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Abstract

Simple illness-death model arises in many medical and animal experiments. In a typical
illness—death model, one is often interested in the event of occcwrence of disease or illness
() which is assumed to be unobservable. This event is followed by the event of failure or
death (£} which is observable in addition to the presence of disease. Failure () can also be
observed before the disease occurs in which case the absence of disease is also recorded. With
the development of methodologies for making inference on the distribution of D, the design issue
has also attracted some attention although not so greatly. In this work, we consider finding an
optimal termination time of the experiment. We also consider the design with one intermediate
observation time and address the problem of finding an optimal time for such an intermediate
observation. We introduce two new optimality eriteria and compare them with traditional /-,
- and c-optimality criteria.
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1. Introduction

Simple illness—death model arises in many medical and amimal experiments, examples
of which are being considered for the last two decades or more with sustained interest.
In a typical illness—death model, one is often interested in the event of occurrence of
discase or illness () which 15 assumed to be unobservable. This event 15 followed
by the event of faillure or death (F) which is observable in addition to the presence
of disease. Faillure (F) can also be observed before the disease occurs m which case
the absence of disease 15 also recorded. For notational convenience, let us also mean
by [ or F the corresponding ime of event whenever the context 1s such. Applications
can be found in animal carcmogenicity studies (Kodell and Nelson, 1980; Turnbull
and Mitchell, 1984), medical expenments involving human subjects, for example in
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HIV/AIDS rescarch (Kalbfleisch and Lawless, 1989), and m mdustrial applications
with machine faults (Dewanji and Dhar, 1993). Berlin et al. (1979) consider a more
complicated illness—death model and discuss the identifiability ssue for the related
incidence rates. In simple illness—death models, as discussed above, MceKnght and
Crowley (1984) and Dewanji and Kalbfleisch (1986) prove that the distnbution for D 1s
not identifiable without frequent sacrifice plans. However, with pammetre assumptions,
identifiabality can be achieved without such restnction (Portier, 1986).

With the development of methodologies for making inference on the distabution of
D, the design issue has also attracted some attention although not so greatly. Bergman
and Tumbull (1983) address the problem of finding optimum sacrifice schedule as-
suming exponential distnibution for tumor incidence (D here) for nonlethal tumors
{1.e., having no effect on fallure F). For a fixed sequence of times £ < - -- < £y, at
which one or more sacrifice (1.¢., destructive life testing so that the observation cannot
be contmued ) could be made, their procedure suggests how many animals to sacrifice
at each time point. Berry (1975) discusses the problem of when to terminate the ex-
penment mterms of maximum Fisher's information per unit cost, assuming a Weibull
distribution for disease incidence, and concludes that the optimal strategy 15 to allow
all animals to live out their lives. This s a mther trivial conclusion and, also, applies
only to diseases with observable occurrence time or diseases with instantancous death.
In this paper, we consider finding an optimal termination time without such conditions
bemng imposed on disease. Borgan et al. (1984) consider the companson of several
designs with respect to their efficiencies relative to the design of continuous monitor-
ing and conclude that the one with intermediate observation has the highest efficiency.
Since continuous monitoring s unrealistic in light of the cost and operational diffi-
cultics mvolved m such a design, we also consider the design with one intermediate
observation time and address the problem of finding an optimal time for intermediate
observation.

There could be more situations where simple 1llness—death model will apply and the
design 1ssue as described above would be of interest. In cancer-screening studies, it s
important to schedule the visits of susceptible patients when they are o be examined
for the presence of cancer (Day and Walter, 1984 ). There are some ad-hoc approaches
to schedule the visits usually once in every year or so, although a more objective
criterion to choose one or more time points for intermediate observation will be of
interest (see Zelen, 1993 ). The designs that will be introduced in the next section can
serve this purpose. In the industrial context, for example, while dealing with a parallel
system with two components (Dewanji and Dhar, 1993), one may be mterested in the
time when the first component failure takes place and, for this purpose, one would
like to schedule an inspection of the system before it fails. Somilarly, it s mportant
to schedule intermediate inspection(s) for detection of fault in a machine.

In Section 2, we miroduce two new optimality criteria, a possible strategy for amiving
at a design satisfying such criteria and a model for the joint distribution of D and £, The
optimal design cleardy depends on the model parameters which need w be estimated
based on data from some other sources or from previous stages in a multistage or
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sequential framework, In Secton 3, we discuss estimation of the parameters based
on data with a fixed termination time and then follow it up for data with a fixed
intermediate observaton time. We consider, i Section 4, the optimal designs by our
crteria described in the next section and by the traditional information-matnx-based
criteria, and make some comparisons. Section 5 discusses different advantages of our
design and its applicability m a more general set-up.

2. Preliminaries

The calculation of expected mformation matrix for a typical observation from the
simple illness—death model seems to be difficult in general (see the discussion i the
following sections). Therefore, the task of obtaining an optimal design under the stan-
dard likelihood-based cnteria, which deal with the expected mfonmation matrix, s
not straightforward. For this reason, we introduce below two simple optimality crite-
ra which are very casy to deal with and have compelling intuitive appeal. As D s
the event of interest, we would like to amive at a design giving most “informmation’
on the event D so that g the termination or mtermediate observation tme whichever
is the problem, is not too early to miss most of the disease occurrences. That is, D
should occur before fy, with highest probability. Without any further restriction, this
will lead to the rivial optimal design of choosing fy = oo, But we do not want ¢ to
be too late to observe only the discases followed by deaths. Therefore, we consider
maximizing the probability of the event {D < g4 < F} with respect to . Intuitively,
this also has the interpretation of trying to get fy as close to [ as possible. It has also
the natural appeal of incorporating the information on the associated failure process
while focusing on the disease process. Let us denote this criterion by .

One alternative to the above cnterion € 1s, in addition to maximizing the probability
of the event {D =< &y < F}, to minimize the probability of the event {D < F < i}
simultancously. In order to achieve this, we consider maximizing the difference of the
two probabilities, that s P[D < &y = F| — P[D < F = i3]. Let us denote this cntenon
by 2. This caterion %5 1 particulady useful m the choice of mtermediate observation
time fy as it gives some protection against disease and faillure due to disease taking
place before the mtermediate observation time #. For example, m cancer-screening
studies, one will be interested in guarding against such happenings. However, in order
to do so, the second term in the difference pulls down the optimal value of & from
that obtained by maximizing only the first term (1.e., criterion € ). In cancer-screening
studies, one would prefer early intermediate observation (smaller f) in order to be
able o diagnose or detect the disease early (see Zelen, 1993) so that enterion €5 may
be preferred. However, when the interest is only in the estimation of the distribution
of 0, one may not need such protection and criterion 6 may be preferred.

In order to amive at an optimal choice of fy, the followmng strategy may be imple-
mented. We first make a guess of the value of 6y at 1y = fy from past experience or
prior knowledge, if any. Start the study with » individuals with & = & fixed. Based
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Table 1
[¥ifferent types of ohservation with termination time 5y

Types of ohservation Indicator {4) Likelihood contribution Frequency
1=F =y 1 fle— et "y
in = F,D 2 e—ixtiv na
D<igaF 3 !_Illa:_.[c T _ g=iztfn "
DeF=t< 4 “:.—I'_[c T izt "4

on the n observations, estimate the model parmameters and obtain the optimal choice
of fy using these estimates. This idea can be extended to suggest strategies mvolving
multiple stages.

We start with the simple parametric assumption of exponential model for D, with
parameter 2, having density fix)=2e™™, 2 =0, x = 0. The assumed conditional dis-
trobution of F, given D=x, 15 descabed in terms of its condiional density as follows:
ﬁu_ﬁ-‘ if y<ux,
pe Fmr=rGf pmy

gl yix) = { (1)

That 1%, the conditional hazard § (before discase oceurs ) changes to 7 once the discase
oceurs (see Freund, 1961). Although, in the following sections, we work with this
model, the approach 15 simple and flexible enough for other general models, as noted

in Section 5.

3. Estimation of parameters

We first discuss the case when observation on an individual ceases either at failure
or at time fy, whichever 15 earier. Although we do not allow any censoring prior to
the terminal censoring at time fy, it can be easily incorporated if present. As it is, we
have four different types of observation as given in Table 1, in which ¢ means a typical
time of failure.

In Table 1, the mdicator § denotes the type of observation. The likehhood contribu-
tions for different types of observation are also given in Table 1. For d=1 and 2, the
contributions are casy to see. For =3, the contnbution s

PD <ty = F]=f pg e+ nb—x) d x
]
. o
a+ -7

assuming  + f# # 7. This 15 the probability we seek to maximize with respect o 5
for criterion %, as desenbed in Seetion 2. Note that the value of #p which maximizes

[c_:.ru _ c—t:ﬂihuL (2]

{2} 15 given by

_ logl(z+p)fy]

a+f—7 @)

(1]
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For d = 4, the contribution 15

PID=F=rt=i]= f :1:_{’*'13";1:_7"*_”*{.1.1(
0
. [e ¥ — u—1=+ﬁﬂl_ (4)
a+f—7
For criterion s, we need PLD < F =< fy), which can be calculated by integrating (4)
over the range {0 <t < f3}, and then the difference P[D <ty < F] — P[D = F < 1]
can be found as
2 . — () 2 ol
e~ _ iz Wy ]__Ln{z"'.l'“-il7
a+f— ;'[ ! *+ ﬁ[ ]
assuming x + i # 7. Maximizing the above difference with respect to fy for criteron
Gy, we get the optimal £y as

ty= : log 2+ Bty
1] 1+|H_]' £ 5 s

a

(3)

which can be secen to be less than the fy in (3). Note that both the optimal designs
in (3) and (5) involve parameters related to both the discase and failure processes, as
mentioned in the beginning of Section 2.

Censored mdividuals at time  (say) prior to time &y (if any) will contabute hikeli-
hood terms like those corresponding o 6 =2 or 3, with #y replaced by ', depending
on whether the disease 1s absent or present, respectively.

The maximum likelihood method requires taking product over all such contributions
from all the individuals w0 obtain the likelihood function and then maximizing it with
respect to the parameters 2, § and 7. Looking at the likelihood contributions in Table 1,
it 5 clear that this iovolves computer-intensive numerical maximizaton. A simpler
alternative, m this case, s the use of EM algorithm (Dempster et al., 1977), since there
15 a natural choice for the complete version of data. The apphication of EM algorithm
is straightforward and the details are available in Dewanji and Biswas [ 1998).

Mext we consider the case when we camry on the observation on cach individual all
fallure; however, at an intermediate time £y, the state {absence or presence of disease)
of an mdividual, 1’ not failed, is observed and recorded. As before, the individuals
can be allowed to be censored although, for simplieity, we do not consider that in our
main results. We now have five different types of observation as given in Table 2. The
likelihood contributions for the different types are also given in Table 2.

The mdicator 4 in Table 2 15 different from that in Table 1. Note that the hikelihood
contributions for 6 = 1 and 2 are the same. For 6 = 3, the contnbution s

Plty<D<F=ti]= f g (TR et gy
Iy
ape
TavFog
assuming 2+ f 7. Similarly, the contnbutions for d =4 and 3 can be easily obtained
as gven m Table 2.

[L.—tzﬂ'i—;' M L,—ﬁzﬂ'i—;'hl,
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Table 2

[¥ifferent types of ohservation with intermediate ohservation time £y

Types of ohservation Indicator (3) Likelihood cantribution

f=F = Dy 1 fle—tetliy

lh=F=t=<D 2 fie (afip

o =D F=y 1 ,E'_.L}:'T [eieti=Th _ g=tztf=7¥]
Datg=F=t 4 ;*:I_L'J._F'_'..“_: eI =T
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Censored individuals at time # (say) can be effectively of four different types:
namely, (1) ¢ < D F (whether ' <t or ' = 0), (2) D <t <. F, () D=y =t = F
and (4) < D =< " = F. The likelihood contributions corresponding to these four types
are

g BN

—[1 - e latf—y,

1|_1 b t_i”ﬁ_:'“"]

mespectively.

Maxmmum likelihood estimates of the parameters can be obtamed again by using
the EM algorithm (see Dewanji and Biswas, 1998) 1t is o be noted that in this
case also, we find the optimal design by maxmizing P[0 < iy < F|, or the difference
Pl <ty < F|—PID = F = &), as argued in Section 2. The corresponding fy has the
same form as (3) or (3), respectively.

4. Optimal designs

As noted at the end of the last section, regardless of how the parameter estimates
are obtained, optimal fy under any of the criteria introduced in Section 2 is the same
whether one uses 1t as the terminal time or intermediate observation time and 1s given
by (3) or (5). However, in this section, we intend to carry out some comparative study
with traditional o=, %- and c-optimality. As the latier critena work with the expected
information matrix, they will lead to different choiees of optimal £y as terminal and
intermediate observation times. We outline, mn the following, the caleulation of expected
information matrix in both the cases.
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First, when £y 15 the termination time, note that the likehhood contnbuton from a
single observation can be written as, using the third column of Table 1,

Byl Oy gy T
L =[fetatB ) a1} [p—iat BN -z} (1 — et —'.'Iu}
=B | L T
ape” " g Hael
WU A '“}] ) (6)

where ¢ denotes fatlure time for =1 and 4. From Table 1, 1t 1 clear that observaton
on a single individual consists of the vector {4,¢} with the range

{d=10=r=fmlU{d=2r=Rluld=3t=kluU{di=40<i<n}

Therefore, the underlying probability model 15 given by the joint distnbution of {4, i}
which is as given in the third column of Table 1 and also in {6) above. Note that
the four disjoint sets m the range of {d4.r}, as deseribed above, correspond to the four
types of observation in Table 1.

The expected mformation from a single observation, [, can be obtained from (6)
by taking expectation of the negative of second derivative matrix of logl,, that is
—* log L) /60207 with @ = (&, f.7). with respect to the joint distribution of {4,¢}. For
the calculaton of expectations of different elements in the matrix, one needs Pld= 1],
for i = 1,2 and 3, and integration of some terms involving ¢ over the range {4 = 4,
0 = ¢ < g} muluplied by the corresponding sub-density given by

ape !
+F-7
the last twrm n (6), This mtegration needs w0 be done numencally, The probability
Pld = 1] can be casily obtained, by mtegrating the first term m (6) over the range
10 =<t =<1yl.as

[1 _ Lf_h-'—ﬁ“"]ﬁ_."{jt + IH:L

(1— P o | I

and for d =2 and 3, the probabiliies are as given in the second and third terms in
{6). After caleulating the matrix [ for a given set of pamameters, one needs to take the
inverse of it, /', to obtain the asymptotic variance—covariance matrix of = (4, f.7).
For our purpose of estimating the distnbution of D, we seck to minimize the asymptotic
varance of %, the (1.1 th clement of 77!, with respect o g, which gives the raditional
optimal choice for & Let us denote this crterion by 5. In Table 3 below, we give
the optimal choices of £y by eriteria € and %5 (given by (3) and (3), respectively)
and also by the vanance-mmimizing criterion €5 as descrbed above, for different sets
of parameters. The asymptotic relative efficiency (ARE) values of the two designs,
chosen by %, and %5, with respect to the most efficient one chosen by %5, are also
eiven in the last two columns of Table 3. These are obtained as the mto of asymptotic
varances (of &) calculated at #y by €5 and at ¢ by & (and €5, respectively ).

If one is mterested m estimating all the parameters (both the distributions of D
and F), one would consider the whole matrix /77! and seek to minimize trace of /7!
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Table 3

Optimal designs for terminal time £y

Parameters ) Criteria ARE

2 i 4 %, s Wy o o e %, Wy

02 0.1 015 462 270 7.2 11.0 13.0 120 0.92 0.71
0.2 0.25 3.3 LTS 6.5 1.0 1.5 L6 .54 01,60
0.3 0.35 238 1.29 6.5 9.0 9.0 200 0.749 0.54

0.1 0.0 [IN] Bl 4.4 14.5 21.0 230 340 .88 .62
0.1 0.15 5.75 308 13.5 180 19.0 450 081 0.55
0.15 0.2 446 2% 2.5 15.0 16.0 550 0.76 0.51

nas 0.03 0.05 1567 B.75 28.0 420 451 Hh5 .88 (.63
0.05 0.07 1189 647 270 40.0 40.0 120 082 0.57
0.7 0.0 959 514 250 330 Ha 1040 0.78 0.53

0nz .01 0015 4021 2703 oo 110 130 120 0.92 0.7
002 002 2877 1542 [l a0 95 250 El 0.55
0.03 (L5 207 1{.51 6.0 T 15 130 .74 .48

00 00005 0.001 B1093 Hox 140 2100 2300 3400 (.58 X%
0.001 00015 57536 30830 1350 1 80O 14900 2250 081 0.55
0.0015 0.002 44629 21557 1230 1500 1600 47510 .76 0.51

for o/ -optimality, or determinant of /' for “-optimality, or sum of all the clements
of 17! giving vartance of & +ﬁ + 7 for c-optimality. The comesponding results are
also given m Table 3 in columns under o/, % and ¢, respectively, for the purpose
of comparison. As expected, one needs to carry on the experiment for longer time in
order to estimate all the parameters efficiently and that 1s reflected in the results,

The third eriterion %5 scems to give somewhat larger f than those obtained by
% and %2, Therefore, although the optimal designs by % and %2 will lead to less
cificient estimates (in the sense of having larger variance), they will be more cost
efficient. It 15 to be noted, however, that the caleulation of optimal ry by €5 cannot
be done analytically and requires extensive computation with numeneal integration and
numerical mimmization, whereas the same by % and %5 15 available i closed form.
The optimal #y by enterion 65 s less than the g by %), as noted in Sections 2 and
3. Thus, crterion ) secems to give a more cfficient design for £y than does %5 for
estimating %, or the distribution of D, as reflected i the last two columns of Table 3.
The asymptotic relative efficiency of % ranges from about 74% to 92% and that of
€y ranges from about 48% to 71% for the different sets of parameters considered here.

When £ 1% the time of an mtermediate observation, likehhood contnbution from a
single individual, as i (6), can be wntten, usimg the third column of Table 2, as

= Ha-ay
fa= [ﬂc—hﬂ'ﬂlh,. | w2} |i1 i‘h — T{c_{’"'ﬁ—}'}"'l _ c_""'ﬁ—'.'“ }:|
T

o i i
x [_::": " (1 —u—¢=+r:=—-.-u.n}] o [ ape”

sy
] — g~ latf—uN 7
e :+ﬁ—;~{ ¢ }] > (1)
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Table 4
Optimal designs for intermediate observation time 5y

Parameters _ Criteria . ARE
% i 7 %, s %y of L e %, %
02 0.l 0.15 4.62 270 4.8 10 25 A0 09WT 09
0z 0.25 313 1.78 i3 2.5 25 20 09993 0.93
03 0.15 238 129 25 20 20 20 09996 0494
0.1 0405 0.1 811 446 a0 7.5 5.0 60 09982 091
0. 0.15 575 3108 6.1 55 4.5 45 09990 093
0.15 0.2 4.46 236 4.7 4.4 4.0 40 0995 09
005 003 .05 15.67 £75 170 135 100 110 09991 092
005 0.07 [1.89 647 125 105 8.5 S0 09992 093
007 .09 9,59 514 100 9.0 80 §5 09995 (.94
002 001 0.0s 46.21 2703 47.0 ko a0 no 09008 0.94
002 0,03 2877 1542 30 270 225 220 09992 0.9
003 0,045 2107 W&l 225 225 190 20 0993 09
0001 00005 0001 B10.93 446290 690 605 410 565 09930 (.97
0001 00015 57536 30830 S60 460 W0 430 09994 (.95
00015 0002 44629 23557 460 420 W0 3T L0 .94

where + denotes the failure tme. As before, we find expected information matrix by
taking expectation of —& log L,/7080 " with respect to the joint distribution of {d.r}
Once the expected information matrix £, and then 77, is caleulated for a given set of
parameters, optimal g can be obtained using eriterion €5, that is by minimizing the
asymptotic variance of 4 given by the (1, 1)th element of /', As noted before, the
optimal designs by using criteria %, and %, remam the same as those obtained from
{3) and (5), respectively. One can also obtain optimal choices of &y by satisfying .o/ -,
% and c-optimality criteria, as before.

All the optimal choices of £y, for different sets of parameters, are given in Table 4
above, The asymptotic relatve efficiency (ARE) values of the two designs, chosen by
%, and %5, with respect to the most efficient one chosen by 5, are also given in
the last two columns. Since fy 15 an intermediate time of observation, beyond which
the study is carried on to accumulate observation on failures, there s no need to have
large fy (unlike m the eadier case m Table 3 when £y 5 the terminal time) by .-,
- and c-critena to estimate all the parameters efficiently. In fact, the corresponding
fy values are somewhat smaller perhaps to facilitate observation on early occurrence
of 0. However, to estimate z alone, the choices of 1y by ¢ and €5 are similar (ARE
of € 15 almost 1), and the one by %5 15 smaller making it little less efficient (ARE of
s 18 above 90%). Note that, for fixed 2, the optimal designs in both Tables 3 and 4
are different (and mtuitively meaningful) for different values of § and 7. For example,
if i 15 larger, fy s smaller to guard against carber deaths without disease and vice
VeI,
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5. Discussion

As demonstrated i the previous section, the efficiency of our criterion € 15 quite
high. However, whereas the design by % can be obtamed in a simple closed form,
the one by %5 s difficult. Crterion %, therefore, seems like a useful and appealing
alternative to the traditional one, specially when the optimal design is to be obtained
by strategies mvolving multiple stages, as mentioned at the end of Section 2. In cases
like cancer-screening studies or inspection of industral systems, when an intenmediate
observation is primarily meant for eardy detection of discase or fault so as to be able
to take corrective measures rather than estmating the distribution of D, criterion €,
given by (5), serves the purpose well.

Since crteria ¢ and %y optimize some probability terms only and do not depend
on the likelihood, the corresponding designs do not change due to minor changes in
the sccondary aspects of data. For example, when there 1s possibility of censonng or
some missing mechanism inherent in the data leading to different forms of likelihood,
criteria %) and % give the same optimal designs given by (3) and (5), respectuvely; in
contrast, for finding an optimal design by the likelihood-based criteria, the caleulation
of expected information matrix requires knowledge on the censoring distribution or
the missing mechanism which is usually unknown. This 15 the major advantage of our
criteria.

Although we demonstrated the results based on the simple model of Section 2,
crteria 6 and €5 can be casily employed for more general models. The caleulation
of the probabilines P[0 < iy = F] and P[D = F < fy], in general, involves numerical
integration, and so, the maximization required for %, and ®: may not have closed
form solutions, as i (3) and (5). However, numencally finding the optimal # requires
much less computation than having to calculate the expected information matrix for
criterion %5, For example, with model (1) for conditional distibution of F given D,
if we assume 8 Weibull{ 4, p) distribution for D, the probability P[D < iy < F] takes
the form

0 e
[ E_ﬁx_;.“"_”.;.'ﬂ ﬁtp—lc—ﬂz_ﬂ' d.T,
Jo
and the difference P[D <ty < F|— P[D = F < 1] takes the form
L] Ll
3 [ e —ln—x)  p ﬂ-T'ﬂ_ | p—tlix W ga [ c_ﬁx.;.'ﬂ_ﬂ-r'”_ lp—lix G d_t’
Jo Ju

both of which need numerical mtegration, which s sraightforward. Hence, for different
values of (4, p, fB,7), the optimal choiees of ¢y can be found (see Dewanji and Biswas,
1998).

Another advantage of the probability-based cntena %) and %5 is casy incorporation
of one or more covarates, denoted by Z = z, in the optimal design. For example,
if the distribution of D happens o depend on Z = = via the exponential parameter
a=a(z) = e (sav), the optimal design &y = f(z) by %) or %5, can be readily
obtained simply by replacing = in (3) or (3), respectively, by z(z). Therefore, the
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optimal design for individuals with different Z values will be different {making it more
realistic) but can be obtained by wsing one formula. In order o achieve this with
vananee-minimizing criterion %5, one has o do the extensive computation agan and
again for different values of Z.

It is to be emphasized that criterion % 5 mtoduced only for the purpose of es-
timating the distribution of D or any of its characteristics. The comesponding design
may be poor if the purpose 15 anythmg other than this. As seen in Table 3, the optimal
design for estimating all three parameters is very different from that obtained by co-
teron €. Similarly, crterion %5 s to be employed for finding an optimal choice for
an intermediate observation in order to carry out some mspection for early detection
of disease or fault as discussed in Section 2. Although % tums out to be a hittle more
efficient than 5, the latter has protection against failure due to disease or fault before
the mtermediate observation as discussed in Section 2.
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