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