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Abstract

The minimum disparity estimators of Lindsay (1994) combine full asymptotic efficiency and attractive ro-
bustness propertics and hence are useful practical tools. The residual adjustment function (RAF) introduced
and used by Lindsay in this context helps to graphically interpret the robustness of the estimators, but this
representation is not completely satisfactory since the domain of the RAF is infinite. In this paper we
develop another graphical representation to summarize the behavior of the minimum disparity estimators in

relation to maximum likelihood which gives useful insights.

Kejpwords: vesidual adjustment function:; Pearson residual; Nevman vesidual.

1. Introduction

Suppose that X, ..., X, represent a random sample from a discrete distribution with density fa(z).
Without loss of generality, let the sample space be X = {0,1,2,...}. Let d(z) be the empirical
density at z (relative frequency at x) based on the given sample. Define the Pearson residual at x
to be
#(z) = &) —folz)
falz)
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Let G{-) be a thrice differentiable convex function on [—1, o0) with G{0) = 0. Lindsay (1994) defined
a disparity — a measure of discrepancy between the data and the model density — based on the

function (-, as

pcld, fa) = Y G(8(x)) falx). (1)

re X

Notice that the range of Pearson residual § is [—1,00). Under certain regularity conditions, all
minimum disparity estimators are first order efficient; in addition many of them have attractive
robustness properties. A similar representation with integrals replacing sums and involving kernel

density estimates can be wsed to define disparities in the continuons case.

Let g'(-) and g"(-) represent the first two derivatives of the function g{-) with respect to its
argument. Under differentiability of the model, the minimization of the disparity measure (1)
corresponds to solving an estimating equation of the form

~Vp =Y A@B(2))V folx) = (2)

rEX
where A(d) = (1 +8)G"(d) — G{F) and ¥ represents the pradient with respect to 8. The function
A(#) can be centered and rescaled, without changing the estimating properties of the disparity, so
that we may A(0) = 0 and A'(0) = 1. Mininmm disparity estimators have received wide attention
in statistical inference becanse of their ability to reconcile the properties of robustness and asymp-
totic efficiency. See Lindsay (1994) for more details of the method, and Basu et al (1997) for a

comprehensive discussion including some of the later work.

2. Residual adjustment function and weighted likelihood

We will call the centered and scaled function A(4) the residual adjustment function (RAF) of the
disparity. Now, consider the likelihood disparity (LD)
D(d, fo) = » _ d(z)log (d(z)/ fa(x)),
re X

which is minimized by the maximum likelihood estimator (MLE) of 8. In order to achieve the

appropriate standardization so that A(4§) has the aforementioned properties, we will modify “he



above form to

D{d, fo) = Z [d(z)log (d(z)/ folz)) + falz) — d(z)].

Fa=r
Thus the G{-) function for likelihood corresponds to Grp(d) = (§+1) log(d+1)—4. The corresponding

estimating equation has the form

—VLD(d, fa) =Y _ 8(z)V falz

so that App(d) = §. The RAF's for the Hellinger distance and the negative exponential disparity,
two other prominent disparities in the minimum disparity literature, are given by Aup(d) = 2[(§ +
1)4/2 — 1), and Angp(d) = 2 — (2 + d)e™*, with the corresponding G(-) functions being Gup(d) =

2((6 +1)4% — 1)? and Guen(d) =e™* +4 — 1, respectively.

It is clear that since the forms of the estimating equation (2) are otherwise equivalent, the
robustness and efficiency properties of the minimum disparity estimators are governed to a large
extent by the form of the RAF A(d). For example, large outliers, which manifest themselves as
large positive values of §, are much better controlled by those disparities for which A(4) — § as
§ — oo, The Hellinger distance and the negative exponential disparity are two such examples. See,

for example, Lindsay (1994, Figures 4 and 5) for the praphs of the RAF's of wariows disparities.

As a praphical tool, the residual adjustment function i not completely satisfactory in explaining
the robustness features of the minimum disparity estimators. There is a weighted likelihood formula-
tion of the mindimum disparity estimating equations derived from equation (2) (see Basu and Lindsay
1994:; Markatou 1996; Basu et al 1997; Markatou et al. 1998). This representation is perhaps a little
more intuitive, becanse this brings us closer to the familiar fold of likelihood. However its usefulness
is also tempered by the fact that, as in the case of the residual adjustment function, the domain of

the function is unbounded.

In the following we present a graphical approach which gives a simple and patural summarization
of the estimation method in relation to maxdimum likelthood. Consider the estimating equation (2.
Since A(0) = 0, it is equivalent to look at the equation

> AG(@))V fa(x) = (3)

=)



Our aims are to (a) appropriately scale the A(d) function so that the resulting equation is consistent
with (3) and the scaled version is useful in terms of providing meaningful description of how the
estimating equation compares with that of MLE; and (b) provide a simple praphical representation

of such a scaled measure visnally explaining the above description. Notice that we can write equation

(3) as
> wl(d(2))8(2)V fa(z) =0,
=0
where
Ald{z
w(d{z)) = % (4]

We choose w(d) as the scaling that we will use to describe that comparison between the minimum

disparity procedure and maximuom likelihood.

Before we proceed to our graphical presentation, some dicussion of the wefulness of the above
weight function is useful. There may be several possible ways to scale the function A(4) that are

consistent with equation (3). In particular, one could use

with w(e) = A'(c). Which choice of weight is right in the sense that a weight greater than or less
than certain constants is meaningful in comparisons with the MLE, and why should we choose the

weight in (4) in particular?
Suppose 7(-) is the true density and & = T{7) where T'(-) is the minimum disparity functional.
The influence function T'(-) of the functional T(-) at y is given hy

i A'(6(y)uo(y)
Y 4@ @i @) — 3. AB@) v folz)’

where ug(x) = Vlog fa(z). This looks like the influence function of the MLE except that (i) it has
weight A'(#) instead of 1 in the score portion and (ii) it has weight A{§) instead of § in the second
term of the denominator. Term (i) for MLE, represents the change in information that arises in
moving fa(-) to 7(-). Thus if we consider “information constant” neiphborhoods of the model, A'(§)
represents the change in weight. However, although A'(#) itself is in many ways the hest tool in

the comparison of the minimum disparity method with maximom likelihood, it is not possible to



rewrite the estimating equation (3) wing A'(§). But when we we the weight A(8)/4, the weights
are centered around 4 = (), which seems to be a natural place to center the weights, Secondly for
small 4, A(8)/d = A'(4/2) + o(#?). Finally, for most examples it seems that A(#)/d and A'(4) are
similar in sign and information. Given these arguments, w(d) = A{4)/§ seems to be the best choice

for a weight function.

One can interpret w(d) as the degree of downweighting (overweighting if w(d) > 1) provided
by the method in relation to maximum likelihood; the latter corresponds to w(d) = 1, identically.
To represent the weight function (4) graphically, our obvious difficulty is that the domain of the
function w{d) & wmbounded. To overcome this problem, we take the following route. In analogy

with the Pearson residual, define the Neyman residual as

Notice that the Neyman residual takes walues on (—o0,1). To distinguish between the residuals, we

will refer to the usual Pearson residual as dp(z). We now define a combined residual 8.(z) as

dplz) o d
5ol = plz) = fa _
dnlz) @ d=fa

The Pearson and Neyman residuals are related as

dn(x)
dp(x) = s

so that the weight A(dp)/dp becomes, in terms of the Neyman residuals,

1 _'61\"
A

S :]
1—dy"

A(

Note also that the combined residual 4. takes values on [—1,1). Using these definitions we then

redefine the weight function as

5 —1<4. <0

we(b) =4 |, f{m fail (5)
TLA{M_—:-E] 0<d. <1
A'(s0) 5= 1



Thus, on the positive side of the faxis we can interpret (5) to be representing the weights (4) as
functions of Pearson residuals but in the Neyman scale. Although the domain of §,. values is a right
open interval, we define w.(-) at 4. = 1 through continmity for the sake of completeness and ease of

interpretation.

Notice that the above results in a smooth weight function w.(-) which i differentiable at zero (the
point where the Neyman and Pearson residuals are merped alonp the d-axis). Notice further that
wherever the dieparity downweights the corresponding values relative to mascimum likelihood, the
graph lies below the horizontal ine w,.(48.) = 1. This is true for the case of inliers as well {observations

with less data than expected under the model). For the likelihood disparity w.(4.) = 1, identically.

Graphical representations (via the function defined i (5)) of different families and detailed
analysis of their implications will be carried out in the following section. Here we summarize the spirit
of the method by presenting the graphs of the RAF’s of the likelihood disparity, the Hellinger distance
(HD), the negative exponential disparity (NED), the Pearson’s chi-square (PCS), and the Neyman's
chirsquare (NCS) as well as the corresponding weight functions — given by (5) — in Figure 1. The
RAF’s for the PCS and the NCS are given by Apcs(d) = 6 + 62/2 and Ancs(d) = /(1 + 8) with

the corresponding G(-) functions being Gpes(d) = 8 /2 and Gues(8) = 62 /[2(8 + 1)), respectively.

*¥**% Fipure 1 is around here. ®**

There are three important features of the weight function that become directly visible in Fig-
ure 1{b): the behavior of the weight function near zero, to the left of zero and to the right of zero.
We first consider the interpretation of the behavior near § = (. The requirement that A'(0) = 1
puarantees that the weight function passes through the horizontal line w.(4.) = 1 at §. = (. The
derivative w(4,.) equals A”(0)/2 at 4. = 0; thus for functions with negative values of the curvature
parameter A”((}), the weight curve dips below the horizontal line as § moves away from zero in the
positive direction and rises above if A”(0) is positive. If A”(0) = 0, as in the case of the NED,

the weight curve is tangent to the horizontal line at 4. = 0. It follows from Lindsay (1994) that

A"(0) = 0 implies second order efficiency in the sense of Rao (1961, 1962). More generally, curvature



at zero & a measure of second order deficiency. When A”{0) = 0, the second derivative of w.(4,.)

exists at 4. = 0 and equals A™(0)/3.

The interpretation of the right tail, 4. = 0, is based on the fact that §.(z) close to 1 means that
there is much more data in the cell than the model fp predict. For the HD, the NCS and the NED
the weights converge to zero at §. = 1, while for the PCS this poes to oo, Compared to the HD,
the NED provides lesser downweighting for moderate outliers (a consequence of its second order
efficiency property) but higher downweighting for more extreme outliers. In Section 4, we will give

an example that illustrates the effect of downweighting outliers.

Turning to the left tail, values of 4.(z) near —1 imply that there is significantly less data at x
than predicted by the model. Such imliers can be created by small sample sizes, or in the case of
infinite sample spaces will occur at every empty cell. The PCS and NED downweight inliers (the
graph remains below w.(4.) = 1 on the left of §. = 0), but for the HD inliers get higher weight,
becoming twice that of LD when 4. = —1 (corresponding to empty cells). For the NCS this weight
is actually infinite, sipnifying that the NCS is not even defined when there i a single empty cell.
We note that the weight comparisons are made with the maxdimnm likelihood estimator. The latter,
although not outlier robust, is nlier robust in the sense that the nference is not critically affected
by inliers. However many of the well known robust disparities such as the Hellinger distance end up
greatly mapnifying the effect of inlying cells, often leading to poor properties of the corresponding
methods in small samples, where the desipn inevitably leads to several inliers and empty cells. An
example will be given in Section 4. We therefore believe that the best weight curves are nearly flat
to the left of zero. Another approach to tackling this problem is to modify the distance to include an
empty cell penalty. Harris and Basu (1994) and Basu et al (1996) take this approach and show that
this can dramatically improve the methods — demonstrating the importance of inlier robustness.

1=4

For yet another approach at controlling inliers, see Park et al. {1995).



3. Graphical representation

In this section we graphically represent the weight function in (5) for several different families of

disparities. The sic families looked at in this investigation include:

(a) the power divergence family (PD; Cressie and Read 1984);

(b) the blended weight Hellinger distance (BWHD; Lindsay 1994; Basu and Lindsay 1994; Basuo

and Sarkar 1994);
{¢) the blended weight chi-square distance (BWCS; Lindsay 1994; Basu and Sarkar 1994);
(d) the generalized negative exponential disparity (GNED; Bhandari et al. 2000);
je) the generalized Kullback-Leibler divergence (GKL; Park and Basu 2000);

(f) the robustified likelihood divergence (RLD; Basu, Chakraborty and Sarkar 2000).

The graphs of the weight function in (5) for the above families are presented in Figure 2. Given the

data d{z) and the model density fo{x), these six families, each indexed by a single parameter o, are



given by

PDald, fo) Z [rx {ox +1) e {( ;{;jj ]u - l} T iw] ‘ e

BWHD,,(d. fa) = (z) : a=1—mn a e [0,1]
oy +r1:1,,-'fg
E“Cqu d f,ﬂ = ZM a=1—u rtE[{]',l]

D { exp (o= ad(@)/ o)) - 1} +

(I ]

o =)

GNED.(d, fa) = D

e X

RLDu(d, fa) = > [dlx)log (d(=)/ falz)) + fol(z) — d(z)] a € (0,1

asdf fa 1/
o
+ E z)log & + o fglx ]] E [d{;r::llug a+ ffg{;r::l] . a=1—a
Il
o f gy df fa=l)a&

GKLod, fi) = Y [22h1og (S12) — (Z2L 4 Lol2)y (nﬁf'jﬂ—n)]. ae(0,1]

DALY ML R px

We have, in our graphs, concentrated on o in the range [—2,1] for the PD, [0), 2] for the GNED,
(0, 1] for RLD, and on [0, 1] for the other three families. Although the actual ranges of possible
vahlies of the parameter is larper than those considered in some cases, there are no practical reasons
for considering the members ontside this range. Standard distributions generated by specific values
of o in each of these families are indicated in Table 1, together with the G(#) and A{4) functions of

these families.

For comparison, we present the second order efficient member of each of the families in the
corresponding praphs. For the PD and GEL families, the likelihood disparity itself is the second
order efficient element. For the RLD family, all members are second order efficient. The second
order efficient member of BWHD & also third order efficient (A™(()) = (), so the corresponding
weight curve has a second order contact with the w,. = 1 line. The graphs show some interesting
characteristics which cannot be praphically described via the BAF curves. Particularly noticeable
is the phenomenon that for the BWCS, BWHD, and GNED families, the weights converge to zero

in the limit as 4. — 1 even for such disparities which would appear to be highly nonrobust when



viewed through the RAF. For the RLD family, all weipghts comverge to zero as §. — 1 s0 long as
a < 1. Same is the story with the GKL family as long as o > 0. In Figure 1 (b)), notice that the
weight functions for the PCS and the NCS are straight lines on the negative side and positive side
of the §,. axis respectively. This is intuitively expected since 4. in the negative side of the axi equals

the Pearson residual, while being the Neyman residual on the positive side of the axds.

Different families treat inliers differently. The PD family, the BWHD family, and the GKL family
have problems with inliers in the sense that all the robust members of these families (say those with
curvature smaller than zero) inflate the weight of the inliers. As such empty cell penalties or other
inlier corrections (Harris and Basu 1994, Basu et al 1996, Park et al 1995, Basu and Basu 1998)
may be expected to improve the small sample performance of the corresponding estimators and tests

under the model.

The BWCS and the GNED families, however, have large degree of natural protection against
inliers. In the GNED family, for example, there is no serious inlier problem even for highly robust
members of this family. For the BWCS family, robust members such as the SCS (symmetric chi-
square, corresponding to o = 1/2) appear fairly stable against inliers. For the RLD family, there
is never any overweighting either for inliers and outliers, the weight function always downweights.
Notice that dy = o when §p = &/a = (1 — a)/a, so that in our graphical study of the RLD dis-
parities, the weights represent downweighting for |4.| = a. While we have chosen the one parameter

formulation here, one could choose the RLD as a function of two parameters o, 7 such that:

—qt : &< —n
A@d)=14 4 : —azd<g - (6)
i3 : d>3

In terms of the graph this would mean an element of the positive side component of the graph being
combined with an element of the nepative side other than its own counterpart. The RLD family
also deal with an extended definition of disparities. For the RLD, the RAF is not differentiable at

the points —a and o/, but is differentiable in a neighborhood of zero.

10



4. Examples

Finally we looked at two examples to demonstrate some of the effects observed in our praphs. In
the first example we study the effect of inliers. The binomial{3, #) model is fitted to four sets of
data on the cells 0, 1, 2, and 3. The HD, the BWHD,,_; g, the NED and the GKL, 1 divergences
are chosen to be compared to the MLE. The first data set fits the hinomial model exactly and all
methods lead to an estimate of 8 = (1.5, However for the other three data sets the cell 0 represents
an inlier in relation to the binomial model. The HD shifts further than the MLE from 0.5 in either
case. The BWHDy, g exhibits a shift which is even more pronownced. In either case one can see from
the graph that these divergences are not inlier robust like the MLE and have greater sensitivity to
them. On the other hand the NED which has lower sensitivity to inliers in comparison with the
LD, generates estimators which shift less than the MLE in either case. For the GKL divergence,
whose treatment of inliers is similar to that of the MLE, the shift is alnost identical. This example

demonstrates the possible increased wariability that inlier sensitive methods may experience.

In the second example we imvestipated the impact of the weights dipping to zero at the right hand
tail of the curve for the families BWCS, BWHD and GNED. We restrict ourselves to these three
families in this example to show that some of the apparently nonrobust members of these families
are not severely affected by a huge outlier. We consider a part of the drosophila data originally
reported by Woodruff et al. (1984), and analyzed by Simpson (1987). The frequencies of frequencies
of danghter flies having a particular lethal mutation in the X-chromosome are considered where
the male parents have been exposed to a certain degree of a chemical. This particular experiment
resulted in 23 flies having no such danghters, 7 having one such daughter, 3 having two such danghters
while one male had 91 such daughters! A Poisson model is fitted to the data, and notice that even
the members of these families with very small values of o successfully downweight the outlier and
generate reasonable values of the mean parameter #. Although the outlier & nmisually larpe, it fails to
destabilize these estimators. The corresponding values of the madmum likelihood estimator (MLE)
and the minimum PCS estimator, with and without the outlier, are also reported for comparison.

The effect of the large outliers on the last two disparities & clear; the results are totally different

11



with and without it.

Table 1: The G{-) function, the A(-) function, and the curwature parameter of different disparities.

Here e = 1 — o,

Disparity (4] Al A"
(d+1)2+i—1 & [F+1)7t -1
PD o fix+1] T w41 o
Note: NCS(a = —2), KL(a = —1), HD(a = — 1), LD{(a = 0), PCS(a = 1)
T £ & & 42 o
BWHD Hoey B 1+ 2 [y F+1+a]2 T3 [y A+ T+a]3 1 —da
Note: PCS{a = 0), HD{a = 1), NCS({a =1)
BWOS i i af_4_12 1— 1
i Aot +1 41 + £ uﬁ+1] TaeE
Note: PCS(a = 0), SCS(a = ), NCS(a = 1)
CNED el I::r+1]—||:u+;]+nﬁ|+:_“5 L
Note: PCS(a = 0), NED(a = 1)
&4+ 1 loga + o —n § < —n
( 2
RLD 6+ 1log{d+ 1) —4 4 D —a =8 < afo 1]
4+ Vilog{l/a) — afa ol 8= afa
Note: LD{e = 1)
CKL wf f41] I(J&M-'-;];:::l_i;:f]-'-l] Log (ovf 41 ﬁ I{}g{(ﬂ; + ].:| iy
Note: LD{n=0), KLin =1)
Table 2: Data sets for binomial Bin(3, §) model.
Sample (z;) Estimates
Frequency - -
0 1 2 3 ML HD BWHD,—gs NED GKL.=q1
Drata 1 40 40 10 (1.5 (1.5 (1.5 0.5 0.5
Diata 11 0 40 40 20 (.G 063 0830 L5880 (0603
Drata 111 040 40 10 (L556  0.593  0.799 0542 (LG58
Data TV 0 43 43 13 (.56 0577 0.624 L5651 0562
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Table 3: The estimated parameters under the Poisson model for the drosophila data. The estimated

parameters under the LD are # = 3.059 and ¢ = 0.394 with and without the outlier. The same are

# = 32.565 and § = 0.424 for the PCS.

I (101 1 0.2 1/3 1/2 0.7 1.9
BWHD

i (.423 (416 (0.407 .391 (364 (L3505 (. 166G

fu (.01 1 .2 1/3 1/2 0.7 1.9
BWCS

i (.423 0.417 (409 (1.398 (381 (353 0.297

fu (.01 1 .2 1/3 1/2 1 2
GNED

i (424 (1.422 (.419 (1416 (412 (0.397 (361
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Figure 1: RAFS and weight functions of LD, PCS, HD, NCS and NED.
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Figure 2: Weight functions of several disparities. (a) PD; (b) BWHD; (¢) BWCS; (d) GNED: (e)
GKL: (f) RLD.
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