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Abstract—We provide an automated method to repair broken,
occluded oriented image textures. Our approach is based on par-
tial differential equations (PFDEs) and AM-FM image modeling.
Reconstruction of the texture occurs via simultaneous PDE-gen-
erated diffusion and reaction. In the diffusion process, the image
is adaptively smoothed, preserving important boundaries and fea-
tures. The reaction process produces the reconstructed textural
information in the occluded image regions. Gabor filters are de-
signed and wsed in the reaction process using an AM-FM domi-
nant component analysis. An AM-FM model of the texture image
s constructed, making it possible to localize the reaction filters
spatio—spectrally. In contrast to previous disocclusion technigues
that depend on interpolation, on continuity of the connected com-
ponents within the image level sets, or on texture estimation, the
reaction—diffusion process proposed here vields a seamless transi-
tion between the recreated region and the unoccluded image re-
gions, Using AM-FM dominant component analysis, we avoid the
aid hoe parameter selection typified with other reaction—diffusion
approaches. As a useful example, we focus on the repair of broken,
occluded fingerprints. We also treat several exemplary natural tex-
tures to demonstrate the technique’s generality.

Index Terms—AM-FM image models, anisotropic diffusion, dis-
occlusion, texture.

I INTRODUCTION

EPAIR of oceluded or missing parts of digital images is an
Rimp-urlunl problem that has been swudied by psychophysi-
cists [18], mathematicians [29], computer scientists and signal
processing engineers [31]. The texiure completion or disocclu-
sion problem can be solved adequately for small occlusions by
forcing continuity of image intensity and edges [29], [31]. When
large occlusions or substantial missing portions of the image
exist, it is likely that continuation-based methods will fail, since
mntemal variations due o pattems and detal exist withm the
MISSING region.

This paper focuses on the reconstruction of large missing re-
gions of homogeneous onented textures. To reconstruct these
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textures, bwo processes must be considered. First, a suitable wex-
ture must be generated that matches that in the image. Second,
the texture must be adapted o the missing region so that the
human observer may perceive a seamless lexture image.

In our approach, we provide a mobust method of pattern esn-
mation and genemtion. The mput image 5 modeled within an
AM-FM framework, and the dominant components of the or-
ented texture are estimated at each posiion. Dominant image
components moa region surmounding the occlusion are used o
generate texture for the region of interest. In contrast w methods
that generate a texture and attempt o msen this texture within
the image 1 one step, our approach adapts or grows the wex-
ture via partial differential equations {PDEs). A reaction—diffu-
sion mechanism, in the spirt of Turing’s morphogenesis [38],
15 applied. Here, texture genemtion and smoothing are com-
bined wsing coupled PDEs. The reaction mechanmism utilizes
the AM-FM dominant component analysis o enforce a suit-
able pattem on the missing region. Al the same time, amsowopic
diffusion is used w0 adaptively smooth the image, producing a
seamless restoration.

As a significant and useful example, we apply the methods
we develop to the problem of fingerprint repair. Often, regions
within fingerprint images are lost due o the inhomogeneity of
the surface, movement of the finger (smudging), partial contact,
or problems associated with imaging the fingerprint. The gen-
eration of fingerprint-like textures is well established [ 19], [37].
Typically, a bank of Gabor filters is used to replicate the undu-
lating patterns observed in fingerprints. The selection of the par-
ticular Gabor filters is accomplished using a generalized model
[19] or by trial and error. To demonstrate generality of this ap-
proach, we also apply the method to several other naturally oc-
currmg textural regions.

In the following section, we discuss relevant advances in pat-
tern generation and enhancement, and we also review work in
image disocclusion. The reconstruction of image textures begins
with the reacton—diffusion model outlined in Section 111 The
success of reaction—diffusion for disocclusion is based on the
AM-FM dominant component analysis descrbed in Section IV,
Results for the proposed method and other existing methods are
given in Section V followed by conclusions.

Il. BACKGROUND

Reaction—diffusion equations have been employed o simu-
late patterns abundant in nature. For example, a key ssoe in de-
velopmental biology is the dynamic armngement of embryonic
cells into particular patterns. Turing [38] suggested that two or
more chemicals can diffuse and react within neighboring cells,
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Fig. 1. Stripe formation using coupled PDE.

depending on the concentration of the cell and its neighbor-
hood. He proposed a set of coupled PDES 1o simulate such pat-
terns, (de/étl = o, b) + D, V2, and {80/68) = Gia, 1) +
D)%% In this case, 2 and h are the two chemicals that dif-
fuse depending on neighborhood concentmtion (computed via
the Laplacian operator), and {2, and 73, are the comesponding
diffusion rate constants. Changes of « and b per dme unit are
given by Sua/dt and 6 /88 respectively. The local concentrations
Flo b and (7{m, &) are iteratively computed, and the process
of reaction-diffusion continues until a stable pattern emerges.

The Turmg model was subsequently extended by Memhardt
[30] to simulate the stripe formation process. An intuilive un-
derstanding of this technigue could be obtained if we consider a
situation where concentration and diffusion of chemical « pro-
hibits chemical & to be present at the same place and at the same
time. So, the chemicals are locally exclusive. A striped pattern
generated by the PDE model in [30] is shown in Fig. 1. Similar
models have been used to produce a vadety of synthetic tex-
tures [40]. A major difficulty of this approach is the selection
of the constants needed Lo generate a stable pattem. Prce et al.
[35] have used similar coupled PDE models to enhance finger-
print images and addressed the issue of parameter selection. For
the texture completion problem, generating pattems of a spe-
cific granularity and directionality is difficult, as is matching
the pattem at the boundary of the oceluded region. Thus, pattern
formation 15 possible with the Menhardt approach, but an ac-
ceplable disocclusion solution 1s not amenable. Ina related PDE
based application to supervised texture segmentaton, Paragios
and Denche [32] have wsed a global statistical texture model.
The conmtour detection for 4 homogeneous pixel cluster and re-
gion based segmentation are mtegrated in a single framework
defining a geodesic active region.

In a similar context, Sherstinsky and Picard [37] have
mtroduced the A -lattice system o produce restored textunes
from comrupted imagery. The Af-lattice is a nonlinear dynamic
system founded on reaction—diffusion. In the M -lattice sysiem,
a warping function is introduced in the reaction process to facil-
itate stability. These warping functions are typically sigmoidal
functions that prevent numerical overflow al every time step.
The A -lattice system uses orientation sensitive fillers, similar
to the flow field analysis in [19].

Zhu er al. [42] have proposed a statistical theory for exture
modeling with the objective of texture synthesis. A set of filters
is selected from a general filter bank o caplure texture features.
The histograms of the filtered images estimate a marginal dis-
tribution of the image. A maximum entropy distribution based
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Fig. 2. {a) Original “oriened” fingerprint image. (h) Flow field depicting
orientution of patterns of Fig. 2(a). For visual clarity, the flow field orientations
are plotted in a magnified scale and quantized according o the fol lowing
orientation ranges: {13, #74), (774, w03 (v, boid) and Chafd, 7

technigue is used to fuse these features o generate a unified tex-
ture model for texture synthesis. By contrast, our texture model
15 based on AM-FM modeling and dominant component anal-
ysis, which are most suitable for locally namrow-band, quasi-pe-
riodic repetitive patiems. Nonpamametnic statistical sampling 1s
also used by Efros et al. [7] for texture synthesis.

Kass and Witkin [19] have also investigated the generation of
oriented textures. Since the pattern embedded in a fingerprint
essentially consists of oriented contours, their flow field anal-
ysis model is suitable for fingerprint pattern generation and anal-
ysis. Bandpass filters, similar to those of the classical Mam-Hil-
dreth scheme [ 28], are used for edge detection. The Kass/Witkin
method provides a flow field with direction vectors al every
point of the odented pattern. The flow field for the “oriented”
fingerprint image in Fig. 2(a) is shown in Fig. 2{b). The flow
field orentations are plotted in a magnified scale and quantized
by the following set of four orientations: (0,7 /4), (774, 7/2),
(/2 3n /), and (35 /L w0 In [19], it is suggested that this
method could be used to synthesize fingerprints under limited
occlusion as they become extremely regular in flow field coor-
dinates.

For the general problem of image disocclusion, Masnou and
Morel [29] have proposed a solution that exploits the connected
components within the image level sets. The level set £ oat the
intensity g of an image I is given by theset I {0 I} = gh
where f{r) is the mtensity of the image at location . Level
lines are then defined as the boundaries of connected compo-
nents within the image level sets. Inoan occluded area, Masnou
and Morel enforce contmuity of the level hines to reconstruct the
occluded region. A cost function is used 1o minimize the total
variaion in angle for the connected pairs of level line termina-
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Fig. 3. (a) Original “stipe” fingemprint image. (h) After occlusion {sguare
region in black) in Fig. Ma). (¢} After disocelusion of Fig. 3 following the
level line method.

tions. A term within the cost function enforces continuity of the
level lines. A simplified version of this method {using only hor-
izontal and vertical kevel lines) is implemented for the orginal
“siripe” fingerprint image as shown in Fig. 3(a). The result of
disocelusion through continuity of level sets in the square oc-
cluded region of Fig. 3(b) is shown in Fig. 3ic). For small oc-
clusions, this method proves to be effective. However, for larger
occlusions where the pattem curves within the occluded area,
the level line continuation method is unsuceessful. The level
sel method produces piecewise constant stripes in the repaired
fingerprint, which appear unnatral in the reconstruction [see
Fig. 3(c)]. The same criticism could be levied on the classical
interpolation-based disocclusion solutions [31]. Therefore, an
adaptive pattern formation technique is required for the finger-
print latency problem.

Kokaram et afl. [20}-[23] have pedformed extensive sudies
on detecting and interpolating missing data inimage sequences.
Their work involves primarily two components: estimation of
motion using MRF models for spatio-temporal changes in cor-
responding blocks of a movie image sequence and generation of
avanety of mterpolators including median, MEF and AR based
technigues. The approach is most suitable for detecting and in-
terpolating small homogencous tmage mass that 1s uncorrelated
with neighboring regions. For the generation of orented tex-
ture features, which is the focus of this paper, domain specific
heuristics and exploitation of chamctenistics specific 0 image
sequences may not be appropriate.

Rather than manual selection of the patlern regenerating
filters, our method hinges on an automated AM-FM dominant
component analysis. Joint AM-FM modeling of one-dimen-
stomal (1-D) signals has recently been studied extensively [3],
[4], [25]. In two-dimensional (2-D) images, the Teager—Kaiser
operator [26], [27] and other related technigques [2], [9], [15]
have been used to extract dominant AM-FM information from
onented textured mmages. Multcomponent multidimensional
AM-FM models have also been investigated recently [13].[15].
Here, we employ dominant component analysis in the design
of reaction filters that are used in a reaction—diffusion process.
In Section I, we describe the reaction—diffusion mechanism.
Section 1V detals the dominant component analysis.

11 REACTION-DMFFUSION FOR TEXTURE COMPLETHON
Zhu and Mumford [41] have motvated the wvse of reac-
tion—diffusion models in image processing with an analysis of
universal image statistics. Analyzing a setl of natural images,

they have shown that a family of potential functions can be used
in a reaction—diffusion paradigm to capture the smoothness and
also the prominent patterns of an image. The typical potential
functions lead to image smoothing via anisotropic diffusion.
loverted polential functions produce pattern formation or
reaction. From this basis, we approach the problem of texre
disocelusion.

The reaction—diffusion mechanism used for texiure disoce lu-
SHMI IS

g:ﬂnu:—ﬂr{ﬂ f].::l

where I is the diffusion term, I is the reaction term; and pr
and gy, are the rate of diffusion and reaction, respectively. For a
specific image location x = [x, y), we have
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= pplx)(x) + paix)Rix). (2)
A discrete Jacobi update for (2) is given by

LX) o Rixd 4 pp{ ) Dx) 4+ pp(x i Rix) (3)
where f;{x} is the inlensity of position x at iteration { and x &
Z%. The initial image intensities in T, are equal to those in the
input image L, except in the case of the occluded region.

For the occluded region, we “seed” the reaction—diffusion
process with noise that is distributed identically o that of the
surrounding region. Let £ denote the domain of the image and
17 = 2 denote the unoccluded region. Let B = 17 denote the re-
zion surrounding the occlusion/latency and O = U* denote the
occluded region. If x € U, then Inix! = I{x). Bu, if x & O,
then fy{x) = F. where A is a random variable with density
fali) — Huii}/|B| where g2} is the intensity histogram for
region Band B is the cardinality of B. The width of B (the re-
gion surrounding the occlusion) depends on, e.g., the maximum
ridge-to-ridge spacing in a fingerprint pattern. Let T, denote
this maximum width (estimated by the AM-FM dominale com-
ponent analysis presented in Section V). Then, we define the
width of B 1o be 270, pixels. Using this method of defining
the boundary region B, we ensure that the width of the boundary
region exceeds one full pattern period.

Seeding the region with nowse wdentically distributed as the
intensities of the surrounding region has the effect of providing
a disocclusion solution admitting intensity distribution and con-
trast similar to the image. If uniformly distributed noise is used
mstead, as was done in [41], the repared region ends not o
match the surrounding region in graylevel distribution. This typ-
wcally results inan unnatural appearance.

In the texture disocclusion problem, several aspects of
equation (2) are important. Since the disocclusion process
not only generates a pattem but also adapts the pattern w0 the
existing boundaries, the reaction—diffusion approach excels in
mating the new patterm with the exisung unoceluded pattern (as
compared o nonadaptive texture generation approaches such
as [30]). In the case of [30], the stripe generation process is
independent of the orentation of the texture at boundaries of
the occluded region.
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A, Diffusion Model

Given the basic reaction—diffusion model, we now define the
diffusion and reaction terms for texture disocclusion. Diffusion
and reaction have conflicting objectives. The goal of diffusion
is smoothing, while the goal of reaction is pattern formation.
Without diffusion, a smooth texture pattem could not be gen-
erated from the seed noise. Since anisotropic diffusion encour-
ages intra-region, nol inter-region, smoothing, the wexture can
be smoothed without elimmnating the imporant intensily transi-
tions (edges). A continuous anisotropic diffusion PDE [33] is

% = div {{tfx}?fl{xn ()

where ¢x} is the diffusion coefficient. Alternatively. the diffu-
ston operator can be expressed as acombination of e Lo 40 1,
where Lz and Lo represent second directional derivatives along
mmage gradients and the nomal respectively [24].

The equivalent discrete representation of (4) for substitution
in (3) 15 given by

-
> el Via(x) (5)

=1

Dix)

where T' is the number of directions in which diffusion is
computed and Vi,ix) is the directional derivative (simple
difference) in direction 4 at location x. For T
the simple differences ¥ 1,050 with respect o the “westem,”

4, we use

“eastem,” “northern,” and “southem™ neighbors. For example,
ifx = (a, w), NIl ot = Ilw — Ry, o — Il ). Here, the

parameter f; defines the sample spacing used w0 estimate the
directional derivative in the = 1 direction (and is typically
unity-valued).

The selection of the diffusion coefficient ~{x) is the most
important step in designing the diffusion process. Essentially,
we want a diffusion coefficient that is low (near zero) al image
edges and is high (near one) within image regions. With : as an
edge strength parameter, a logical choice is given by [33]

RF I
5 (6}

rix] = oxp 4 —

With the mnitial soluton for disocelusion seeded with nose, the
traditional diffusion coefficients cannot remove significant out-
liers [where |[W{x1| & &|. To regulanize the diffusion opera-
tion, we use a modification of the gradient image vsed Lo com-
pute the diffusion coefficients, as suggested by [5]. A Gaussian-
convolved version of the image is then utilized in computing the
eradient magnitudes used in the diffusion coefficients

Tk

7
E (7)

clX1 = oxp
where 8 = I'z, 18 the convolution of T with a Gaussian of
standard deviation . The regularized diffusion given by (7) is
stable and well posed [5]. Another regulanized implementation,
called morphological anisotropic diffusion, can be formed by
substituting 8 (T o I2) » I into (7) [36]. In this case, I is a
structuring element of size v > e, To Eis the morphological
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opening of [ by E, and T « E is the morphological closing of
I by E. However, for exture disocclusion, the morphological
approach tends w flatten image regions, leading o a piecewise
constant result. The constant regions are not appropnate models
for highly ordented, repetitive textures. On the other hand, the
smooth Gaossian filter result does produce smooth transitions
i image mtensity within the texture.

In the above diffusion model using (7), there are two parame-
ters: er and £. For the case of diffusion within the texture pattern,
these diffusion parmmeters can be selected without ambiguity.
First, since « controls the scale of the features retained in diffu-
sion, the value of = 15 setto o — 155, the minimum periodicity
of the texture pattern (e.g., in a fingerprint, the minmum dis-
tance between ridges). We compute + using the dominant com-
ponents extracted in the analysis of Section IV, Since it controls
the maximum change between pixels, s sel o & = . the
maximum contrast (intensity difference) within the texre pat-
tern in the swrounding area B.

B. Reaction Model

Inthe reaction process, we encourage formation of patterns of
a given granularity and directionality, corresponding 1o a local-
ized area in the frequency domain covered by a specific Gabor
filter &3 given by

G o= e [(20 /8 ue + uyl] gl ) (8)

for an &% x & image indexed by (x. g} and a Gaussian
gotor, wh, where o is the scale parameter (standard deviation
of the Gaussian). In this case, the Gabor function has standand
deviation (width) of # and center frequency wu, w. The Gabor
parameters are automatically  determined by the AM-FM
dominant component analysis method given in Section 1V,

To produce patterns that comrespond to oriented texture fea-
tures, the reaction tenmm 18 given by

Hix) = Gy @ 0{GL7T. (9

Here, G is the Gabor filter matched to the dominant compo-
nent at position x. The opertor = denotes comrelation and *
denotes convolution. The function 2( § weighs the contribution
of the Gabor filter. For 20 3, we use the formulation proposed in
[41]

1

1-— (10)
1+ (&) k)

Pl =—

where & is a scaling constant. For example, in the case of fin-
gerprinl pattern generation, we can sel i according the desired
contrast within the fingerprint ridges, as with (7).

The net effect of (9) is to produce a reaction where the pat-
tern of specified granularity and directionality has not emerged.
Therefore, (9) will stabilize when the local spectrum of T con-
tains components within the localized spectral regon covered
by the Gabor filter frequency response. Since the patterns that
emerge are not necessarily smooth, the simultaneous diffusion
process allows the creation of smooth patterns localized in both
space and frequency.
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C. Rate of Reaction—Diffusion

The update rate is an important factor effecting the implemen-
tation of reaction—diffusion for the repair of broken extures. In
the previous sections, we specified the form for both reaction,
R, and diffusion, 13. We did not specify the two rate functions
frand pry. Becavse the objectives of processing within the un-
occluded region U7 the boundary region B and the occluded
region O are different, we allow pr ) and o () o vary with
position 3. Specifically, we diffuse within the entire unoccluded
region L, o provide simultaneows enhancement and disocelu-
sion, and to balance the level of smoothing between the unoc-
cluded and occluded regions. We also perform reaction within
the boundary region B, 1o guamntee pattem matching within the
boundary region. The rate of reaction decreases within B as a
function of distance from O, the occludedlatent region.

Of course, both reaction and diffusion are performed within
0 at constant rates. Forx & (0

XD = i

which is determined by the constraints of stability and the max-
imum number of iteratons. Likewise, if x © O,

ARIX] = fro

where g < 174 for stability,

For pixels outside of the occluded area O, we have
PoiX; = ppu

where o = Cppc. In the simulations given in Section 'V, the
value £ = (1.1 was uahzed. While we have not yet found an au-
tomatic method for selecting =, two conflicting constramts need
to be satisfied: the generated pattern should meld with the ex-
isting boundary of B3 while simultaneously inducing minimum
distortion in the region 1.

If x £ Ubut x ¢ B, then pg{r) = {1, since enforcing a pat-
tern on the remainder of the image would produce distortion.
However, if x = B, we allow the rate of reacton o decrease 1o
zeroin alinear manner, as a funcion of the distance from the oc-
cluded region O, Let d{x, O specify the minimum Euvclidean
distance between point x and the oceluded region O Then

pr(x)  pro|We —dix, O)|/Wp (11)
where W is the width of the band bordering the occluded re-
gion, defined as Wy = 27,5 The reaction—diffusion algo-
rithmic steps are llustrated in Fg. 4.

The success of the reaction-diffusion model depends on the
reaction filters used in reconstructing the texture pattems. We
utilize an AM-FM dominant component analysis o denve the
filter parameters for the occluded regions, as described next

IV, ESTIMATING THE DOMINANT COMPONENT MODULATIONS

In this section, we describe the AM-FM modeling of the input
texture image and bnefly review the dominant component anal-
vais (DCA) technique [9], [LO], [15] that is used for computing
estimates of the dominant AM and FM functions along a con-
tour that encloses the oceluded or missing portion of the image.

Sst
Set B

Seed region O with mise R ]'—P
L J

xell I(x)=Hx)

xed fix)=R

L
£ .

Lt i L(x)+ pol)Dx) + p ()R(x)

[
=¥ C VI,
S A

R(x}=G, B[¢{(CG.+1)]

+

Reaction-ditfusion algorithm flowehart.

For py, imd oy, values
rfier to secting I C.

Rafar to . (9

Fig. 4.

A AM-FM Modeling Fundamentals
A 2-D AM-FM function giiw, ) takes the form

pin, = ale, w)exp [Fde, W (12}
where nlor, yh and 4w, ) are arbitrary real-valued functions.
Without loss of generality, we assume that e, &) = 0. The AM
and FM components of interest that are contained in g, i) in
(12} are the instantaneous amphtude o, ) and the instanta-
neous frequency vector Wex{r. i) = wulx o) viz, wi]'. The
functions 2 (s, ) and w0, 40 are the horizontal and vertical in-
stantaneous frequencies of i ).

Given pizr. w), the AM and FM functions may be caleulated
using the straightforward demodulation formulae

; Wl o)
Vsl yl = He [M] (13}
SR
and
alw, y) = |ulw, y)| (14)

which yield exact solutions at all points where g, w1 # 0] 15]
The frequency equation (130 may be interpreted as aspecialized
mstance of a Poletti equation [34]; 18 use 15 motivaled by the
fact that the exponential function in (12) is invaiant under dif-
ferentiation.

Oriented, highly repetitive images such as fingerprints are
well suited for AM-FM modeling because they are dominated
by nonstatonary, locally namowband processes [6] and contain
locally guasiperiodic patterns. However, note that g, &} in
(12315 complex-valued, whereas typical images are real-valued.
The reason for considering a complex model s that the AM-FM
functions of any real image 3z, 4} are not unigue. By adding
an imaginary component j62 e, i to 5 e, o), we regularize the
demodulation problem and oblain

gl gl = Wi, ) 4 g, b (15)

where S3ix, w0 = alr, yoeos[e. )] and €Xw. ) =
afa, whsin[yla, wll.

Clearly, Relpir, wi] = S, y) irrespective of how we
choose (r, w). By setting (2, ») equal o the directional
multidimensional Hilbert transform of S3(0, w) [ 16], we ensure
that g, ) admits multidimensional analogs of many of the
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most attractive features of the well known 1-D analytic signal
[B]. When 0, ) is chosen in this way, we call gz, o) the
analvtic image associated with 3{r, 4} The AM and FM
functions of iz, y) can then be determined uniguely using
(13) and (14), and we define these modulations o be the AM
and FM functions of %z, 13" The AM function alr, y) may
be interpreted as the image contrast function, while i, )
characterizes the local texture orientation and granularity.

B. Discrete AM-FM Models

A 2-D diserete version of the directional multidimensional
Hilbert transform was given in [10], where it was specified
in terms of its spectral multiplier. For a real-valued discrete
image I, ), this transform may be wsed 1o oblain an imag-
inary component €}r, ) and formulate the complex-valued
AM-FM model

Miv,yy =14l )+ 30Q0x w) (16}

=aix. yloxp ;j-"-'."'fb'i- L’J] : (17

We define als, o) in (17) w be the AM function of I{x, ).
Upon carefully discretizing (13) and (14), one obtains the
equivalent expressions for the discrete demodulation algorthm:

I Miz+1, y)+ Mz — 1, y)
[, i}| 7= avecos [ M e )
(18}
Mir+ Lyl —Mx—1, 4]
2iM e y)

senul, o) m spgn arcsin {
(19)
Mizog | 1] Miz g 1
2M{r. )

[sifar, | = arcoos {
200

Mir,g—10 - Mir, y—13]
i e A

st o, w) f s Aresin [

EEI}

alx. = | Mz, o) (22)
where Yz, y) = [wir, viuiz ¢)]". While a derivation of
these discrete frequency algorthms is based on rigorous theoret-
wcal arguments [15], some intuition can be gamed by observing
that the derivatives in (13) are replaced by first-order central dif-
ferences and averages in (18)<21). Unlike the continuous-do-
main frequency algorithm (13), which is exact, (18)—(21) are
based on a novel discrete quasieigenfunction approximation and
generally contain approximation errors unless £, o) is a pure
sinusoid [ 11]. However, these errors are typically negligible for
tmages that are locally namowband [15].

10ften, modulating functions similar o those caleulated wsing the analytic
image can alternatively be obtained by applying the multidimensional
Teager—Kaiser opemtor [26] directly to a real-valved image. We generally
prefer the approach based on the analytic image because of its strong theoretical
correspondence to the [-D analytic signal. For example, when the analytic
image is used, the instantaneous and Fourier frequency spectra have identical
first moments.
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C. Dominant Component Analvsis

Forideal digital fingerprint images and other oriented textural
tmages, (18)—22) can generally be vsed to compute the AM and
FM functions accurately. Because of many factors [17], how-
ever, the images oblained in practice are often multipartite and
fail to be everywhere locally namrowband [6], [14], [39]. These
factors can lead wo approximation errors in (18)—(21) that are not
neghgible. To overcome this problem, we model the texiured
image f (e, i) not as the real part of a single AM-FM function,
but rather as £, w1 = RelM (e o], where

L
Mir,yy=Y_ Mir, y} (23)

=1
is the sum of L AM-FM functions
Me(w. 4] = me(r, gl ewplfen e, 1)), With  this

multicomponent model, M{x, w} can sill be obtained
precisely as before [by setting Mix. 3 = fe o) 002 21
by wvirtue of the fact that the directional multidimensional
Hilbert transfomm is a linear operator.

Our approach 15 then o demodulate all /. components in
(23) simultaneously and select the AM and FM functions corre-
sponding 1o the component that dominates the local image spec-
trurm on a pixelwise basis. This technigue 15 known as dominant
component analysis (DCA) [9], [10], [15]. The single pair of
AM and FM functions obtained by DCA are referred 1o as the
dominant modulations of the image; they provide a rich descrip-
tion of the locally dominant image structure.

In performing DCA, the components are isolated from one
another by analyzing ML, ¥ with a multiband Gabor filter-
bank of the type described in [2]. The choice of Gabor filters is
motivated by two considerations. First, because of their optimal
conjoint localization in space and frequency, an appropriately
designed bank of Gabor filters is capable of resolving the com-
ponents from one another spectrally, while simultaneously cap-
turing spatially local nonstationanties. Second, the responses of
Gabor fillers are locally narrowband [1], [2].

Let 7, ) be the response of a patticular Gabor filter (8)
with impulse response g 0r, ») and frequency response €7 w.
We assume that some particular component Ay, o) dominales
€, ol at the pixel (e, o), so that

lx, w) = M, ) ol ) Mi(z, ) g.(7. 4. (24)
By applying a sequence of guasieigenfunction approximations
[3], [L1], [15], one may verify the wvalidity of estimating
Viiriw, y) by applying (18)—(21) directly to Giiw. y). The
AM function oy (=, 2) is then estimated using

(#r, i)

e e b
: O [Vanir, yl]

(25)
which differs from (22) only in that the amplitude scaling of
e,y relative to Myiw, o) has been factored out. Thus by
applying (18)—(21) and (235) to the response of every filter in the
filterbank, we obtain estimates of the AM and FM functions of
all £ components in (23) at every pixel in the image.
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At each pixel, we define the dominant component as the one
that dominates the response € {x, w) of the filter that maxi-
mizes the selection criteron

|Crafe, 2l

wax,, |GG Tw

Hefr. i = (26)

This criterion tends o select filers that are dominated by
large amplitude components with instantaneous frequencies
lying near the maximum transmission frequency of the filter,
thereby rejecting cross-component interference and out-of-band
noise. Estimates of the dominant modulations are taken from
the filter that maximizes (26) on a pixelwise basis. The domi-
nant frequency estimates along the perimeter of the occlusion
are used o design the reaction filters for the reaction—diffusion
process of (2). From the dominant component analysis, we
obtain values for horizontal and vertical frequency, wiw, ) and
e, at each image position. Recall that B, the unoceluded
region bordering the occluded region, is 24, pixels in width.
We obtain a sample sequence of wi, ) values and i,
values contained within a path through B that is 7, pixels
from O. If the pattern is homogeneous in the occluded region,
we can find the (. ) values used in (8) by taking the average
ulz, o) values and w{x, 1) values along the path.

In Section V, we demonstrate this approach, providing graphs
of the dominant components around the occluded area. We also
show example dominant component images obtained from this
approach. The automation of the reaction filter selection is a
major contribution of this work.

V. RESULTS

In this section, we present a set of results generated using
the proposed reaction-diffusion model. The focal application
we have chosen for demonstration is the repair of broken, oc-
cluded fingerprints. We also apply the AM~FM reaction-diffu-
sion lechnique o a general set of textures. For the fingerprint
application, the original images were collected from the NIST
database. The occlusions are generated via natural [Fig. 7(a)]
and synthetic means [Figs. 3(b), 5(a), 6(a)]. Results are given
for the level line continuity disocclusion algorithm and also for
the synthetic stripe formation process. Finally, 8 measure of ac-
curacy is defined with respect to ground truth 1o show the fidelity
of disocclusion process.

The analysis of fingerprint images has long attracled atten-
tion from the image processing community becanse of the many
biometric and law enforcement applications. Beyond the signif-
icant work performed in coding and compression of fingerprint
images, the processing technigues have mainly focused on en-
hancement or restoration of the fingerprint patterns from cor-
rupted, noisy versions. A number of these fingerprint enhance-
ment and restoration methods are guided by reaction—diffusion
ProCesses.

Because most latent fingerprints (those lifted from crime
scenes) are fragmentary in nature, typical classification and
file search methods are not practicable due to the occlusion
of important features. Fingerprint occlusions can also occur
through faulty mechanical operation in ink-based fingerprints.
Focal points (deltas and cores) may be occluded if the finger

(1) {hi ()
Fig. 5. {a) Occluded image of Fig. 2(a). (h) After disocel usion using proposed
AM-FM reaction—diffusion method. {¢) After disocclusion following stripe
formation method.

{a) (b}

Fig. 6. iu) Occluded “stripe™ fingerprimt image of Fig. 3u). (h) After
disocelusion wing AM-FM reaction—ditfusion method.

has not been rolled from one side 1o the other, or if the bulb
of the finger has not been completely inked. Similarly, if
movement occurs, such as a twist or slip, the fingerprint can
be partially smeared or blurred. Poor quality ink, excessive
ink or runny ink can also oblilerale important features such
as the rddges. Finally, foreign substances and perspiration
can also cause occlusion of features within the fingerprint.
lmage enhancement can be wvsed o improve such prints, but
the image enhancement procedure should not provide artifacts
or false information. The enhancement process should allow
for bifurcations, terminations, islands, and variation in rdge
width. The PDE-based method suggested in this paper satisfies
these needs, whereas continuity-based methods cannol recreate
bifurcations, terminations, and islands. Typical texture repair
approaches are not fit for prints with varying widths. Moreover,
connecting broken ridges propedy is a significant concern
in ddge counting and tracing within the fingerprint analysis
process. The reaction—diffusion solution given here adaptively
connects the ndges across the occlusion, whereas traditional
continuity-based solutions may lead 1o a false increase in ridges
or leave the ridges unconnected across the occluded region.

Whether the occlusions result from latent prints or faulty
printing on ink, the occlusions can adversely affect fingerprint
classification and matching. The FBI divides these problems
into three cases. In the first case, the impression is so scared
that neither the general type of pattern (arch, whorl, loop, etc.)
nor the ridge tracing or counting can be accomplished. The
second case includes prints in which the general type cannot be
determined with reasonable accuracy, but ridges can be traced
and counted. In the third case, the general type of fingerprint
can be determined, but partial occlusion impedes ridge racing
and counting. Our disocclusion method concentrates on this
third case—repairing occluded Aadges for racing and counting.
Thus, the method desenbed o this paper seeks 1o reconstruct
occluded ridges. The approach, therefore, does not address the
recreation of the fingerprint deli or the core.
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{a)

Fig. 7.

Fig. 5(a) depicts a partially occluded image of the “oriented”
fingerprint shown in Fig. 2(a). In Fig. 5(b), the disoccluded ver-
sion of the image in Fig. 5(a) is shown, using the reaction—dif-
fusion technigue and DCA. Notice that the generated pattern is
perceptually compatible with the overall embedded pattern of
the fingerprint, providing a smooth transition at the boundary
of the occlusion. The reconstructed image from the Meinhardt
stripe formation process [30] is shown in Fig. 5ic). In the case
of Fig. 5ic), for reconstruction, a smaller oceluded patch is used
compared 1o Fig. 5(a) since with the method of [30], larger oc-
clusions are untenable. In all cases, note that the location of the
occluded region is assumed 1o be known a priori. The AM-FM
reaction-diffusion method does not addre ss the ocelusion detec-
tion problem.

Fig. 6(a) shows another fingerprint image with an arbitrarily
selected missing patch from the original “stripe”™ fingerprint
image of Fig. 3(a). Fig. 6(b) is the resultant image after
disocclusion using reaction—diffusion. The preservation of the
ridges in Fig. 6(b) is an example of the inter-region smoothing
of anisotropic diffusion. Compare the result with that of
Fig. 3ic) where a similar patch is reconstructed using level
lines continuity. In the case of Fig. 3ic), the natural appearance
of the reconstructed patch suffers due to enforcement of level
ling conbinuity.

Fig. 7ia) is a fingerprint image with natural but irregular
occlusions due o partial contact of an uneven finger surface.
The reconstructed image from reaction—diffusion is shown in
Fig. 7(b). In this case, two Gabor filters were used to perform
disocclusion. Note the junctions and bifurcations created in
the texture regeneration. Also note that the thickness of the
reconstructed rdges are almost uniform and compatible with
the existing patlem.

As noted earlier, the successful pattern generation at the oc-
clusion is rooted in the use of DCA in the borderdng region of
the occlusion. For the results cited above, the dominant compo-
nent frequencies (e, ») were plotted and are shown in Fig. 8
Fig. 8ia)-(c) are the comesponding dominant component fre-
quencies of the oceluded images of Figs. 5(a), 6(a) and 7(a)
respectively. In Fig. 8, the w-axis represents the position of a
path taken through B around the occluded region O, The come-
sponding reconstructed images from the dominant component
frequencies are shown in Figs. 9a), (b), and (¢), respectively.
From Fig. 9, we can make two conclusions. First, the dominant
component analysis extracts the dominant patiems in the fin-
gerprint imagery. Second, dominant component analysis/recon-
struction alone is not sufficient o perform disocclusion.

The guality of reconstruction is also substantiated wsing the
mean square error (MSE) measure over the occluded region. In
the case of Figs. 5(b) and 6(b), the original images shown in
Figs. 2(a) and 3{a) are taken as ground truth. For Fig. 5ib) the

(bl

() Crriginal fingerprint image with “natural occlusion”™ {h) After disocclusion using AM-FM reaction—diffusion method.

MSE is 753 for the method given here. Using the stipe for-
mation process of [30], the MSE =~ 3081 in case of Fig. 5(c)
feven using a smaller ocelusion). Similady, for Fig. 6ib), the
LISE == 335 whereas the same MSE for Fig. 3(c) is 343,

As discussed in Section 1L a boundary region B is consid-
ered for every occluded region O, The rate of reaction—diffusion
is decreased in region B in order w oblain a seamless integra-
tion of the generated patern in the occluded region O within
B We have also extended the MSE measure 1o include region
B. The MSE in the boundary region represents the amount of
distortion the process has mirodoced in the existing pattern in
order o have a perceptually acceptable onented pattem gen-
eration. For Fig. 5(b). taking boundary region width to be ten
pixels, the MSE is 99, while taking the width 1o be 20 pixels,
the MSE reduces to 51. For Fig. 6ib), under similar conditions,
the MSE’s are 182 and 79 respectively. The error decreases as
the boundary region is increased in size and consequently dis-
tortion in the original pattem is minimized. For Fig. Sic), the
MSE’s are 813 and 487, respectively, which are still greater in
crror than the AM-FM reaction—diffusion results.

Table 1 provides a summary of the example resuls. The wable
includes results for both fingerprint and general texture results.
From the table, one may note the extent of the occluded region,
the MSE for AM-PFM reaction—diffusion result, the number
of reaction—diffusion updates required, and the MSE for the
level lines method mesult. Even though the level hines method
is not appropriate for each example, we included results for
this method for completeness. In seven of the eight examples,
the AM-FM method provides superior results in terms of
visual quality (see Figs. 10-13) and in terms of MSE. The final
example (shown in Fig. 14) shows a case where the level lines
approach is more appropriate than the AM-FM reaction—diffu-
sion technigue. The level lines method excels in the presence
of smooth, directed textures without bifurcations or changes
in orientation. In contrast, note the excelled performance of
AM-FM reaction—diffusion on the “sand” image of Fig. 13.
In this case, the AM-FM reaction—diffusion method is able 1o
recreate the graininess and orientation of the orginal lexture.

V1. CONCLUSIONS

The paper presents a useful application of the reaction—dif-
fusion paradigm. The major contribution is in developing a
scheme that not only generates a texture for the missing par
of an image but also maps and combines smoothly within
the existing pattern. The approach does not use a continuily
constraint on level lines [29], an interpolation scheme [19],
nor & lexture sewing technigue [40]. The algorithm allows the
intensity distribution of the generated pattern to be similar to
that of the surrounding region.
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Fig. 8 Graphs of dominant component frequencies (o, ¢} amund the perimeter of the oceluded area: () for “orented” fingerprint image; (h) for “stripe”
fingerprint image: and () for fingerprint image with “natral™ occlusion. In each figure, the s-axis represents distance around the perimeter, and the y-axis
represents frequency in cycles per sample.

{a] {b) {c)

Fig. 9. Images generated from the occluded images by mconstructing the domi nant components: {a) for “ofented” fingerprint image: (h) for “stripe™ fingerprint
image: and (¢} for fingerprint image with “natural™ ocelusion.

In automating the selection of the texture parameters viadom-  ture disocclusion. We apply the method to asignificant practical
inant component analysis, we provide arigorous method fortex-  problem, that of fingerprint repairfcompletion.
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TABLE 1
RESULTS FROM THREE FINGERPRINTS AND FIVE GENERAL ORIENTED TEXTURE EXAMPLES. MEAN SQOUARED ERROR 15 COMPUTED ACROSS THE OCCLUDED
REGION (0 AND THE BOUNDARY REGION B

]mag{- Oecluded M5E Tierations MET
Region {lop,  AMIFM For Level Hnes Method
Lefiy - _ Reaction- Reaction-
{hutiom, . Trilfpsion TrifTusivm

e rizhe) Method

“hrienled*’ 15050 — 7331 32 13634

Lingerprint [35,65) P —

“atripe” ngerpring | (33,75) R 25 3434
BRI |- e

Finygerprint with (23,0 - 243400 K ARETH

“Watural Oechasivo™ | (45,2000 | .

Bark 50, 50 — 16516 25 16381

B (63651 _

Y oodgrain 50,500 — 17645 i 1747

v (03431

Rouk L AN — 9R Mo 1643

o (65,65 P

Sanl 12130 22TA3 15 CAas3A
LG3A} e

Wood L6 — 33401 n 20885
(TR

{a] (b} {c) (d)

Fig. 1. () Omginal “hark™ fingerprint image. (h) After occlusion {sguare region in black) in Fig. 3{a). {¢) After disocclusion of Fig. 1(h) by AM-FM
reaction—diffusion. {d) After disocclusion of Fig. 1({b) by the level line method.

{h)

(a) (<l (d)

Fig. 11. {a) Original “woodgrain” fingerprint image. (h) After occlusion {sguare region in black) in Fig. 3a) {¢) After disocclusion of Fig. [1{h) by AM-FM
reaction—diffusion. {d) After disocclusion of Fig. 11{h) by the level line method.

fal {hj L] {d)

Fig. 12, {a) Onginal “mock™ fingerprint image. (h) After occlusion {sguare region in black) in Fig. 3in). {¢) After disocclusion of Fig. 12(b) by AM-FM
reaction—diffusion. {d) After disocclusion of Fig. 12(b) by the level line methaod.
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Fig. 14.
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