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We use o general property of Fourier transform (o obtain direct proofs of recent
divisibility results on the Walsh transform of correlation mmmune and resilient
[unctons. Improved upper bounds on the nonlinearity of these lunctions are obtained
frem the divisibility results. We deduce further infermation on correlation immune
and resilient functions. In particular, we obtain a necessary condition on the algebraic
nermal form of correlation immune functions attaining the maximum possible nonlin-
arity.
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1. INTRODUCTION

Boolean functions are extensively used in siream cipher systems.
Important necessary properties of Boolean functions used in these systems
are balancedness, high order correlation immunity (CI), high algebraic
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degree, and high nonlinearity. Constructions of Boolean functions possessing
a good combination of these properties have been proposed in [10, 11, 13].
However, it is imporiant to study the exact nature of the relationship between
the above mentioned properties. This topic has received a lot of attention in
recent times as evidenced by the papers [2, 10, 13, 14].

Siegenthaler [12] has shown that any m-Cl function (0 < m < n) in n vari-
ables has algebraic degree smaller than or equal to n — m and that any
m-resilient function (0 = m =< n) in » variables has algebraic degree smaller
thanorequal ton —m —1ifm=n—1land equal to 1 ifm=n— L.

Sarkar and Maitra showed in [10] that the Walsh transform values of an
n-variable, m-resilient (resp. m-CI) function are divisible by 2772 {resp. 277 1),
This provided nontrivial upper bounds on the nonlinearity of resilient and Cl
functions, independently obtained by Tarannikov [13] and by Zheng and
Zhang [14]. The maximum possible nonlinearity of any n-variable, m-resilient
{resp. m-CT) function is 2" 1 — 2" %1 (pegn 2971 _ 3" Tarannikov [13] showed
that resilient functions achieving the maximum possible nonlinearity must have
degree equal to n —m — 1. Also Zheng and Zhang [14] showed that the upper
bound on nonlinearity of Cl functions of high order is same as the upper bound
on nonlinearty of resilient functions of same order. In a more recent work, Carlet
[2] showed that the Walsh trandorm values of n-variable, m-resilient, degree
d functions are divisible by 2" +2*ln == =24 The approach in [2] is to use the
numerical normal form [3] to obtain results on the Walsh transform.

In this article, we continue the study discussed above. In contrast to [2], we
obtain our results directly from properties of Fourier and Walsh transforms
{which are presented in Section 3). The divisibility resulis on CI functions are
presented in Section 4 and their nonlinearity is studied in Section 3, in which
we also give a necessary condition on the algebraic normal form of any CI
function attaining the maximum possible nonlinearity.

2. PRELIMINARIES

In this section we introduce a few basic concepis and resulis. By F; we
denote the finite field GF{2) and the addition operator over F; (and more
generally over F}) s denoted by &. The (Hamming) distance between two
strings 3, 3, of same length is denoted by dis,., 5;) and is the number of places
where 5, and 3, are unequal. The (Hamming) weight of 5 is the number of
ones in s and is denoted by wi(s). The inner product between two n-bit vectors
x, y 15 denoted by {x, yv». By H , we denote the Hadamard matrix of order 2
defined recursively as

1 1
H, =|:1 _1:| and forr= 1, H =H _,&H,,
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where @ is the Kronecker product. An m-variable Boolean function
fixy. ... .x,) (ie, a function from F2 to F) is balanced if we{f) =2""" (the
weight wi{ /) of fis the weight of its associated string of values; it is the size of
its support {x € F3: fix) = 1}). The function f'can be represented uniquely by
a multivariate polynomial over F; called its algebraic normal form. The
degree of this polynomial is called the alyebraic degree or simply degree of [
We will use the following consequence of McEliece’s theorem on cyclic codes
(see [6, p. 447] )k if [is an n-variable, degree d function then wi{ ) = 0 mod
in — 11d

Functions of degree at most one are called affine functions. The set of all
n-variable affine functions is denoted by A(n). The nonlinearity nl{ ) of an
n-variable function [ is defined as

nl(f) = min (d(f.g))

{where the distance d{ [, g) between the functions [ and g is the distance
between their associated sirings of values); i.e., nl( [) is the distance between
J and the set of all n-variable affine functions. The maximum possible
nonlinearity for n-variable functions is denoted by nlmax(n). An important
tool for the analysis of Boolean functions is the Walsh rangform. which we
define next (see for example [4]). The Walsh transform of an n-variable
functionf(x,. ... . x,) is the real valued function over I} whose value at every
ue Fy is defined as

Wiy ¥, (=1)Hms,

e &y

For0 <i=2"— L setf, =(— 1" -+, where i,, ....i, is the binary repres-
entation of i Then the following holds,

H (=1, ., (1) = [H, . (20— 19T

where *' " denotes transposition. A function j of 2k variables is called bent if
Wi (u) = + 2%for all u € Fi**. These functions are important in both cryptogra-
phy and coding theory since they achieve the maximum possible nonlinearity
among all 2k-variable functions.

Correlation immune unctions were introduced by Siegenthaler [12] 1o
withstand a class of divide-and-conquer attacks on certain models of stream
ciphers: a function f{x;, ..., x,)is mth order correlation immune (m-CI) if the
distribution probability of its output is unaltered when any m ofits inputs are
fixed. Xiao and Massey [5] provided a spectral characterization of correla-
tion immune functions. A function [is m-Clif and only if its Walsh transform
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W, satisfies Wi(u) =0, for 1 < wiu) < m. Notice that the two constant
Boolean functions are n-Cl, but they do not present interest from a crypto-
graphic peint of view. Function J is balanced if and only if Wi{() =0
A balanced m-Cl function is said to be m-resilient.

By an (n, m, d, .A7:Cl {resp. {n, m, d, A )resilient) function we mean an
n-variable, m-Cl (resp. m-resilient) function having degree d and nonlinearity
A7 Note that an(n, m, d, A" )-resilient function is certainly {n, m, d,.4"}-CI but
the opposite does not necessarily hold. In the above notation, we may replace
some component by — if we do not want to specify it

3. FOURIER AND WALSH TRANSFORMS

The Fourier transform of any real-valued function ¢ on F;' is defined as:

P =Y @) (—1,

xeFy

The Walsh transform of any Boolean function [ on ' is the Fourier
transform of the real-valued function ¢ = (—1)¥. We have:

W0 = 2" — 2we(f). ()

An important property of Fourier transform is the following: let E be any
vector subspace of F2' and E* = {x e I ¥y e E, {x. y» =0} its orthogonal.
Then

Yo=Y - =IE ¥ o

ug ue ExefFl xe EL

where |E| denotes the size of E. This comes from the fact that the sum
Yool — 1F=* is null for every x¢ E*. Denoting by /.. the restriction of fto E*
and applying this last equality to ¢ = (— 1}, we obtain:

Y Wylu) = [EW;,.(0) = |E[(E*] — 2wt (fi)) = 2 — JE|wie (fy) (2)

ue £

Motice that relation (2) applied, for any a e FY', to the function f{x) & {a, x7
expresses the sum of the values taken by the Walsh transform of fon the flat
a + £ by means of a value of the Walsh transform of f;.. Bui we shall need
only relation (2) here.

A particular case of relation (2) is when E equals the vector subspace of
F} of all words covered by a given word v. We write x = v if x; < v; for all
i such that 1 =i = n, and we consider the vector subspace E, = {xe /"
x = v}. The orthogonal of E, is the vector subspace E; ofall words covered by
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f=v@(l, ..., 1) and relation (2) becomes

Y Wilu) = 2 Wy (0) = 2" — 27 (), 3

ue K

where [, denotes the restriction of [ to E,. This function will be viewed in the
following as a Boolean function in n — wi{v) variables, since x € E; is equiva-
lent to Wie {1, ....n}, (r; = 1) =(x; = 0).

Remark

1. Relation (3) can also be applied to the function g*(x) = f{x & a), where
a is any word of F3'. If fis m-CL then Wiu) = 0 = Wi.(u)if 1 < wt(u) < mand
thus for every word v such that wi(v) < m, W(0) = 2" W..{0). It can be easily
shown that this necessary condition is also sufficient. It is in fact equivalent to
the original definition of CI functions by Siegenthaler recalled in the intro-
duction.

2. Let fbe anin, m, —, —FCI function. According to relation(3)applied to
any v & F5' of weight m, W0} is divisible by 2"*!, This gives an argument of
the fact that [ has degree smaller than or equal to n — m: suppose that [ has
degree d = n —m + 1 and consider a term x* = x}', ..., x* of degree d (ie.
such that wi(h) = d) in its algebraic normal form. Then the Boolean function
Ji having degree d which is the maximum possible degree for a function
defined on a d-dimensional vector space has odd weight and according to
relation (3) applied with v = b, W(0) is not divisible by 2", a contradiction.

3 Let f/ be an (n, m, —, —}Cl function and ve I5' be such that
1 = wilr) = m. Then, according to relation (3), [is balanced iff / is balanced.
This shows by a similar argument as abowve that /" has degree smaller than or
equal to n — m — 1. Moreover, if f'1s balanced and if v 1s any word of weight
m + 1, then according to relation (3), W{v}is null if and only if f; is balanced.

4. Relation (3) also permits us to prove that any bent function on F,
neven, andn = 4 has degree smaller than or equal to n/2: suppose that a bent
function has degree d = n/2 and consider a term x” of degree d in its algebraic
normal form. Then the Boolean function f, has odd weight. Thus, 27 7¢*!
wil i) is not divisible by 2 7¢%2 and it is therefore not divisible by 272+,
According to relation (3) applied with v = b, this is a contradiction with the
fact that Wi{u) equals + 2" for every u and that Ej has even size (b cannot be
null, since [ has even weight). This simplifies the presentation of the proof by
Rothaus in [8].

4. CORRELATION IMMUNE FUNCTIONS

In this section we apply relation (3) to correlation immune functions.
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Tueorem 4.1, Let | be an {n, m, d, =)-CI nonconstant function {resp. an
in, m, d, —)-resilient function). Then for all ve '

Wj(1) = 0 mod 2+ 1+ —m= 101 (rosp Wiip) = 0 mod 27+ 2*len —m =24l

Proof. Let j be an (n,m,d, —)-CI nonconstant function. Choose v in
relation (3} with wi(v) = m. Since [is m-CL Wju) = 0il 1 < wi(u) < m. Thus,
Wi{0) = 2" — 2" " Yy ( f;). The function f; is an (n — m)-variable function with
some degree d;, < d. Note that d;, must be greater than 0, since il d, = (), then
wif fi) equals O or 2" " and thus W{0) = + 2" i.e.[isa constant function. By
McEliece’s theorem, we have wi(f,) = 0 mod 21~ ~ W], Since d, < d we
get (n —m — 1)dg = (n —m — 1)/d and hence wi{ f) =0 mod 2~ J,
Thus, according to relation (3), W0} = 0 mod 2™+ ! ¥l —= = 1, Since for
1 < wilr) < m, we have W{v) =0, this proves the result if 0 < wi(r} < m.

For wiv) > m we proceed by induction on the weight of v Let
wi{r) = k = m. Then from relation (3), Wi{v) = 2" — 2" Yl f) — ¥, ., Wiu),
where u=v means u="v and u v and where f; is an (n — k}variable
function with some degree d, = d. Again using McEliece’s theorem and the
fact that d; < d we get wi(f;) = 0 mod 2/~ * =~ " i is easy to check that for
k=m we have k+1+|(n—k—1)d|zm+1+|(n—m— 1)/d]. Thus
2% Ly i) = 0 mod 2"+ 1+ w1 For 4 < v, we have wi(u) < wi{v) and
hence by the induction hypothesis we get W{u) = 0 mod 2™ !l —m~ 1l for
all u < v. This gives us

Wiie) = 0 mod 2™+ 1 +Lin=m=1id]

which completes the induction step and the proof.

In the case of resilient functions, the proofis similar, but we choose at the
first step a word v of weight m + 1instead of m. Notice that the result can also
be deduced from Theorem 4.2 below. =

Thus, all Walsh coefficients of f"are (at least) divisible by this same power

of 2. We give below a result which permits us to say more, depending on the
weight of v

Tueorem 4.2, Let e an (n,m, d, —)-CI nonconstant function and ve I,
with wilv) = m + i, for some i = 1. Then
W) + 4 WAD) = 0 mod 2m+2Flm—m=2ydl

where A, = land for i > 1, A; =1 =2 (004,

Proof. The proof 18 by induction on wi(r) for wifv) = m + 1.
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Case. wilv)= m+ 1. Using relation (3) and the fact that Wdiu) =01l
1 = wilu) =m, we get Wdo)+ Wi0)=2"—2""2wi(f). where f, is an

{(n —m — 1)-variable function. As in Theorem 4.1, we can show that
witl ) = 0 mod 217 20 Thus we get

Wi(t) + 4, W(0) = 0 mod 2w+ 2 +L0—m~2yd),

Induction  hypothesis. Assume the result is true for all v with
m+l=wip)=m+i-—1

Inductive step.  Let v be such that wi(r) = m + i. Again using relation (3),
we have

Wir) + 3 Wilu) = 2" — 2"+ b f),

W=

where [ 1s an (n — m — {)}-variable function with some degree d, < d. Again
using McEliece’s theorem and an argument similar to that of Theorem 4.1, we
get

Wiv) + ¥ Wi(u) = 0 mod2m* 2+l —m=2nd] {4)

Among the Wu)'s such that u< v, there are exactly (71 }) of them having
weightm + jifor 1 =j =i — 1). By the induction hypothesis, we have that for
any such w

W) + 4,W,(0) = 0 mod 2+ 2 FLin—m—2yd | (5)
Substituting Eq. (5) in Eq. (4], we get
Wiie) + WAONL — ¥ 1 )hioa — - — G1)4) = 0 mod 2+ 2 +Linmm=20dl,
Using the definition of i, we get

W{v) + 4 Wi0) = Omod 2+ 2 +Lin—m=2nd]
which is what we are required to prove. B

Thus, since m+2+|n—m—2)d|z=zm+1+|{n—m—1)d|. il for

SOME U, Aypgypy— i 18 Odd, then Wi{v) is divisible by 2" 27l —m =24l jf and only

il WA40) is also divisible by this same power of 2. And if 4,- 15 even,
then Wir) is divisible by 2"+ 2 ¥l == =2l Tn particular:
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Coroveary 4.1, Let fbe an (n, m, d, -)-CI nonconstant function,
1. Let veF; with wiv) =m + 1. Then W{r) = 0 mod 2™+ 2 lin—m=21d]
iff W0} = 0 mod 2m* 2+l —m =2l
20f WJ0)=0 mod 27FEfle-m-2WLl phen Wir)=0 mod
amt2tn-m =] g all ve B
3 Ifwily) =m + i, Wie) = Omod 2" 7 2 ¥l =2l gnd 1 is odd, then for
all we Fy,

Wy{u) = 0 mod 27+ 2 ¥l - 24

A weaker version of this corollary has been obtained by Zheng and Zhang
[14].

The next result shows that in certain situations the divisibility resulis can
be strengthened.

Corovrrary 42, Let [ be an (n,m, d,-)-CI nonconstant function and
(g ) == 2207 2= 2= 2w = 0] T hey for all ve FY, we have

W) = 0 mod 2+ 2+ —m=2y),

Proof.  The proof uses a counting argument similar to the one employed
by Zheng and Zhang [ 14]. Since [ is m-Cl for all v e ', we have by Theorem
4.1,

Wylr) = 0 mod 2"H! +Ldn—im— Lyl |

Thus if W{r) s 0, then W{r) = 2" 1Fle-m- 14l et y be the number of
v such that Wdir) 0. Then by Parseval's theorem we have that
q o= 2207 2m= 2= Jin - m- 4] The number of v such that we(v) = m + 1 is exact-
ly (,,%;) Thus by the given condition we get that there is at least one v of
weight m + 1 such that W{r) = 0. Using Corollary 4.1, the result then easily
follows, m

As noticed by Zheng and Zhang, the condition of this corollary is satisfied
when m = 0.6n. Thus, CI functions with high orders have the same divisibility
properties as resilient ones.

Remark. Corollary 4.2 applies in particular if m = n — 2. But non-con-
stant CI functions with such particular orders are in fact necessarily balanced:
thisis clear if m =n — 1, ifm =n— 2 let fbe an (n,n — 2, —, —}CI function
{n = 4); by definition, all restrictions of fobtained by fixing n — 2 coordinates
of the entry have the same weight. If this weight was 0 or 4, the function
would be constant. If this weight was odd, 1.e., i each resiriction was bent,
then fwould satisfy PC(2) of order n — 2 (cf. [7]). It is proved in [ 1] that such
functions have the form ¥, ., -, . 4+ hilx, . .., x,). where his affine. Thus,
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il they are nonbalanced, they have weight 277! + 2271 jf y is even and
=1 4 22 g s odd. A contradiction.

5. CONSEQUENCES ON THE NONLINEARITY AND ON THE
ALGEBRAIC NORMAL FORMS OF CORRELATION
IMMUNE FUNCTIONS

Relation (3) implies directly upper bounds on the nonlinearity of m-Cl and
of m-resilient functions of degree d. Consider first an m-Cl function and
assume it 15 not m-resilient; then applying relation (3) with wilr) = m shows
that W{0) has magnitude greater than or equal to 2" Fli-m= il where
dy = d is the degree of f; which shows that fhas nonlinearity smaller than or
equal to 2"7 1 —2mtln —m=1d] Notice that we can choose v, among all
words of weight m, such that the degree of [ is minimum.

Consider now an m-resilient function [ and assume it is not {(m + 1)-
resilient; then there exists a word v of weight m + 1 such that Wd{r) £ 0.
According to relation (3). W{v) has then magnitude greater than or equal to
a2t m - 2d ] wwhere d; < d is the degree of f, which shows that f has
nonlinearity smaller than or equal to 2771 — 2" Ve —m =20 ] Here again,
we can choose v, among all words of weightm + 1 in the support of Wy, such
that the degree of ff s minimum,

But these nonlinearity upper bounds are inefficient if 2"7! —
pmtlln=m= ] {pagp =1 _ gmt i+l -m =2 ]y jo greater than or equal to
1= 1 _ 20271 which is known to be greater than the nonlinearity of any
balanced function. In this case, the divisibility results of Section 4 permit us to
give efficient bounds, because they give information on all the values of the
Walsh transform of [

Tueorem 5.1, Let [ be an (n, myd, A7 )-CH nonconstant unbalanced (resp.
balanced) function. Set Ky=m+[(n—m — 1)/d;,| ad K,=m+
L(n —m — 1)/dyy |, where D = {deg(fix ve E', wi(v)=m}, d;, = min(D),
and dy,, =max(D). Set Ly =m + 1 +|(n —m —2)/d;, Jand Ly =m + 1 +
|_{n —m — 2)/diyu |, where D = {deg(fix Wp(v) 20, veFs, wilvh=m+ 1},
din = min( D), and d, . = max(D'). Here d ;o s Sains Tnas = Then

Lo Ifnis even and Ky =43 — 1 (resp. Ly =5 — 1), then A" = 271 — 2K
{re*.p e L R,
f no @5 even and K, <3 {resp. L, =%9—1) then
A E’ — 22170 2K pesp, 1‘{'7"’ 27- 1_ 2l
5 If nis odd and 2" — 2% < n{mnt{n} (resp. 2771 — 25 < wlmax(n)),
then A7 = 2171 — 2K (pegp, A7 = 2071 — 2,
4. If nis odd and 2" — 2K = plmax(n) (resp. 2" — 25 = nlmax(n)),
then A is less than or equal to the highest multiple of 2% (resp. 2% ) which is no
greater than nlmax(n).

min® max
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The following result provides a restriction on the algebraic normal form of
a correlation immune function achieving the maximum possible degree.

Tueorem 5.2, Let [ be an in,m, d, AV-CI fimetion. If A" £ 0 mod 271,
thend = n — m. Further, if A7 =2""1 — 2" then ANF off contains all possible
terms of degree n — m.

Proof. By the same arguments as for Theorem 5.1, we get that A"=10
mod 2"l - Weeal Thyg if 4”2 0 mod 2"*!, then clearly d,, = n —m.
Since d,,, =d =n—m, it follows that d =n —m. If A" =2""1_2" we

must have f to be unbalanced. Further in Theorem 51 we must have
dyiy = n — m. This completes the proof. =

We can state a similar (but less interesting) result for those resilient
functions achieving the maximum possible nonlinearity. This result provides
a small improvement on the result obtained by Tarannikov [13].

Tueorem 5.3, Let [ be an (n,m, d, A Fresilient funciion. If A7 # 0 mod
272 yhend =n —m — L Further,if A~ =2""1_2""1 yhond =n —m — 1
and for any v e Fy' of weight m 4 1 we have that either Wy (v) = O {and hence [ is
balanced) or deg{ i) =n —m — 1.

The upper bound on nonlinearity for CI functions is more than the upper
bound on nonlinearity for resilient functions. However, using Corollaries 4.1
and 4.2 it can be shown that in certain cases the upper bound for nonlinearity
of CI functions is the same as that of resilient functions.
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