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ABSTRACT

In this paper, we consider stress-strength modeling for caleu-
lation of system reliability for a general coherent system under
different stress-strength scenarios. We first consider a random
system level stress common to all the components. Then we
deal with the stress present locally at component level in addi-
tion to the common system level siress.
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1. INTRODUCTION
Literature on stress-strength modeling has been generally concerned

with reliability of a unit (e.g.. a component) with strength ¥, which is
subject to stress X, both ¥ and X being independent random variables.
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The reliability of the unit is gven by the probability P[X < Y], which has
been calculated for different distributions of ¥ and X. See [1] for detailed
discussion on this and caleulation of reliability for different types of disiri-
butional assumptions (See also [2] and [3]). Stress-strength modeling for
system reliability has also received some attention ([41-[7]; see also [8]).
However, their attention has been mostly focussed on k-out-of-n systems.
Hanagal [9], apparently for the first time, considered dependent strengths
for the two components in a parallel system subject to common stress and
calculated system reliability assuming bivariate exponential distribution for
the two strength variables. However, there does not seem to be much work
on stress-sirength modeling for more complicated coherent systems. Also,
all the work has been with a random stress common to all the components.
There has been no allowance for different component level stresses in addi-
tion to one common system level siress.

It is to be noted that if there are only component level stresses (no
common stress), then the calculation of system reliability is as routine as
those in Chapter 2 of [10] with the component reliabilities replaced by
PlX;< Y], where X, and Y, denote the stress to and strength of, respectively,
the i th component, fori=1,..., s, with n being the number of components.
If the components act independently, then the calculation is easy; otherwise,
one has to work with the bounds. This case of only component kevel stressis,
therefore, not interesting.

In this work, we address some relevant 1ssues on calculation of system
reliability under different stress-strength scenarios. In Section 2, we discuss
system reliability with a common system level stress for a general coherent
system including some resulis on bounds. Section 3 considers both system
and component level siresses. Section 4 ends with a discussion.

2. SYSTEM RELIABILITY WITH COMMON STRESS

This case has been well-studied with independent strengths of the
components for simple systems as discussed in the previous section. Let us
consider a general coherent system ¢ with » components with random
strengths T, ..., T,. Suppose they are subject to the common system level
stress &, Suppose that the T.'s have marginal distributions given by
Fi=PlTi=f for i=1,. .., n, and 8 follows a distribution given by
Fols) = P[S = 5] with range &. It is easy to see that the system reliability
hy can be written as

hy = f hy(s) f5(s) ds (1
S
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where fi,(s) denotes the system reliability for given 5 = s and fg(-) denotes
the density of 5. Suppose now that the coherent system has p minimal path
sets given by P, ..., Py and k minimal cut sets given by K,...., Ki.. Then,
assuming § to be independent of the T;%s,

hyis) =P [mdx mmT::-'r] P[mm max T} ::-ﬁ]
l=i=p jEP l=i=k jeEK;

One can make use of the inclusion-exclusion principle to compute
figlx) as follows.

hyls) = max lnm T > ﬁ]
l<i<p feb

7
AGfr-|

I
Z [mlnT ::-*.] ZPLFIFI'F;T}ﬂ]-F N )

4=

If the T}'s are independent, all the probabilities in (2) can be easily computed
as, for a given set A of components, Plmin;. 4 T; =4] = l_[;F 4 Fi(s). One can
also caleulate fiy(s) using the minimal cut sets as

fyls) = F[ min max T = ﬂ]

| =i=k [e K;

k
:F[n Sriﬂ;]' = ﬂ}}
k
=ZF|i|mi1c ]‘"J ::-.'.] —ZFLFT;:H&RJT b= '1]+ S )

where, for a given set 4 and independent T)'s, Pmax, , T, >s]=
1 - F[,n: 4 Fils).

For independent T}'s, there is a third approach to caleulate fiy(s) by
exploiting 8 modular decomposition of ¢ given by, say, ¢ = Wiy, ... Wl
Then, fiy(s) can be written as fiy(h, (5),. .., h, (s)), where h(s) with a system
as subscript denotes reliability of the corresponding system, given § =,
which can be routinely calculated using standard methods for independent
components. Then, the system reliability can be calculated using (1).

Let us assume independence of T's for the time. For the two
simplest systems, series and parallel, we get. using (2). hy(s) = [i_, F:f{.v],
and, using (3), hy(s) =1 —[]/_, Fi(s). respectively. When T; follows
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exponential (i) distribution, for j=1,..., n. the above two hy(s)'s reduce
to exp[—s 3 j_ A and 1 — 1‘[;.'= (1 — &™), respectively. If § also follows
an exponential distribution with parameter o, say, then the two system
reliabilities can be obiained as

o

h=rer o

of =174
and
#

o w S w
fy = — —_— —1 3y —_—
!-:& Zﬂ"')"j Za"_}':l"")"f-'_ TR atd i1k

f=1 d=f

for series and parallel system, respectively. We consider three examples
of coherent system taken from Chapter 1 of [10]: () 2-out-of-3 sysiem,
(i) bridge system and (i) stereo system. Briefly, a 2-oui-of-3 system func-
tions if at least two of its three components function. A bridge system has a
centrally located component {3}, with two starting components {1,2} and
two terminal components {4, 5}, in such a way that the system can function
either through one starting component and the corresponding terminal one
(11,4} or {2, 5}) or passing through the central component and the opposite
terminal one ({1,3, 5} or {2, 3,4}). A stereo system has two players {1,2} in
parallel, one amplifier {3}, and two speakers {4, 5} in parallel; the system
functions if at least one player, the amplifier and at keast one speaker work.
For the first two systems, we demonstrate the use of (2) or (3), and (1), o
compute system reliability. Since there exists a non-trivial modular decom-
position only for the stereo system, we demonstrate the use of the third
approach for this example.

For a 2-out-of-3 system, the minimal path sets are {1.2}, {2,3} and
{1,3}; they are also the minimal cut sets. Using (2), we have

hyis) = F\(5) Fy(s) + Fa(s) F3(s) + F(8) Fy(5) — 2F () B(5) Fy(s). (4)

Using (3) also, one can derive (4). For T following exponential ()
distribution, for j = 1,2, 3, and § following exponential (o) distribution,
{4) and (1) give

o N a N o 2o
Tt Ay @tdathy et Ay etk A +Ay

;!d,

For the bridge system, the minimal path sets are {1,4}, {2, 5}, {1.3,5}
and {2, 3,4}, and the minimal cut sets are {1,2}, {4, 5}, {1,3,5} and {2.3, 4}.
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Using the minimal path sets and (2), one can find fi (s) as

hy(s) = Fi(s) Fy(s) + Fy(3) Fo(5) + F1(8) F3(5) Fo(3) + Fols) F3(s) Fy(s)
— Fi(5) Fai5) F3(5) Fa(s) — Fi(s) Fa(5) Fa(s) Fs(5)
— Fy(5) Fal ) Fy(3) Fs(5) — F (5) Fy(5) Fy() Fs()
— Fa(5) F3(s5) Fals) Fsls) + 2F(s) Fa(s) F(s) Fa(s) Fs(s). (5)
This can also be derived using the minimal cut sets and (3). For the T}’s

having exponential(;) distributions and § having exponential{c)
distribution, we get, from (5) and (1),

1) L1 o o

11+)L|+J"L_1 11+J"L3+J"L5 11+J"L|+J"L3+..;'L5 ﬂ+)‘.2+)'._‘.|+)'.q
5

hy=

S
J_=|1:||!+{.J-.—.i'-.‘,-:l o+ A

where L = Zf LR

In general, for a coherent %yel&m with minimal path sets P, ..., o
with the components strengths T)'s following independent exponential( )
distributions and the common @lrea% 5 following exponential{o) distribu-

tion, the system reliability can be written as
=Y - Ty
T = =
< i=1 o+ EJ'F F )L-'. i = J"a + EJ'F PPy )LJ.

For the stereo system, one can use the minimal path sets and use
the above general formula to find A, directly. The number of minimal cut
sets is, however, less than that of minimal path sets. Therefore, it may be
easier o use (3) and (1). We consider a modular decomposition with
modules {1, 2}, {3} and {4, 5}, all connected in series, so that h, (s) =
1l — Flis) Fis) = F|{*|} +F2{'|] —F|{*|]Fz{'|] fry (8) = F(s) and b (3)=1—
Fi(s) Fols) = Fy(s) + Fsls) — Fy(s) Fyls), I‘E'i.pEL[wH}' Then,

hy(8) = (Fi(s) + Fa(s) — Fy(s) Fo ) Fa(s) (Fg () + Fsls) — Fals) Fs()),

which can be expanded and checked with those obtained by using (2) or (3).
The expression for the special case of exponential distributions are now
routine.

All this illustrations requires the assumption of independence between
the T;’s. However, as mentioned earlier, the formula (1), with the help of (2)
or (3}, is very general to include dependent components. For a simple illus-
tration, ket us consider a system with two components (series or parallel)
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with (T, 75) following a bivariate exponential distribution of [11] with
parameters (L, As, & 2) as given by

F{H, f)= P[T) =8, Th = n] =exp[—h ) — oty — djamaxisy, ).
(6)

If the system is series, then fig(s) is gven by, using (2),
hyls) = Plmin(T, T2) = 5] = exp[—{&; + A + A2 k],

so that fi,. from (1), is obtained as /(e + &) + 45+ Ao ) IT the system is
parallel, then, using (2), we have

hyls) = Plmax(T), Ty) = 5] = ¢ - ”[e'_‘]" S R H“:“].

so that f, is obtained as

l 1 l
o + — 2
[ﬂ.+)ﬁ.|+}|.|: ﬂ+)‘.3+)‘.|: 11+)L|+)L3+)L|3]

In general, if the T/s are associated ([10], p29-31), one can have
bounds on fiy(s) in the wsual way. For given § =u. the binary variables
Xi=HT =3, fori=1,..., n, are increasing functions of 77's, hence, asso-
ciated. The structure function, for given s, can be written as ¢(X, ..., X
and, then, hy(s) = P X, ..., X,) = 1], for which the bounds are readily
available in [10] (p34-43) in terms of marginal distributions of X's (or T)'s).
By integrating with respect to the distribution of 8, one can routinely find
bounds for h,, with arbitrary dependence (association) between the T)s,
in terms of their marginal distributions and that of 8. For a simple illus-
tration, let us consider the stereo system, as described before, but with
associated components (that is, the T7's are associated). Also, assume that
the individual T's have exponential marginal distributions with parameters
b=l 5. Then, given § = s, the component reliabilities are given by
p= e ™' for i=1,...,5 which can be used to obtain bounds for the
system reliability, given § =s. For example, the max-min bounds are
ziven by

X
! JE P Je K;

l_[ﬂ;] Efw{-ﬂfmjinil— ﬂ{l—p,-}], 7

where the P/’s (K;'s) are the minimal path (cut) sets of the system. We know,
for the stereo system, the minimal path sets are {1,3,4},{2, 3.4}, {1.3,5} and
{2.3, 5}, and the minimal cut sets are {1, 2}, {3} and {4, 5}. The bounds in (7),
therefore, depends on the relative values of the AJs. For simplicity,
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—3ix

we assume &, = A for all i, Then (7) reduces to ¢
the bounds for the system reliability are obtained as

= fyls) = e 5o that

o ; o
< f, = :
o+ 3L !‘*_a+)u.

Note that, if the T,s are identically (but not independeqlly]qdistribuled,_the
max-min bounds for the stereo system, given § = v, is (F(5))" = hyls) < F(s),
where F(s) = P[T; > 5. This can be integrated with respect to the distribu-
tion of ¥ to obtain bounds for fi,.

3. 5YSTEM AND COMPONENT LEVEL STRESS

In practice, the components of a system may be subjected to some
localized stress (said to be at component level) applicable to only the corre-
sponding component, in addition to the common system level stress 5. Let
these component level stresses be denoted by the random variables
Skl n. While computing reliability, it is therefore necessary to com-
pare the individual component strengths 7,°s with the resultant stress at the
ith component position which is a combination of 8 and ;. It will be useful
to incorporate any knowledge regarding the stress mechanism, in specific
examples, to obtain the resultant stress. In the absence of any such knowl-
edge and for simplicity, we assume, in this work, the resultant stress to be

;= &4 & at the ith component level, for i =1,..., .

Writing X, = /U, < Ti}, fori=1,. ., #n, the system reliahility fi, can

be written as

hy, = P[ max minX; = 1] :P[ min max X, = 1].
l=izp fe P l=i=k jek;

Mote that, if there is no component level stress (ie., §; = 0 for all {), then the
above expression 1s same as that obtained by using (2), or (3), and (1)
However, with no further assumption, one can find bounds of f, using
the marginal distributions of X's, or P[X; = 1]= P[U; = T;]. We shall see
later in this section how to obtain this probability. The system reliability, in
theory, can be obtained using the inclusion-exclusion principle, asin (2) and
{3). It is easy to see from the abowve expression that

hiy= F[CJ[L-'J- < T, je PJ.}}

&
=3 PlU,<T;, jeP]-) PlU<T, jePUP]+-- (8)
i=l1 i
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Also,

i
hy=P [ﬂ[ U, = T}, forat leastone j € KJ-}

i=1

&
=ZP[L:;- < T}, for at keast one j € K]

i=1

—ZP[U,- < T}, for at least one j € K;UKy]+ --- {9)

i=i

MNote that, for a set 4 of components, P[U; <= T} for at least one
jedl=1-PlU; =T, je A]. Without further assumption, it is difficult
to obtain the probabilities in (8) and (9), that is, the probabilities of
the forms P[U) < T}, j € A] and P[U; = T}, j € A]. Let us assume indepen-
dence between S, the 5s and the T)'s; that is, each random variable is
independent of any other. Then,

PlU < T, jed]

= [ P[S;<T;—s, je Afs(s)ds
&

s _Ll [T2[S <14 ]_,f_'.;{.ﬂ ds

where # and f with a random variable as subscript denote the corresponding
distribution function and density, respectively. The other probability can be

found similarly as

I1 f Fs(t — 5) fr(0dt ]J'.": ()ds, (10)

fed

PlUj> Tj, je d]= f {]‘[ f ﬁ'_s;.{:—a-l_f»'r,.{nd:]_,f:s-{.ﬂ-:h-. (11
& Jjed

Note that, when S; = 0 for all j (no component level stress), the integrands
{terms mnside the braces) in (10) and (11) reduce to l_[jHFrl_{:.-] and
[1jc4 Fr(s), respectively, as in Section 2. For a singlkton set A = {i},
PIU; = I} can be found from (10) as [[f Fo(r—s)fr(0df]fs(s)ds. For
f=lyeag, n, these are component reliabilities and can be used to obtain
bounds for h,, when the T's (and 5;s) themselves are associated, as in
the previous section. Although the formulae (8311} look very complicated,
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they can be worked with for a given system and given the distributions.
We illustrate here for three simplest systems, namely, series, parallel
and 2-put-of-3, assuming independence between the different variables.
Let & follow exponential{e), 5, follow exponential(p,) and T follow
exponential(d;) distribution. Since the series system has only one minimal
path set, the system reliability can be written as, using (8) and (10),

hgy=P[U; < Ty, f=1,..., ]

f { F{l e hA- ”])-.f"frd!]af_”"f

f=1F

L)

Ji(Gem)
CI:+ZJ_| i )"_.I'+“:j

Similarly, for a parallel system, since there is only one minimal cut set, the
system reliability can be written as, using (9) and (11),

hy=1- f { e e f c'_“"“_'\']l‘.-c-_j'f'd;]]ac'_"” dy
J _I N
' e .
=1- F e ae "y
C-22)

i=1
M

B Z o i Z QL
- = (A + Ay + @) j-—.f“"-" Ay + ppe )l + Ay +u!]

For a 2-out-of-3 system, recall that there are three minimal path sets:
Py =112}, P, =123} and P;={1,3}. Hence, using (8) and (10), the
system reliability is
3
hy=Y PlU;< T, je Pl—2P[l; < T}, j=1,2,3]
i=1

3 1
X o Iy ) -, o = ( £ )
.Zl:a + 3 sery J.l;[__ ()-.J- + :| o+ E}:I by l_[ Ay +

i=1 i=1

This can also be derived using the minimal cut sets, and (9) and (11); how-
ever, that will be tedious. In general, for a coherent system ¢ with minimal
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path sets Py, ..., £, and having independent exponential stress and strength

distributions as described above, the system reliability can be written as

[ i o l—[( y )
5=
i=1 2 +E.|'F ' ‘J"_I'J'l_:p__ )L.'- +I-IJ-
o _;_{]. )
ph I "
;[‘” + X jenur A e .ﬁl_[u.P_,- ()LJ- + ny j|

Similar general formula can also be given using the minimal cut sets.

4. DISCUSSION

It is clear from (8) and (9) that, even under most general kind of
dependence, one only needs to obtain probability of the type P[U; < T,
jed] or P[U; =T, je A] in order to calculate the system reliability.
This, however, requires a very strong modeling for the joint distribution
of {8, 5,....8:T...., T,} and then a complicated integral algebra. The
situation 15 somewhat easier if we assume S, the vector of 5;'s and the
vector of T7's to be independent of each other, although the 5's (and
the T;'s) themselves may be dependent. Following the derivation of (10),
we then have

PIU,<T, je A
-1
(12)

where the notation and the range of integration is as uwsual. Similarly,
we have

PlU; = T;, j€ A]
-
(13)

Given the joint distributions of the §s and the 7,'s and distribution of S,
one can, in theory, calculate (12) or (13). Although the algebra may be very
tedious, the calculation is feasible with modern computer. To illustrate with
a simple example, let us consider a series system with two components.
Assume that (7, T3) follows a bivariate exponential distribution of [11]

f PITy>8+s5 jeAfis jeafsy, J € .4]1—[&5- ]_f_lg-{.\']fi‘l',

Jjed

fP[Tf <g+3 je ..-‘l]_,l'i_,;.ll_.l.l:_ﬂ{.ﬁ'.l., Je A) I—[ ds; ]_,f_;;{.ﬁ']d.'f.

Jjed



STRESS-STRENGTH MODELING 1195

as given by (6). However, (5, 5%:) 15 assumed to follow an absolutely
continuous bivariate exponental distribution with parameters (pr . .f1y2)
([12]) given by the density function

M {H-] + ILIE},E'_"“ A =3tz s

T for & <52,

e My Ha

fla,5) =

i 1592 fa g + pyal —{ g2 08— B for 5 > 8
o+ o 20

where = py 4+ pa + pya. Then, assuming 8 to follow an exponential
distribution with parameter o, the system reliability can be caleulated as

;!»:F[Lﬁ - T|, L'r: < Tz]

oL
Ty A+ A+ )
fa () + fya) oyl + pya)
At pp At At Eat A ]

where L =& 4+ ha + 45,

If the resultant stress ) is non-linear in §; and S, one can, in theory,
proceed by using (8) or (9), but it involves more difficult algebra. It is to be
noted that the formulae (8) and (9) hold for any general system with any
seneral stress-strength relationship. This allows one to exploit any physical
knowledge regarding the siress mechanism in writing L5 as a function of S;
and § (and may be other §/'s).

In peneral, both stress and strength may be time dependent. The
strength of a unit may decrease in time because of natural decay; the stress
on the unit may also change with time because of change in environmental
conditions. Some work consider stresses being applied as loads at discrete
time points possibly following a cyclic pattern (Chapter 8 of [1]; Chapter 4.2
of [13]) when the strengths may also be different. More generally, stress X(1)
and strength ¥{¢) at time ¢ may be modeled as independent stochastic
processes and reliability at time £y may be defined as (Johnson, 1988)

PIY ()= Xin), Torall s = 1]

See also [14] dealing with degrading strengths. It may be of interest to extend
this stochastic process formulation for system reliability and also for both
system and component level stress, which will be taken up later.
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