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ABSTRACT T he family of Symmetric Wrapped Stable (SWS) distributions can be widely
used for modelling cwvcular data. Mixtures of Circular Uniform (CU) with the former also
have applications as a lavger family of circular distributions to incorporate possible outliers,
Restricting ourselves to such a mixture, we derive the locally most powerful invariam
(LMPI) test for the hypothesis of sotropy or randomness of directions—expressed in terms
of the null value of the mixing proportion, p, @ the model. Global moenotonicity of the
power function of the test & established. The test 15 also consistent. Power values of the
test for some selected parameter combinations, obtained through stmulation reveal quite
encouraging performances even for moderate sample sizes. The P° approach (SenGupta,
1991; Pal & SenGupta, 2000) for unknoon p and p and the non-regular case of unknown
a, the index parvameter, are also discussed, A real-life example is presented to illustrate the
inadequacy of the circular normal distribution as a circular model, This example = also
used to demonstrate the applications of the LMPI test, optimal P? test and a Dauvies-
mottvated test (Dawies, 1977, 1987). Finally, a goodness-of-fit test performed on the data
establishes the plausibifity of the above SWE-CU mixture mode! for real-life problems
encountered in practical situations.,

1 Introduction

Symmetric Wrapped Stable (SWS) distributions (Mardia, 1972: 57) constitute a
very large family of circular unimodal symmetric distributions useful in the analysis
of directional data. The Circular Normal (CH) distribution, although extensively
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used and probably the only well-known distribution to practiioners for modelling
circular data is often not appropriate for modelling real-life data. A “suitably chosen’
member of the SWS family turns out to give a better fit than a CN distribution in
many such situations. Also, it has been observed by Mardia (1972: 66) that a CN
distribution can be well approximated by a SWS distribution for some specific
parameter values. Mixtures of SWS and Circular Uniform {CU) distributions are
also very useful and important for incorporating possible outliers in the data. By
taking such a mixture, the symmetry in the distribution is stll retained, whereas
one has more latitude in the choice of an appropriate model because of the presence
of the additional parameter p, the mixing proportion.
Let fleha, p, 1y) be the density function of an SWS distribution given by

ﬂ&alplpuj =% {""2 i p""cusr;{ﬂ—%] }

Recall that a CN distribution with parameters x and y, has the p.d.f.

S, ) = expixcos(d — )}

2l (k)
where k=0 and [,{.) is the modified Bessel functon of order 0 with a purely
imaginary argument. Denote by g{&; a, p, 14y, p) the density function of a p-mixture
of 3W5 and CU distributions, with the parameters having their usual meanings
The density g when the contaminating distribution is CU, occurs natmurally in
connection with experiments on the perception of a group of subjects (e.g. insects)
for movements towards a given direction. A goodness-of-fit test, based on Watson's
[ *-gatistic incorporating a grouping correction introduced recently by Brown
{1994), on Jander’s ant data (Batschelet, 1981: 49) shows (SenGupta, 1998a) that
a suitable SWS distribution gives a better fit than a CN distribution. It was also
observed that a SWS-CU mixture gave a still better fit than a SWS distribution.
Contamination of CU by SWS arises in human perception tests, e.g. in traffic
engineering, where it is generally observed that most of the individuals tend to
move randomly, save a few who have a rather strong perception, after undergoing
some ‘brain-washing' treatment. In this context a popular Indian game called
‘Breaking the Pitcher’ is worth mentioning, where the player is first shown the
position of the target, then blindfolded and rotated rand omly on the initial position
and then asked to choose his/ber own direction to break the pitcher with a stick

The problem of testing isotropy is guite important and has received considerable
attention. Several tests for this purpose under different set-ups (types of alternatives)
exist in the literature. Beran (1968, 1969) considered this problem under a quite
general set-up and derived a general form of the TMPI test. He noted that Ajne’s
test, Watson's U° test, Rayvleigh's K® test etc, are different particular cases of the
general test corresponding to different choices of the alternative hypotheses. Later,
Gine (1975) developed the theory of Sobolev tests as a large class of tests containing
many of the known ones. Chang (1991) and SenGupta & Chang (1996) have
considered locally most powerful {location) invariant (LMPT) tests {(with unknown
Hy) for isotropy, in terms of the hypothesis involving p, extensively under the model
fand, the LMP test under g when p are known.

In this paper, we restrict ourselves to the density g and give a new derivation of
the LMFT test for the null hypothesis H,: p =0 against H,: p> 0, assuming p and
a to be known. This derwation, based on an expansion of the Most Powerful
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Invariant test statistdc in powers of p (see, for example, Bhattacharyya & Johnson,
1969), is given in Section 2. It may be instructive to note the approach of Beran
{1968) m its general formulation through group spaces for any ‘arbitrary’ density,
together with the explicit derivaton of ours for the specific case of the general
family of SWS-CU mixtures. Asymptotic distributions of the test statistic, both
under the null and the alternative hypotheses, are also presented. Section 3 provides
the global monotonicity of the power function and consistency of the test. Exact
cut-offpoints and power values for some selected parameter combinations, obtained
through extensive simulations, are presented in Section 4. The power computation
reveals gquite encouraging performances for reasonable parameter combinations
even with moderate sample sizes. For the general situation when p is also unknown,
we show in Section 5 that the location invariant P-test (SenGupta, 1991; Pal &
SenGupta, 2000) reduces to Rayleigh’s R*test and is L-optimal. This establishes
the optimality robusmess of the F-test in CN distribution against the extended
SWS-CU general mixture family. The *non-regular’ simation when g is known and
a 15 unknown is treated in Section 6. An example, and the associated summary
results, in support of our proposed mode are presented in Secton 7. This example
is also used to demonstrate the applications of the optimal tests obtained I
Sections 2, 5 and 6. A large part of the computations of this section has been
performed using the statistical package DDSTAP developed by the first author
(SenGupta, 1998b). Finally, a rose diagram, also obtained by using DDSTAP, is
displayed at the end of the paper.

2 The LMPT test

The model under consideration is

g0 a, py Moy 1) = pf (B a, py 1) +g(2m) 7 (1

where f{6; a, p, y,) is as given in Section 1. Here 0= 8< 2m 0=y < 2n,0=p=1,
0< a=2,0=p=1,9 =1-—p; pand g are known while 1, and p are unknown; 1,
being the location parameter. It may be remarked in this context that, although p
and a are assumed to be known, in practice either or both of them may be unkn own.
These aspects are discussed in subsequent sections. Suppose (8,,8:,...,68,) is
a random sample of size m{=2) from a population with density given by {1). We
want to test the hypothesis Hy: p =0 apainst H;: p> 0. Denote by R the quantity
(L2, cosnf)? + (L sinnf)”. The form of the LMPI test is derived in the following

Theorem 2.1

For known g and p, the LMPI test for H;: p =0 against H;: p> 0 is given by the
critical region w:T =X, (p*)"R2> C, where the constant C is to be determined
from the size condidon.

Proof

First note that the problem of testing H, against H, remains invariant under the
change of location & —8 +¢ (mod 27). A set of maximal invariant statistics is
8, — 8,8 —08,...,8,., —8,). Based on this maximal invariant, the most power-
ful invariant test for H, against a fixed p> 0 is given by the test statstic
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T*(p) =I_. ﬁ [p{ﬁ}r} - {+2 i focosnix+ @) }q{ﬁx} "—‘ dx. (2

To get the LMPI test we expand T*(p) in powers of p and consider the lowest
order random term (see, for example, Bhattacharyva & Johnson, 1969).
MNow the right-hand side of (2) is

i) I Il {+pv,m}a: (3

o0

Yix = E p”“ cosn{x+ &).

m=l

where

The coefficient of p in (3) is, apart from a mulaplicative constant,

i I_ Y,(x)dx = i [j_ %ﬁ’“cﬂsu{x+ﬂ,] }x]

The signs of summation and integration in the square bracket of the above
expression are seen to be interchangeable by virtue of the extended version of the
Levi theorem for series of functions (see Theorem 10.26 of Apostol, 1974: 260).
It then easily follows that the required coefficient of p is zero. The coefficient of p°
on the other hand, barring again a multplicative constant, is

E Y,{x):f (x) dx

qa

=Z [l E_ﬁf""”" cosnx + 8) cusk{x+ﬂj—‘

=] k=]

=2} Z ()" cosn(d, — @)

i ja=1

by the same reasoning as above for the interchangeability of summation and
integration, followed by some algebraic manipulations We can then write

T*(p) =k, +kp? Y 2 (0 cosn(f, — @) +os(p7)
= fou=1
where &, and %;{> 0) are constants. The critical region of the TMPI test is therefore
w*:T*=Y Y (p)*cosn(d, - 6)> C* )
i< §om=1

where C* is to be determined from the size condition. This test is obviously
equivalent to @ as given in the statement of the theorem. Hence the proof.

Femark 2.1
It 15 known that the Cardioid distribution can be viewed as obtained from an SWS
distribution by retaining only the first term of the infinite series occurring in the
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expression of its p.d.f. f Analogous results do, therefore, hold for the LMPI test
statistic in the Cardioid-CU mixture family. We then have the following

Corollary 2.1

The IMPT test for H;: p =0 against H,: #> 0 in the Cardioid-CU mixture family
corresponds to the statistic T with # = 1 and therefore coincides with the Rayleigh's
R test.

The asymptotic null distributon of the test statistic may be obtained from
Corollary 3.1 of Beran (1969) or Theorem 4.1 of Gine (1975).We, however, prove
the following theorem, which establishes the asymptotic distribution explicidy by
directly appealing to the multivariate Central Limit Theorem {(CLT).

Theorem 2.2

Under H, the asymptotc distribution of (2/m) T is the same as the distribution of
Lo (/. where {¥7,,n=1,2,...} is a sequence of independent 3 variables
each with 2 d.f.

Proof
Straightforward calculations show that under circular uniformity of £

E(sinnf) =E{cos nf) =0;
Var(sinn#) = Var{cosnf) =4, for each n =1,2, .. .;
Cov(sinpd,sin kN = Covi{sin i, cos ) = Covicos nf, coskth =0;

foreachm, k=1,2,...;n £k
Consequently, for any »n, by multvariate CLT

[ ¥ cosd,
IZSin .

Y cos 26,

m 3 g, | D N5

where
I, (8] O
1]0O I, O
Z s = ='§
(8] (8] I,

This shows that the limiting distribution of (2/m) T = (2/m) E,j"_, {p’]”"}i‘ﬁ is the same
as the distribution of L), (0®)"¥, where {¥,.n=1,2,...} is a sequence of
independent 3 variables each with 2 d.f. Hence the theorem.
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To obtain the asymptotic non-null distribution of 7, one may appeal to the
general result in Theorem 1 of Beran (1969). However, the derwation of the
distribution involves evaluations of some complicated integrals. We present here
an alternative derivation that exploits multivariate CLT directy, as in the null case.

First note that since T is invariant under the change of location, one may take,
without loss of generality, y, = 0. After some routine algebra, it follows that under
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the mixture alternative with density g{&a,p,0,p) and for any n =1, 2,...,

E(cos né) =pp"”, E(sin

nth =0,

Var(cos nt) =1 [1 +pp™"] — p*(p")",
Var(sinné) =1 [1 — pp'®""], Cov(cos nf, sinnf) =0.

It also follows that for anv u, [ =1,2,...in 2,

Cov(sinné,sinlé) = (p/2)[p" " -

Cov{sinuf, cos /i) =0,

P,rm-.lyl}’

Covicos nfycos i) = (/2 [p" "+ p" ¥ —pPp" 0.

Forp,s=1,2,...

and noting that /™"

the mixmre alternative,

- W2

where

L)

T
oy

E?t:u-zu:- = 0

100y
1

0

Now applving [{i1), 6a.2] of Rao (1973: 387) and taking # —* o0, one can see that

» Writing

" = Cov(p " cosrf, p” coss#)

gl = Cuv{p’" cosrd, p‘“ sin s

g = Cov(p" sinré, p” sinsd)

( p 2, cos b, — mpp* \

o E sinf,
P 3 cos 26, — mp(p*)*
p* Y sin 28,

p™ 2 cos nfl; — mp(p®)™

0 oo 0
A 0 o

0 o 0
A 0 o

0 i 0
{}." HA) ':; T (&5

il M2

\ pr E sin nf, g

=0%r and 5, one sees again by multivariate CLT that, under

ZN,.(0,59

T ;1}:1( A 0
0 o
a0
0 o
a0
0 &b
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m'i[r iE T m‘n*‘] “ N(0, 6*%) as m —»o0 (5)
where
o =4p? Y Y ()"0, )

F=11=1

We then have the following

Theorem 2.3
For any > 0 under the alternative hypothesis H,, the asymptotic distribution of
T is given by (5) with ¢*° given by (6).

Remark 2.2

Exact distributions of the test statistic T under both the null and the alternative
hypotheses are analytically intractable. That is why we take recours to extensive
simmilations (in Secton 4) to obtain exact cut-off points and power values of the
IMPT test for different parameter and sample size combinations

Remark 2.3

The asymptotic distribution of (24m) T under H, as given by Theorem 2.2, is not
convenient to carry out the test in practice. We, therefore give an approximation
for the above distribution. The approximation of Satterthwaite (1946) seems not
to be appropriate for this purpose, as it vields very bad results for some parameter
values. We, therefore, adopt a different approach based on characteristic functions
Note that under circular uniformity, the asymptotic characteristic function of (2/
m)T is @) ={I12, (1 - 2()")) !, a first-order approximation of which is
{1 —2Kif) 'where K =27, {pzj"'. This is clearly the characteristic functon of K.Z
where Z has a chi sguare distribution with 2 d.f. The values of the cut-off points
obtained using this approximation are quite close to those obtained by simulation,
at least for some parameter combinations For example, for ;m =20, o =0.05 and
for p=0.5 and a = 1.5, the cut-off point is calculated as 16.21, which compares
favourably with the simulated value 16.08 of Table 1.

3 Monotonicity of the power function and consistency of the test

It is convenient to work with the test statisdics 7* given in (4). Monotonicity and
consistency follow from the following

Theorem 3.1
For any fixed p and a, the test given in {4) possesses a monotone power function
in pe[0, 1]. Further, the test is also consistent.

Proof
To prove the first part of the theorem we need the following results:

Result 3.1 (Winmer, 1947: 591)
The function 1 +2X 0" cosnd is decreasing in 0= @< 7 and, by symmetry,
increasing in 1= &< 2rirrespective of 0< p< 1 as long as 0< g= 2.
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Result 3.2 (Winmer, 1947: 591)
For 0< &< m, a set of sufficiemt conditions for the series E,j"_,b,, smud to be
positive 1s

nb, —*0 as g—* oo and
nb,> m+ 16, Yn=1,2,...

Result 3.3 (SenGupta & Chang, 19946)
Let (X,Y ) have absolutely continuous joint distribution depending on a single
parameter & such that each of X’ and ¥ has stochastic ordering property in €. Then
X + Y has also the same stochastic ordering property.

MNote that the p.d.f. of y;, =@ — & (mod 2x), where # and & are independently
distributed as (1), can be written as

1 o=
hyap) =2— {+2 l p”{;f]"‘cosu}j}. }Oi Yis 2m.
T H=1

By Result 3.1, for given ¢, Fade(0, 1)

E (P cosny, > ce=0< p< Sor2m—48< p< 2m

=]

Hence for any 4, j{i< j,

P(pm =P§ (P cosny,= clp }
=1
= Ej h(yapdyy
(]

=6 2‘0 j l (" cos ny,dy,

and on differentation w.r.t. p

i 4
P PI l {p] cos nydy,

—P E sin
", e
with &, = (1/m) {p’]"“, by interchanging again the order of summation and
integration.

Thus, P{p) isincreasing globally in g € [0, 1], by REesult 3.2. Repeated applications
of Result 3.3 on the variables L, (p°)" cosny, for all 4,j (i< ;) then ensure the
monotonicity of the power function.

To prove consistency, it suffices (from Theorem 4 of Beran, 1969) to verify that
the function 5(& a, g, 1, p) defined by
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TanpLE 1. Simulated cut-off points of the LMPI test based on T

a

m n 0.5 1.0 1.5 2.0

10 0.25 (2.25,3.30) (1.86,2.74) (1.81,2.73) (1.78,2.59)
0.50 (1294, 1681} (840, 11.48) (7.53,10.73) (7.26, 10.56)
0.73 (33.74,65.48 (25.12,35.99) (19.78,27.93) (1700, 24 .940)
0.90 (12497, 157.95) (G:4.86, T9.08) (39.35,52.67) (30.52,43.53)

15 0.25 (3.36,4.67) (2.84,4.17) (2.69,4.03) (2.61,4.00)
0.50 (19.33,25.85) (12.96,17.84) (11.74,17.64) (11.35,16.26)
0.73 (B1.41,96.91) (37.46,50.37) (28.209,40.89 (26.78,39.99)
0.90 (189.15,225.83) (97.02,119.74) (38.33,81.7T% (46.15, 60.80)

0 0.25 (4.44, 6.29) (3.81,5.84) (3.77.5.69) (3.59,5.45)
0.50 (25.82,35.90 (17.48,24.73) (16.08,23.05) (14.77,21.71)
0.73 (11006, 133.34) (51.53,65.28) (37.80,51.91}) (35.61,50.21)
0.90 (25027, 300.33) (127.81, 159.7%) (78.08, 101.63) (63.26,85.76)

30 0.25 (6.54,9.42) (3.66,8.35) (3.29,8.09) (5.27,7.67)
0.50 (40.17,52.45) (24.66,36.26) (23.44,35.44) (21.13,30.38)
0.75 (16361, 199 44) (TB.37,105.04) (62.08, 94.85) (53.25,82.42)
0.90 (376.02,442.53) (196.16, 240 .38) (11942, 156.11) (94.53, 13 1.99)

137

(The figures inside the brackets denote the cut-off points at 5% and 1% levels respectively.)

2m

b{ﬂ;‘a! et HI:P} =j

0

1
[f{ﬂ;a,p,x] _E—‘ Elxsa, oy y, p) dx

corresponding to any density g a, o, Uy, 1) under the alternative hypothesis, is
NON-Zero.
MNow

(65 sy tios ) =~ j [ Y p"cosn( —x:n} [iﬁ Y p" cosn(x - m} dx

T u=1

=‘E i {pz’,'l”ﬂ cosn(d— 1)

EL

after simplification, followed by some algebraic manipulation. Thus, /(&
&y Mo ) # 0, proving the consistency of the test. Hence the theorem.

4 Simulation and computation

In this section we present exact cut-off points (Table 1) and power values (Table
2) of the LMPI test, obtained through simulations, for some selected parameter
combinations Simulation from a symmetric stable distribution have been done
using the BNSTA subroutine of IMSL. An observation X from a symmetric stable
distribution with ‘scale factor’ 1, when mulkiplied by 4'* gives another, say ¥, with
scale factor 4, having the characteristic functon

¢y =exp(—dt/").
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TaBLE 2. Simulated power of the LMPI test at 3% level

p

a Il m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.25 10 0051 003 0055 0068 0077 0082 0106 0119 0138 0.156
20 0054 0061 0.072 00983 0108 0.145 0165 0200 0256 0.300

0.50 10 0053 0063 0000 0145 0.193 0.251 0337 0413 0518 0.605

20 0062 0093 0.168 0248 0356 0482 0635 0734 0828 0.92]

0.75 10 0072 0120 0.237 0363 0302 0645 0783 0871 0942 0.972

20 0078 0214 0.320 0638 0827 0913 0971 0993 1000 1.000

0.90 10 0074 0215 0.326 0592 0.760 O0.B77 0944 0986 0998 1.000

20 0142 0400 0.680 0892 0963 0993 0990 1000 1000 1.000

1.0 0.25 10 0.054 0057 0.058 0060 0068 0093 0094 0112 0130 0.144
20 0.056 0058 0.073 0079 0099 0.123 0133 0183 0236 0.232

0.50 10 005 0063 0077 0.100 0.146 0.191 0251 0335 0419 0.502

20 0.058 0067 0.105 0.16% 0247 0359 0473 0604 0723 0.858

0.75 10 0.062 0088 0.157 0.262 0367 0.522 0.635 0783 0874 0.949

20 0065 0.140 0.255 0442 0644 0826 0911 0973 0934 1.000

0.90 10 0074 0134 0.283 0449 0628 0.779% 0897 09538 0992 1.000

20 0106 0295 0.535 0766 0912 0978 0993 1000 1000 1.000

1.5 0.25 10 0.052 0053 0.060 0067 0081 0084 0088 0108 0131 0.149
20 0.053 0057 0.068 0078 0089 0.117 0141 0168 0221 0.271

0.50 10 0055 0061 0082 0114 0150 0.207 0272 0336 0440 0.532

20 0.056 0070 0.106 0.1538 0235 0364 0477 060% 0744 0.8338

0.73 10 005 0074 0.127 0.214 0310 0425 058% 0734 0847 0.946

20 0073 0145 0.25% 0401 0599 0.773 0904 0974 0993 1.000

0.90 10 0073 0115 0.212 0368 0.524 0.702 0846 0920 09837 0.999

20 0,091 0200 0.423 0661 0866 0945 0930 0993 1000 1.000

2.0 0.25 10 0053 005 0062 0071 0073 0080 0100 0126 0.132 0.157
20 0.054 0062 0.071 0087 0109 0.128 0157 0201 0235 0.238

0.50 10 005 0057 0078 0111 0.158 0.19% 0262 0353 0443 0.539

20 0.055 0.081 0.127 0.16% 0.28% 0420 0520 0663 0.786 0.831

0.75 10 0060 0098 0.140 0205 03353 0463 0615 0762 0900 0.931

20 0063 0123 0.223 0386 0574 0.746 0891 0975 0997 1.000

0.90 10 0068 0109 0.198 0339 0492 0.652 0830 0934 0938 1.000

20 0.093 0206 0.320 0584 08l6 0939 0932 1000 1000 1.000

Given g, one can take d = — logp and wrap the resulting ¥V over (0, 21) to get an
observation from SWS({0, p, ) disribution.

For each parameter and sample size combination, the cut-off points and the
power values have been computed on the basis of 5000 and 1000 observations,
respectively, on the statistic T calculated from samples generated from respective
distributions. It may be noted that, although the stagstic T appears in the form of
an infinite series, it usually suffices to consider only a finite number of terms in
practice. We have taken the first 30 terms of the series for the computation of T,
Power computations of Table 2 show encouraging performances for ‘reasonable’
parameter combinations, even for samples of size 20. It is also worth noting that
the power is iIncreasing with p for each fixed m, @ and p. This is expected because,
if @ and p are fixed, the larger the value of p, the more the deviation of the density
g from circular uniformity and this fact should be reflected by any reasonable test
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5 The P'-test

In Section 2, we have assumed both p and g to be known and have derived the
IMPT test for the null value of p. The simation becomes more complicated if either
or both of p and @ are unknown. The experimenter usually has the choice of ‘a’
for which a mixture modd might give the best fit to the data. We therefore assume
that p alone is unknown. However, even then the problem cannot be reduced by
any of the principles of similarity, unbiasedness or invariance with respect to the
nuisance parameters u, and p. Invoking location invariance, one can search for an
optimal Ptest (see SenGupta, 1991; Pal & SenGupta, 2000, for further details)
in such a situation. MNote that for any pair (3, jJ, i< j

E, (cos(f, — 6)) = (pp)°= 1, say
where 1 plays the role of the appropriate Pivotal Parametric Product (P*) in this

case. Based on (&, &, ..., 6,), an unbiased (and consistent) estumator of 1] is then
i P Y cos(8, - 8) = LN .
mim — 1) i mim—1) m-—1

A test for isotropy (which is now equivalent to H): 7 = 0) may be based on {7 or
equivalently on R*. Chang (1991) has shown that for p = 1 but unknown, the LBI
test for H,: p =0 against H: p> 0 is the Rayleigh’s test, i.e. one based on B*. Note
that this test does not depend on @, and is therefore robust against the SWS p,
family. From Chang {1991), we then have the following.

Theorem 5.1
When p =1 but p, is unknown, Rayleigh’s R*-test is (location invarient) robust
optimal against the SWS family.

& o known, g unknown: non-regular case

When p 15 known but 2 is unknown, we encounter the non-regular problem of
having g only under the alternative. Motivated by Davies {1977, 1987), we enhance
a technique of constructing the optimal test for this case. To apply this technigque,
assume that g €[g 2], where £ is a known small positive number.

Observe that for each a, under H,

; 2 2 o e E T . g s
Ti{a)= ;T{a] =; E (P YR = E {ijXr’m as m —*on (7
u=1 M=l
where {y},,n=1,2,...} is a sequence of independent ¥ variables each with 2 d.f.
The test then consists in rejecting H,, for large values crfsup“MlTr{a]. Also observe

that T'(q) is monotonically decreasing in g and hence

' 2 g 4 g
Slilpl T =; E (Y R2 (8]
@52 w=1

The significance probability of the test determined by the statstc (8), however,
cannot be directly obtained from the results given in Davies (1987, since the
asymptotic distribution considered there is that of a single ¥*. However the required
significance probability can be calculated using the asymptotc distribution given
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in {7) with g replaced by £ To obtain this, we recall {2.10) of Beran (1969). It
then follows that the required probability is

; a,exp[ — t/2(6%)"] (9)

where a, =11,., [1- {,rf]‘l"M '”‘] “!and ¢ is the observed value of sup.. . T'(a) in (8).

T Example

We present here the analysis of Jander's Ant data to demonstrate the applications
of the IMPI test and the other optimal tests considered in Sections 5 and 6. We
also recall (SenGupta, 1998a) that the CN distribution does not fit satisfactorily
or is even unsuitable for this example whereas the SWS-CU mixture distribution
gives a good fit.

The tests are applied to the data assuming that SWS-CU mixture model holds.
The significance probability corresponding to the IMPI test has been computed
using {9) of Section 6 with the determined value of g in place of & For the
Davies-motivated test, the same formula has been used with £=0.1, whereas the
(asymptotic) significance probahbility for the Rayleigh's test has been calculated on
the basis of a ¥ distribution with 2 d.f It may be remarked in this context that,
although the expression for the significance probability in (9) and that of a, therein
involve an infinite number of terms, for numerical computation it sufficed to retain
at most 25 terms. Once rejection is obtained, the goodness-of-fit test is carried out
using Watson's [/ -statistic, incorporating a grouping correction recently introdu ced
by Brown (1994). The parameters for fitting CN are estimated by the m.l. method
and, for the SWS and SWS-CLT cases, following SenGupta (1998a), the method
of moment has been used for estimating y, and p while p and s have been
determined adaptively (using DDSTAP) to select the *best’ member of the respec-
tive family. In the following, although the parameters have been estimated from
the samples, we have assumed, for the sake of simplicity, that the estimates are
actually the true values of the respective parameters (because the estimates are
consistent and samples are of large sizes). For the purpose of comparison of the 7%
values with the tabulated ones, we have used the appropriate figure corresponding to
case O of Table 1 of Lockhart & Stephens (1985: 649) since these figures are
universal whatever the *known’ distribution we fit.

7.1 Jander’s ant data

Batschelet (1981: 49, Fig. 2) depicted the orientation of ants towards a black target
when released in a round arena—an experiment originally conducted by Jander
{1957). We adapt the data to construct a grouped frequency distribution of angles
with 36 classes of equal widths; the total frequency being 146. The rose diagram
of the data is shown in Fig. 1. Summary results of the applications of the optimal
tests are presented in Table 3.

From Table 3 it is seen that each of the three optimal tests discussed in Sections
2,5 and 6 leads to rejection of the null hypothesis of circular uniformity of the
data. We therefore carry out the goodness-of-fit test. Summary results for fitting
CN (i, &), 3WS (u,, pya) and SWS-CU mixture are presented in Table 4.
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Fii. 1. Rose diagram of Ant data.

TaBLE 3. Results of the application of optimal tests on Jander’s Ant data

p-value
Test applied (mignificance probability ) Remark
LMPI 0.0 Highly =ignificant
Rayleigh's & 0.0 Highly significant
Davies-motivated 0.0 Highly significant
(e=0.1}
Table 4. Goodness-of-fit tests for Jander's Ant data

Distribution fitted U Remark

CN 0.4799 Mot satisfactory

SWE (@ =0.8) 0.0452 Satisfactory

MIX (g =1.59,p =0.7) 0039 More satisfactory
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8 Concluding remarks

The test procedures we used in the earlier sections are the locally best tests or their
different modifications. One reason for considering such tests is that they are easy
to obtain and, as is seen, enjoy nice properties, namely monotonicity of the power
function and consistency. In addidon, it should be borne in mind that it is, in
general, difficult to detect small departures from the null hypotheses while large
departures can be detected quite easily by any reasonable test. The LETs in all
these situations are very computation-intensive and difficult to apply since they
cannot be written in any closed form. MNote that no non-trivial sufficient statistic
exists for our mixture family and hence this is expected. The exact distribution of
the LRT statistic is intractable. Further, the standard result vielding the ¥ as the
asymptotic null distribution of the LET statstic is not valid for our case. This is
s0 due to the non-regular nature of our problem where the parameter space is no
longer open and where the parameter lies on the boundary under H,. For these
reasons, the LET approach is not to be pursued, and any numerical comparison,
which can be possibly explored at most via simulations, seems unappealing and
uninstructive. However, it may be worthwhile to note that the LMP test can be
viewed as a first-order approximation of the LET.

The problem of detection of outliers is currently drawing the attention of many
researchers The review paper by Jupp & Mardia (1989) contains several references
on this interesting area. Guttorp & Lockhart (1988) provide a Bayesian solution of
the problem of detecting the location of a downed aircraft from distress signals
transmitted by it and received by different search-and-rescue stations. Qutliers in
the data may occur due to irregularities in the readings caused by distorting objects
near the receptor site. One can, therefore, either detect and reject the outliers or
can assume a mixture model in order to incorporate them for the analysis. Thus,
if one intends to ‘accommodate’ outiers in the model, it is common practice to
assume a mixture distribution for it. Otherwise, one may assume a non-mixmre
model ke CH (Collett, 1980) for outlier detection. The SWS diswribution intro-
duced in Section 2 may also be used for this purpose and this may be an interesting
problem for further research.
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