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Integrated Feature Analysis and Fuzzy Rule-Based
System Identification in a Neuro-Fuzzy Paradigm

Debrup Chakraborty and Nikhil R. Pal, Senior Member, IEEE

Abstrace—Most methods of fuzzy rule-based system identifica-
tion (SI) either ignore feature analysis or do it in a separate phase.
This paper proposes a novel neuro-fuzzy system that can simulta-
neously do feature analysis and SI in an integrated manner. [tis a
five-lavered feed-forward network for realizing a fuzzy rule-hased
system. The second layer of the net is the most important one,
which along with fuzzification of the input also learns a modu-
lator function for each input feature. This enables online selection
of important features by the network. The system is so designed
that learning maintains the nonnegative characteristic of certainty
factors of rules. The proposed network is tested on both synthetic
and real data sets and the performance is found to be guite satis-
factory. To get an “optimal” network architecture and to eliminate
conflicting rules, nodes and links are pruned and then the structure
is retrained. The pruned network retains almost the same level of
performance as that of the original one.

Index Terms—Feature analysis, fuzzy systems, rule extraction,
system identification.

L. INTRODUCTION

L ET X = {x:.%e.....%} C A and ¥ = {¥i.52,
¥ b Fitand let there be an unknown function 3 ;
k£* = K such that ¥, = S{x;} 9% = 1,.... . In other
words, there 18 an unknown function 8 which transforms x 1o
¥. Given X and Y7, the problem of system identification (S1)
is to find & explicitly or implicitly. 81 appears in various forms
in science and engineenng. There are many approaches 1o SL
Some models, ke regression, are explicitin nature while others
such as neural networks and fuzey systems are computational
transforms that do 51 implicitly.

It 15 known that neural networks can act as universal approxi-
mators for a large class of nonlinear functions, hence the choice
of neural networks for 81 is guite justified and has been proved
to be successful [5]. Neural networks are usually robust, pos-
sesses parallelism and good generalizing capabilities but they
usually do not have readability and work as a black box. Hence,
the underdying relation in a system, which has been approxi-
mated by a neural network, cannot be easily undersiood from
the tramed network by any easy means. On the other hand, fuezy
rule-based systems which have also been used for 81 are highly
interpretable in terms of linguistic rules. As fuzzy if-then rles
can be easily understood by human beings and often an initial
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rule-base can be provided by an expert, there is no problem of
readability. However, fuzzy rule-based systems, as such, are not
capable of learning. Therfore, to extract the rules from a given
data one has o depend on techmigques hike clustermg or other
tools of exploratory data analysis [30] or an initial rule base is
supplied by an expert, which s then tuned wsing data. Thus,
judicious integrations of neural networks and fuzzy logic are
cxpected o result in systems with merits of both paradigms.
Several attempts have been made o integrate fuzey sysiems
and newural networks with a view o achieving systems which
are mterpretable, mobust, and have learmng abilities [7]. [21],
[24]-[26], [33].

The varous neuro-fuzzy unification schemes developed o
date can be classified into three major groups:

1y neural fuzey systems;

20 fuzey neural systems;

3 cooperalive syslems.

Neural fuzey systems are fuzey systems implemented by
neural networks [10], [11], [24]. [25]. [31]. [33]. Fuzzy neural
systems are neural networks capable of handling fuzzy infor-
mation [4], [6]. [33]. The inputs, outputs, and weights of fuzey
neural networks could be fuzey sels, oflen fuzey numbers or
membership values. The coopermtive systems are those which
use different paradigms (neuro or fuzzy) o solve vadous facets
of the same problem [33]. All three of these paradigms taken
together 1s known as newro-fuzzy computing. The scheme that
we are going 1o present here is a neural fuzey system. Hence Lo
begin with we discuss some previous attempts in this direction.

Lee et al [20] proposed a neural network model for fuzey
inferencing. They developed an algorithm for adjusting (tuning)
the membership functions of antecedent linguistic values of
the rule set by error back-propagation (EBP), where the conse-
quent parts were considered fived. Li and Wu [22] proposed a
neuro-fuzey hierarchical system with ii-then rules for patiern
classification problem. A five-layer network is also presented
in [39]. The parameters of the net are dentified using evolu-
tonary programming and the wned network 1s then pruned
to extract a small set of rules. Lin and Lee [24] presented a
multilayered feedforward connectionist model designed for
fuzzy logic control and decision making. A hybrid two-step
learning scheme that combined self-organized (unsupervised)
and supervised learning algorithms for selection of fuzey
rules and tuning of membership functions were developed.
Lin and Lee used Kohonen's self-organizing feature map [ 15]
for finding the centers of the membership functions. After
selection of the mle set, 1.e., when the network architecture
is established, the second step of supervised learning begins.
Some heunstic guidelings for mle reduction and combination
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were also provided. Shann and Fu [35] presented a layered
network for selection of rules. Initially, the network was con-
structed to contain all possible fuzey rules. After EBP training,
the redundant rules were deleted by a rule pruning process for
obtaining a concise rule base. The architecure of Shann and
Fu is similar to that of Lin and Lee in several respects. Pal and
Pal [32] discussed some limitations of the scheme by Shann
and Fu and provided a better rule tuning and pruning strlegy.
Lin and Cunningham [27] also developed a layered network
for S1. They used fuzzy curves for featre selection, but this
phase was a parl of preprocessing on the data before the data
2ol into the network. Wu and Er [38] proposed a dynamic fuzzy
neural network implementing  Takagi-Sugeno-Kang  fuzey
system based on extended mdial basis function network. Lin
and Chung [23] developed a neuro-fuzzy combiner based on
reinforcement learning for multiobjective control. Figureiredo
and Gomide [3] proposed a neural fuzey system which encodes
the knowledge learned in the form of fuzey if-then rules and
processes data using fuzzy reasoning principles. After learning
linguistic rules can be easily extracted from the network. Kim
and Kasabov [12] developed a neuro-fuzey inference system
which consists of two phases, one of mle generation from
data and a rule twmng phase by EBP. Knshnapuram and Lee
developed a neural network for classification which uses fuzey
ageregation functions as activation functions [18], [19]. On
completion of training, the redundant links can be identified
and removed from the net If all links emanating from an input
node are removed, then the corresponding feature is redundant
and hence eliminated. Similar types of networks are also
discussed in [8], [9]. [16], and [17].

Most of the methods discussed here do not explicitfy do fea-
ture analysis. However, it is well known that feature analysis
plays an important mole i 51 [28], [36]. For example, consider
a system with input X € 77 and output ¥ € R, It may be pos-
sible that not all the = input features are required o understand
the relation between the input and output or, may be some of the
features are redundant or indifferent o the output of the sysiem.
Moreover, more features are not necessarily good, some features
may even have derrogatory effect on the output. Thus, selection
of an appropriate subset of featres, for the given task at hand,
not only can reduce the cost of the system but also may improve
the performance of the system.

There are many methods of featwre analysis or feature
ranking. Details of some of the feature analysis methods using
soft computing tools like fuzzy logic, neural networks, and
genetic algorithms can be found in [2] and [28]. Several authors
have also designed neurml networks that simultaneously learn
feature extraction and classification. For example, Won er al.
proposed a shared weight morphological network and applied
it o target detection in [37]. Similar kinds of work can be found
in [1] and [13].

Following the concept of Pal and Chintalapudi [29], the fea-
ture selection scheme proposed here uses a modulator function.
Pal and Chintalapudi used a multilayered feed-forward archi-
tecture. Every input feature was muliplied by an atlenuation
function prior Lo its entry in the network. The attenvation func-
tons were so designed that they ook values between 0 and 1.
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Fig. 1. Metwork structure.

The parameters of the attenuation functions were keamed by the
EBP leaming scheme. After training, for a bad or indifferent
feature, the attenuation function acquires a value close w 0 and
for a good feature a value close o 1. The present work is in-
spired by the feature selection scheme of Pal and Chintalpudi
but the present philosophy and formulation used here are guite
different.

Here, we present a neural fuzzy system for simultaneous fea-
ture selection and 51 In subsequent sections, we discuss the net-
work structure of the proposed system followed by the leaming
rules, optimization of the network, and some simulation results.
Finally, the paper is concluded in Section V1L, which also gives
some directions of future works on the proposed system.

II. THE NETWOREK STRUCTURE

Let there be s input features (x),x2,....a,) and ¢ output
features (yn. pa. . . ., 3¢ ). The proposed neural fuzzy system will
deal with fuzzy rules of the form [ I ey is Ay, and ws is Ag,
cooand g is A then g is By Here, Ay s the dth fuzzy set
defined on the domain of 2y and I s the dth fuzzy set defined
on the domain of ;.

From our notation one might think that for each rule we are
using a different set of antecedent linguistic values (fuzzy sets)
but that is not necessarily true; in fact, for every feature only a
few fuzey sets are defined and hence some of the ., = A,
for some j and K. Similar is the case for the linguistic values
defined on the output variables.

The neural fuzzy system is realized using a five-layered
network, as shown in Fig. 1. The node functions with its inputs
and outputs are discussed layer by layer. We use suffixes
o, Loand koo denote, respectively, the suffixes of the
nodes in layers 1 through 5 in order. The output of each node
15 denoted by 2.

Layer I: Each node in layer | represents an inpul inguistic
variable of the network and is used as a buffer to transmit the
input to the next layer, that is to the membership function nodes
representing its linguistic values. Thus, the number of nodes in
this layer is equal 1o the number of input features in the data. If
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a2y denotes the input to any node in layer 1 then the output of
the node will be

g

R (1)

Laver 2: Each node in layer 2 represents the membership
functions of a linguistic value associated with an input linguistic
varable. Moreover, this layer also does the feature analysis. The
output of these nodes lies inthe interval [0,1] and represents the
membership grades of the input with respect to different lin-
guistic values. Therefore, the nodes in this layer acts as fuzzi-
fiers. The most commonly used membership functions are -
angular, trapezoidal and bell shaped. Although any one of these
chorees may be wsed, we consider bell shaped membership func-
tons. All connection weights between the nodes in layer 1 and
layer 2 are unity. If there are &, fuzzy sets associated with the
ath featre and if there are & input features then the number of
nodes in this layer would be V* = 377 ;. The output of a
node in layer 2 is denoted by

i, — s
L "
e t—:xp{—T}. (2}

In (2), the subscript n denotes the nth term (fuzzy set) of the
linguisuc variable &y, te; and o, represent the mean and spread
respectively of the bell shaped function representing a term of
the inguistic variable @, associated o node .

For the purpose of feature selection, the output of this layer
needs to be modified so that every indifferent/bad feature i,
gets eliminated. If a linguistic varable wp is not important (oris
indifferent) for describing the system behavior, i.e., for defining
the input-output relation, then the values of «,. should not have
any effect on the finng strength of the rles involving that input
variable. This is our main guiding principle for feature analysis
and it makes our approach completely different from the work of
Fal and Chintalapudi [29]. Since for any F-norm, ".l"U._ r‘r} =¥,
() =0 ¢x = 1, this can be realized if an indifferent feature always
generates 8 membership of unity. This may appear impossible
at the first sight. Note that for an indifferent feature, all of its
terms (i.e., all of its linguistic values) should have no effect on
the firing strength. Next we explain how this can be realized.

Let us associate afunction [, with each node n in layer 2. We
call f5 a modulator function. For an indif ferent (or bad) feature
we want all linguistic values defined on that feature to result in
a membership value of 1. To achieve this, we model [, as

fro = oxp [}.J._. In (l) : (30
'z|'6

Here, Ay, & |0, 1] is a parameter associated with a particular fin-
guistic variable ., of which node 7 15 a werm. From (3) we see
that when A, is neardy 1 then f; is neardy 1/, and when A,
is nearly 0 then [, is nearly 1. Therefore, for bad features A,
should get large values (close w 1) and small values (close 1o 0)
for good feawres. Thus, for a bad feature, the modulated mem-
bership value would be [, - =, = =, - [1/2,] & 1 irespective
of the value of 2. Similardy, for a good feature, the modulated
membership value would be f,,.2, = L.z, == =z, == the actual
membership value. Since Ay must take values between Oand 1,
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we model Ay, by % Thus, the activation function of any node
noin layer 2 would be as

L 1
Eq = & 0P [c_-"-- In ( N (4)

which can be simplified to

-2
shl—e ¥

Ep = A ! (3)
where ., is computed using (2). The parameter /3, can be
learned by back-propagation or by some other echniue. We
see that when ,-'_Iﬁ takes a large value then =, tends to £, and for
small values of ,ii';':, zZ, tends o 1, thereby making the feature
indifferent. Therefore, our objective would be 1o make _,".?E Lake
large values for good features and small values for bad ones
through the process of learning. Layer 2 can be better realized
using two layers of neurons, the first one for computation of
the membership value, #,, and second layer for the modulated
outpul using (5).

Layer 3: This layer is called the AND layer. Each node in this
layer represents an IF pan of a fuzey rule. There are many op-
erators (-nomms) for fuzey intersection | 14]. Here, we choose
product as the operator for intersection. The number of nodes in
this layer is ¥ = [[_ N:. The output of the rreth node in the
layer is

Zoo — ]I 2 (6)

widt,

where P, is the set of indexes of the nodes inlayer 2 connected
to node e of layer 3.

Layer 4: This 1s the OR layer and it represents the THEN
part (i.e., the consequent) of the fuzzy rules. The operation per-
formed by the nodes in this layer is to combine the fuzzy rules
with the same consequent. The nodes in layers 3 and 4 are fully
connected. Let wiy,, be the connection weight between node vz
of layer 3 and node I of layer 4. The weight 1y, represents the
cerainly factor of a fuzey rule, which comprises the AND node
e layer 3 as the IF part and the OR node [ in layer 4 nep-
resenting the THEN part. These weights are adjustable while
learning the fuzey rules. If there are M; fuzey sets associated
with the «th output varnable and there are # output features then
the number of nodes in this layer is V= = EE=1 M;. For sim-
plicity let us assume that there 1sonly one output vanable and A4
linguistic values are defined onit. Therefore, the fourth layer has
&t = M nodes. For each output linguistic value there are ex-
actly &7 rules having that value as the consequent. Every node
of this layer picks up only one rule from among the associated
&% rules based on the maximum agreement with facts (in terms
of the product of firing strength and certainty factor) for com-
putation of the defurzified output. When all certainty factors
are equal, the rules are selected based on the maximum firing
strength. This rule selection 1s viewed as an OR operation and
realized by the max operator. Thus, hike Shann and Fu [35] and
Pal and Pal [32], the output of the node ! in layer 4 is computed
by

= AR B i, (1)
e lh
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where F; represents the set of indexes of the nodes in layer 3
connected o the node [ of layer 4. Since the learnable weights
iy S are interpreted as certainty factors, each thyy, should be
nonnegative. The EBP algorthm or any other gradient-based
search algonthm does not guarantee that vy, will remain non-
negative, even if we start the wraining with nonnegative weights.
Henece, we model wy,,, by y'fm. The gy, 15 unrestricted in sign
but the effective weight g, = _f,'ﬁ“ will always be nonnega-
tive. Therefore, the output (activation function) of the Ith node
in layer 4 will be

. 2 -
D= mMAK(Ze i, - (&)
me

Laver 5 This layer is the defuzzification layer. Each node
of layer 5 represents an output linguistic variable and performs
defuzzification, taking into consideration the effects of all
membership functions of the associated output linguistic vari-
able. The number of nodes in this layer is equal o the number
of output features. Here, we use the centroid defuzzification
scheme, and a node in this layer computes the output as

e p A
= —
2iep, H

In (9), % is the set of indexes of the nodes in layer 4 connected
to node £ in layer 5 and «y, oy are the spread and mean of the
membership function representing node { in layer 4. The weights
of the links connecting nodes in layer 4 and layer 5 are unity.

(9}

1. LEARNING OF FEATURE MODULATORS anND RULES
We now derive the leaming rules for the neural fuzey system
with the activation or node functions described in the previous
section. In the tmuning phase, the conceptl of back-propagation
is used to minimize the error function

¢ o= —E.E ZZW""

i—1 -'I.—l k=1

k)’ (10)

where [ 15 the number of nodes in layer 5 and i and =g are
the target and actual outputs of node & in layer 5 for input data
X 1 1,2, .., N. The method for adjusting the learnable
weights in layer 4 and the parameters 2, in layer 2 are based on
gradient descent search. We use online Li-pdull.t scheme and hence
derive the leaming rules using the instantaneous error function
E5. Without loss, we drop the subscript ¢ in our subsequent dis-
CUSSIONS,

The delta value ¢ of a node in the network is defined as the
influence of the node output with respect 1o £ The derivation
of the delta values and the adjustment of the weights and the
parameters [T, are presented layer wise next.

Layer 5: The output of the nodes in this layer is given by (9)
and & values for this layer, &5, will be

F

Az

Thus

b = —{yp — 25 (11)

Layer 4: The delta for this layer would be

5 &bk e A )
: 5‘9:; d b dw.:l
In other words,
B o i STk (12)

where & 15 a node i layer 5 with which node ! in layer 4 15
connecled
Laver 3: The dela for this layer would be
dE dE dxn

e ey g,

ﬁrrl

Hence, the value of &, will be

g i Zi =i, B G i zpgh, AKX dsaegha b
otherwise.
(133
Here, €2, is the set of indexes of the nodes in layer 4 connected
with node np of layer 3.
Laver 2: Similarly, the &, for layer 2 would be
o o

Dz Pz

&)

In (14), fT, is the set of indexes of nodes in layer 3 connected
with node n 1n layer 2

With the & calculated for each layer now we can derive the
weight updating equation and the equation for updating 5,

L
Un = 3
iz,

Hence,

=% fa (14)

s T

dE OF dx
e ’jhi it
or
4k Z“—'Q:-. 287 2n om0, = MKy {9 |
i (1. otherwise.
(15}
Similarly, we calculate
dF R oy,
i, da, O,
or
b (28, ) (22 16
!"} '.-Il L ( T [ ::I

reiz B,

where Hp s the set of indexes of nodes in layer 2 connected to
node 3 of layer 1. Hence, the update equations for weights and

iy are
: : : A
fiml 1) = e (] r;l( o ) (17}
Ll
and
dE
A1) = d.08 — —— 15
Spit + Hplt #( (.}_h..p) (18)

In(17) and (18), » and s« are learning coefficients.
The network leams the weights of the links connecting layers
3 and 4 and also the parameters associated with nodes in layer
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2, which do the feature selection. The inital values of #'s are
s0 selected that no feature gets into the network in the begin-
ning. This is realized by assigning very low positive values (say,
(L001 ) toeach &, Thus inthe beginning of learning every node
in layer 2 produces a value which 1s nearly equal o one, and con-
sequently, all features are considered unimportant. As learning
proceeds, the values of 77s gets updated in such a way that the
important features, i.¢., the features which can reduce the error
rapudly, only pass through the network. Next, we discuss strate-
gies o prune the network o get an “optimal”™ readable network.

IV, OPTIMIZING THE NETWORK

We started with a network which represented all possible
rules given a set of mput and output fuzey sets. But all pos-
sible rules usually are never needed o represent a system. More-
over, the modulator functions associated with the second layer,
may decide that all of the features are not important. Hence,
some of the nodes present in the network may be redundant,
and presence of these redundant nodes will decrease the read-
ability/interpretability of the network. We know that a 51 task
can be easily handled by a conventional multilayered percep-
tron (MLP) network, but we have used a neural fuzzy system
for the purpose of 81 o increase the readability of the network,
s0 that we can understand the relation between the mputs and
outputs in terms of linguistic rules. Thus, to make the network
optimal and more readable, we need 0 prune it removing re-
dundant nodes and icompatible rules. We next discuss what
we mean by redundant nodes and incompatible rules, and how
Lo remove them.

A. Pruning Redundant Nodes

Let us consider an 81 problem with » input features so that
layer 1 of the network will have s nodes. Let the indexes of these
nodes be denoted by p(p 1 to #). Let A, be the setof indexes
of the nodes in layer 2 which represents the fuzzy sets on the
feature represented by node poof layer 1 and let |A}| = 2, We
also assume that o (¢ < 51 of the » features are indifferent/bad as
dictated by the training. Let & be the setof indexes of the nodes
which represents the ¢indifferent'bad features. Hence, any node
with index p in layer | such that p © K is redundant. Also, any
node nin layer 2, where » £ A, and p £ £, 1s also redundant.
In our network constructon, a node in layer 3, can be uniguely
identified by its connectuons with the nodes in layer 2. We can
indicate a node m in layer 3 as 5, R T |
where i, © A Now forany p © H we can group the nodes
in layer 3 into &, many groups, we call them G.w , where v =

1.4,..., Ny Every nodein the vth group is connected to the +th
fuzzy set on the pth feature. Let 5, be a node in layer 3 which
belongs to the rth group, ie., 5, ey s pnms oy ithonn] E
(Fpr. Then, for every group G, & # o8 = 1,20, 5%,
there exists exactly one node S, = [mg1, 72, ... 7], such
that wy; = w99 7 00 = L2, s, where p € Jtis a bad

feature.
Thus, every group of nodes has identical connection siruc-
ture with the nodes of layer 2 except for its connection Lo & node
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Fig. 2. Subnet to illustmte redundant nodes.

corresponding 1o the redundant feature p, and as per our con-
struction that particular node produces an outpul membership
value of 1, for all feature values. Henee, in layer 3 it is enough
to keep only one of the WV, groups and the other &, — 1 groups
of nodes are redundant.

To elucidate the concept of redundant nodes, let us consider
an S1 task with two input featres 1 and . Therefore, layer
1 of the network for this task will have two nodes, we name
them as A and X, Fig. 2. We also assume that input feature
w1 has three fuzey sets associated with it and the feature s has
two fuzey sets associated with it. Hence, layer 2 will have three
nodes, X1, Xpe, and Xy, comnected with X, and two nodes,
Xo_ and Koy, connected 1o Xo. The nodes in layer 3 are named
usimg their connections o nodes in layer 2, ez, a layer 3 node
connected to X1 and Yoo will be denoted by Ay Xop (Fig. 2).
Now, if, training dictates featre @3 o be redundant then irre-
spective of the values of =, each of the nodes X-;, Y15, and
X1z will produce an output of unity. In this case we can group
the nodes inlayer 3into three groups, which are shown by white
nodes, gray nodes, and black nodes in Fig. 2. Since Y5, pro-
duces an output of unity, the gray group has two nodes repre-
senting bwo antecedent claoses Y 18 N7 and “ep 18 Yoo”
Similarly, each of the white and black groups also represents
the same two antecedent clavses as the outputs of both X and
Xig are 1. Henee, it is enough o retain any one of the three
groups. Note that in this case, if two group of nodes are pruned,
then the third layer looses its importance, as itreally does notdo
any AND-ing operation. But such a situation, will rarely occur
where out of only two input features one is redundant. 1f it hap-
pens, then the third layer ssmply tansfers its input 1o the next
layer.

The redundant nodes are not required for the S1ask, but they
add to the computational overhead of the network. Therefore,
removal of these nodes 15 necessary 1o gel an oplimal network.
The crucial part of this method is determination of the set of
redundant nodes in layer 1. For this we use the value of 1 e
(we call itas ~,) as an indicator. We have seen earlier, that for
good features vy, takes values close to 1 and for bad features it is
close to 0. Therefore, we fix a small positive threshold th such
that pr € Uil v, = . Next, we summarize the method of the
removal of redundant nodes (here the removal of a node also
means removal of its incoming and outgoing links) followed by
a discussion on the choice of threshold #.
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Algorithm: Pruning of redundant nodes
begin
H =
for each p in layer 1
if (7 < L)
R=RuU{p}
remove node p in layer 1
remove the nodes in layer 2 con-
nected to p

end if
end for
do while (It ¢)

let 1 ¢ K

hH=#H-{i}

find G;j,. Fr= ke NG

remove nodes in (rg. G, ... Gy
end do

end

1) Selection af the Threshold th: Here, we present a guide-
line for selecting the threshold £, We have used Gaussian mem-
bership functions for the input fuzzy sets (also for output fuzey
sels), hence as per our formulation the output of the nodes in
layer 2 can be epresented by

e i
s P R

where
i W
; i b
e {_T}
and v, 1-—¢ 0 1f we consider o, 27’ then we have
i v
5= b i
In = D‘YD{ PE: } (149
and
e 3 . T
= [{rxp {— SR }] ; (200)
2o’

We know that 99% of the area under the membership func-
tion in (19) lies over the interval |gr, — ), pa — e | Con-
sequently, the value of z,,, beyond this interval would be negli-
eibly small. For a bad/indifferent feature we want the modulated
membership value =, o be almost vty over the entire interval
[fen Bl e 1 3], Therefore, we can safely choose that
value of =, as the threshold th, which makes 2, = (e = 1) at
Zy = @n — do!, and at p,, — 3o Thus, from (20), we obtain
the threshold th = Infei /4.5, Note that for such a choice if
ip € (=30, pn—3ay, . then 2, = o If we consider: (L&,
then we obtain £ = 0,03, which we use in the simulations.

B. FPruning of Incompatible Rules

According to our construction of the network, the links be-
tween layer 3 and layer 4 represent the rules, and the weighis as-
sociated with the links can be interpreted as the certainty factor

g
I

/"j\

-\\I

E: .}IT/‘I\D alir:\/\l\
ik Y E "
/’/

Fig. 3. Incompatible rules.
of the rules. But as the nodes in layer 3 and layer 4 are fully
connected, initially, all fuzey rules are considered. If there are
T linguistic values for an output linguistic vadable then there
are ¢ rules with the same antecedent but different consequents,
which are inherently inconsistent. Let us consider the subnet in
Fig. 3, which shows only the connections used for selecting the
most relevant rule corresponding 1o the antecedent clavse (1IF
part) represented by the node se in layer 3. Fig. 3 corresponds
to the following imcompatible rules.

If {nateredent ), then gy is Fr -, D F= 1,200 ,1

Where, {andeosdend,, is the antecedent clause represented
by node i of layer 3, ¥ ., isthe {th fuzzy set on the &th output
variable uy.. The L'urluiniy factors wy. ., of the mles are shown
in parenthesis.

For mule pruning the centroid of the set of incompatible rules
15 calculated considering the comections in Fig. 3 as

EI-;—:F\ Epetpey

Clern . (21)
2y
Since - 2
Since =y = z.,47,,
L T i
e By o 8 P e L (22
b — — = 5 s
Ln!f:' I, Froalip, ™M
Hence
d, a )
L‘Icf"u -r.I'!'.'.u'r't'ME f-'rﬂl

G = &—= 3 -
ZI’-CP, _.l_;r{'”&{z.r_

0 (23) can be viewed as a centroid of the set of incompat-
ible fuzzy mles which comresponds to Fig. 3 with certainty factor
a5, for the rule with antecedent node i and consequent node
. We calculate the membership values of ¢, in all consequent
fuzey sets of the incompatible rules. Then the rule which have
the highest membership value for ey, is selected and the other
rules are deleted.

V. TRAINING PHASES

The training of the system takes place in three phases. Phase
1 is called the feature selection phase, where the training is done
on the mitial network with all the possible nodes and links. The
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Phase 1 tmiming 15 conswdered o be over once the modulator
functons stabilize, i.e., when
P i ]
||r|\.r')| . rkf + J')|| <
&

where I'ith & A* 15 the vector of -y, values alter the tth epoch
and ¢ is a small positive constant. After Phase 1 training is over,
based on the values of the parameter -+, the pruning of the re-
dundant nodes is done. After pruning, the output of the second
layer nodes would be as

= =

n i
as the modification of the membership value for the purpose of
feature selection will no longer be required. After pruning, the
network is retrained for a few epochs to adapt its weights in its
new reduced architecture, and this phase is called Phase 2 of
traming. Finally, the incompatible rules (links) are pruned and
again the network 15 allowed o leam in its new archilecture,
which is termed as Phase 3 of trining. Let Wit} denote the
vector of the weights of all the links connecting layer 3 and layer
4 after the tth epoch in Phase 2. The Phase 2 training can now
be stopped when

[|[Wid— Wit + 1|
Wil

where Wit)| gives the number of components in Wil Phase
3 tuning can also be terminated based on the same enitena. Note
that for Phase 3, the number of components of Wt will be
less than that in Phase 2. However in the present simulations we
have arbitrarily chosen the number of epochs. After the Phase
3 trnng 15 over, we oblan 4 network which s readable, and
the rules that describe the mput-output relation can be casily
retieved from the final architecture of the network.

V1. RESULTS

The methodology developed s tested on two data sets taken
from [36] and the performance is found to be quite satisfactory.
We first describe the data sets and then in two separate subsec-
tons we present the results obtamed on them.

Of the two data sets one is synthetically generated and the
other 1s a real life one. The first one 15 named HANG which is
generated by

y=1[1l4ux 24 Ta L2 Daias €5 (24)

The graph of (24) s shown in Fig. 4. Equation (24) repre-
sents a nonlinear system with two inputs & and e and a single
output 5. We randomly took 50 points from 00 = ), 2 < 5
and obtained 50 mput-output data pomnts according 1o (24). To
illustrate the feature analysis capability of the proposed net, we
added two mandom vanables oy and o, in the range [0,5] as
dummy inputs. It is expecled that feares we and w. would be
indifferent 1o the output of the system.

The second data set 1s called CHEM. This is the data for
operator’s control of a chemical plant for producing a polymer

Fig. 4. Plot of HANG.

by polymerzation of some monomers. There are five input fea-
tures, which a human operator may refer 1o for control and one
output, that 15 lhis'her control. The input variables are monomer
concentration (1), change of monomer concentration (v ),
monomer flow rate (wg), two local temperatures inside the plant
(154, and g ). The only output (1) 15 the set point for monomer
flow rate. In [36], there is a set of 70 data points obtained from
an actual plant operation. We name this data set as CHEM and
use as our tmining data. In [36], 1t has been reported that the
two local temperatures inside the plant, Le., w. and w; do not
significantly contribute w0 the output.

One of the most important issues for mle-based 51 is to de-
terming the input and output fuzey sets. We do not use any so-
phisticated technique in this regard. We found out the domain
of each input and output component and picked up a number of
fuzey sets o span the whole range with considerable overlap be-
tween adjacent fuzey sets. As stated earlier we used fuzzy sets
with Gavssian membership functions.

We measure the performance of our system by the sum of
squared errors (S5E) and maximum deviaton (MD) of the
output from the target. Lin and Cunningham [27] defined a
performance index (PL) as

i q';-"IIZ;:f-:l':f:’k — )2
Syl

where zy; denotes the output at an output node £ and g, denotes
the desired output at the same node. However, i [34], 1t was
pointed out that this Pl is monotonically decreasing with &% 1/2,
i.e., it is possible o obtain a very small PI just by increasing V.
Still, we evaluated the perdformance of our system based on Pl
in (25) for the sake of easy comparison.

Hf

(23)

A. Results on HANG

Here, we used four input fuzzy sets for each input feature and
five output fuzzy sets for the output linguistic variable. The input
and output fuzey sets are shown in Figs. 5 and 6, respectively.
Hence, the initial architecture for this problem is as described
in Table L

The network was tramed using the data set, HANG with
learning parameters i = 0.1 and g2 = 0.1 for 1000 epochs in
Phase 1, 500 epochs in Phase 2, and 3500 epochs m Phase 3.
The SSE was reduced from 57907 to 1.513. The PL was equal
to (L01, which is comparable to the result obtained by Sugeno
and Yasukawa [36], who obtained a PLof 0.01. Using this data,
Lin and Cunmingham [27] obtaimed a PL of (L003, but in ther
case they used only the good features, ie., only features 1y
and rz. Moreover, we did not tune the membership functions
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Fig. 5. Input membership functions used for HANG.
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Fig. 6. Chtput membership functions used for HANG.

TABLE 1
ARCHITECTURE OF THE NEURAL FUEZY SYSTEM USED FOR HANG

layer no. | na. of nodes
1 4
2 r 16
3 254
4 1
5 1
TABLE 1

WALUE OF ), FOR DIFFERENT INPUT FEATURES FOR HANG

[ [ [
3, 255|254|UUU|MG
1-e% | 0,99 0,99 ;000 0.00

defined on the input and output vadables which could improve
the results furlhi:r

The wvalues of i, for the various features and the comre-
sponding values uf 1 — ¢~ afier the Phase 1 lraining are
given in Table 110 Table 11 clearly shows that the network
15 able o mdicate features s and w. as not important and
elimmalte their effect completely on the output. In this case, as
Table 1 shows, we started with 256 nodes i layer 3, e, 256
antecedent clavses. Also, as layer 4 contains 5 nodes, the imitial
architecture represented 236 = 5 = 1280 rules. But Phase
1 of training indicates that two features are redundanvbad.
Before Phase 2 training the network is pruned of the redundant
nodes, which reduces the antecedent clauses to 16, hence, the
number of rules gets reduced to 16 = 3, ie., 80. Since after
Phase 2 incompatible rules are removed, the total number of
rules represented by the final architecture is 16, Thus, here we
obtain & 99.75% reduction in the number of rules in the final
archilecture.

We also investigated the generalizing capability of the net-
work. A mesh of 256 pomts in the mnge 0 < o, < 5 was
considered. The network then results in a SSE of 17.07 and a P1
of 0.008. The mean square emor on the test set was 0.06. The

Fig. 7. Difference surface for HANG.

TABLE 111
Mo oF FUEZY SETS FOR DIFFERENT FEATURES USED WITH CHEM

Mo of Fuzey Sets
i 4

L2
T3
La
L5
i

Features

=] b2 B3 e b

TABLE 1V
IMITIAL ARCHITECTURE OF THE NEURAL FUZZY SYSTEM USED For CHEM

layer no. | no. of nodes
1 5
2 14
3 128
4 7
] 1

MD of the desired output from the obtained output was 0.79.
This proves that the network also has good generlizing capa-
bilities. The difference of the correct surface and the surface pro-
duced by our system is shown in Fig. 7.

B. Results on CHEM

As described before, this data set has 5 input features,
namely, oy, we, ty, 20y, and s and a single output feature
i. The number of input and output fuzey sets considered are
shown in Table I, and the initial nomber of nodes o the
different layers are depicted in Table IV, The membership
functions of the various fuzey sets used for this data set are
depicted in Figs. 8-12

For CHEM the learning parameters were ¥ G000 and
g = 000071 and the training was continued for 1000 epochs in
Phase 1, 500 epochs in Phase 2, and 3500 epochs m Phase 3. The
S5E was reduced from 4 382539 10 16231, The P1 was equal 1o
0.0021 after Phase 3. Lin and Cunningham [27] obtained a P1 of
0.0022. Sugeno and Yasukawa [36] does not provide any perfor-
mance measure of their system on this data. The pedormance of
our system is compared with that of the real output in Fig. 13,
which exhibils a good match.

The valuesof /5, and 1—v % for the various features after the
Phase 1 tratming are given in Table V. Table V again establhishes
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Fig. 8. Membership functions used for v, .

Fig.9. Membership functions used for vg.

Fig. 101,  Membership functions wsed for o,

Fig. 11. Membership functions used for vy and oy,
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Fig. 12, Membership functions used for g

the capability of the proposed system in identifying the features
that are not important. It clearly shows that we and «; do not
contribute significantly to the output of the system—thus they
are indifferent or bad featres. This result conforms o the find-
ings of Sugeno and Yasukawa [36], who also found that features
17 Loy are the only important ones. In this case, the number of
antecedent clauses at the beginning of Phase 1 training was 128
( Table IV) and the number of nodes in layer 4 was 7. Thus the
initial architecture represented 125 = 7 8486 rules. At the end
of Phase | two features were identified as not important, and

LY

I

Fig. 13, Perfformance companson of the proposed system.

TABLE VW
WALUES OF 2, FOR DIFFERENT INFUT FEATURES

| uy | Uz I Uz I Uy | g
s 253 | 1.08 | 1.9 | 0.21 [ 0.20
l—e % | 0.99 | 0.98 | 0.85 | 0.04 | 0.04

thus, pruning of redundant nodes yielded 32 antecedent clauses
resulting in 32 x 7 = 224 rules. Afer pruning of the incompat-
ible rules, the final architecture represents 32 rules. Therefore,
in this case we oblain 96.42% reduction in the number of rules.

The generalization ability of the network for this data could
not be measured as we could not get any data 1o do so.

VIL CONCLUSION

A novel scheme for simultaneous feature selection and $1in a
neuro-fuzey framework has been proposed. It is a five-layer net-
work, which can realize a fuzzy rule-based inferencing system
and at the same time can find out the features which are not
important. We also proposed methodologies for pruning the re-
dundant nodes and incompatible rules that can result in a more
readable network. The proposed system has been implemented
on several data sets and the results found are quite good.

There are a few 1ssues that have not been considered in the
present work. They are as follows. We have not given any guide-
lings 1o decwde on the number of inputl and output fuzey sels
and their definitions, which are important for designing a good
system. We did not wne the parameters of different membership
functions used. Tuning of the membership functions is expected
improve the performance further. Our pruning strategy removes
redundant nodes and eliminates icompatible rules but sull the
system consders all possible antecedent clavses, which may not
always be required.

The main thrust of this paper was o demonstrate the effec-
tiveness of the proposed network for simultaneous feature anal-
ysis and systems identfication and it is found to do a good job
as mevealed by the simulation results.
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