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Abstract

In this note we analyze the effect of the resetting operation in the fuzzy P1 controller proposed by Lee (IEEE Trans, Fuzzy
Systems 1{4) (1993 ) 208-301). We justify that the resetting operation can result in a steady-state ervor for different systems
thereby destroying one of the important characteristics of Pl-type controllers. We also exhibited through simulations with
several second-order linear as well as non-linear systems with and without integration that the resetting operation makes the
fuzzy Pl controller behave more like a fuzzy PD controller, although for some systems the resetting operation can improve

the transient response significantly.
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1. Introduction

Interests in fuzey logic control has been growing
very fast because of its simplicity and versatility.
fuzzy logic controllers (FLO) have been reported to
be successfully implemented in a number of complex
and non-linear processes [21]. Sometimes FLCs are
proved to be more robust than conventional controllers
[18]. A comprehensive review of the FLC design
and implementation can be found in [3,9.2]. Different
types of adaptive FLCs such as self~tuning and self-
organising controllers have also been reported in the
literature [5,11,19]. Recently, many rescarchers are
trying to achieve enhanced performance and increased
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robustness of FLCs, using neural network and genetic
algorithms in designing such controllers [8,1,6].

The main objective behind any controller design
is to regulate or mamtain the desired output of the
plant/system to be controlled. The designed con-
troller is expected to change its output as often and as
much as necessary to keep the controlled variable at
the desired value, e, at the set-point. Failing to
achieve this results in either an instability or a steady-
state error, 1.e., offset. Presence of an offset indicates
the incapability of the controller to provide the re-
quired control action for achieving the desired plant
output. Therefore, a good controller should at least
guarantee system’s stability as well as zero offset.
Among the various types (Pl, PD and PID types)
of FLCs, just like the widely used conventional P1
controller in process control systems, Pl-type FLCs
are most common and practical followed by PD-type
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FLCs. Because proportional (P) and integral (1) ac-
tions are combined in the proportional-integral { P1)
controller to take advantages of mherent stability of
proportional controllers and of elimination of offset
by integral controllers. However, performance of Pl-
type FLC (FPIC) is known to be quite satisfactory
for linear first-order systems. Like conventional Pl
controllers, performance of FPICs for higher-order
systems and systems with large dead-time or trans-
portation lag, and also for non-linear systems may be
very poor due to large overshoot and excessive oscil-
lation. And such systems may be ultimately uncon-
trollable [10]. PD-type FLCs (FPDC) are suitable for
systems having integrating element in the feedforward
path, where offset can be made zero [ 12], and they are
not usually recommendable for systems without inte-
gration due to the presence of a large offset which is
mntolerable in most cases and very difficult o elimi-
nate [14,13]. PID-type FLCs are rarely used due to
the difficulues associated with the formulation of a
comparatively larger rule-base and its tuning of more
parameters.

A FLC has a fixed set of control rules usually
denved from experns knowledge. The membership
functions of the associated input and output linguistic
varables are predefined on the respective universe of
discourse. For the successful design of a FLC, proper
selection of input and output scaling factors and/or
uning of the other controller parameters are critical
jobs which in many cases are done through wrial and
error or based on some training data. A lot of research
work on tuning of FLCs has been reported where ei-
ther the mput—output scaling factors or the defininons
of furzy sets are automatically updated to match the
current plant characteristics [23,16,4,22.15.7].

With a view o eliminating the overshoot caused by
the accumulation of control input in a fuezy Pl con-
troller ( FPIC), Lee [ 10] has proposed two augmented
versions of the conventional fuzzy P1 controller us-
ing resetting factors (FPICR). The first of the two
fuzzy controllers detenmines the resetting rate based on
emror (¢) and error rate {Ae ), while the second one
uses error and controller output (u). The computation
of the resetting {actor is driven by a fuzey rule-base.
The controller remarkably improves the wansient re-
sponse of higher-order systems with integrating ele-
ment. Here we analyze the effect of resetting action
in the Pl-type FLC and justify that such a controller

(FPICR) essentally behaves like a fuzzy PD-type con-
troller (FPDC). We establish it further through exten-
sive simulation experiments on different higher-order
linear as well as non-linear systems with and without
integration.

2. Models of the fuzzy controllers

Here we consider the conventional fuzzy Pl- and
PD-type controllers. The conventional fuzzy Pl con-
troller (FPLC) is descabed by the equation

ulk + 1) = wlk) + Aulk), (1)

where in Eq. (1) & 15 the sampling instance and Ak )
is the incremental change in controller output, deter-
mined by fuzey rules of the fonm

Rpp: 1M e1s £ and Ae s AE then Aaeis AL

The fuzey PD controller (FPDC), on the other hand
uses rules of the form

Rpp: e s £ and Ae is AE then wis U

Lee [10] augmented the fuzey Pl-type controller by a
resetting factor r;0=r<=1 as

ulk+ 1) = (1 — (&))" huell) + Anlle).

Here p determines the non-linearty on the effect of v
in the resetting operation. But the author in [10] neither
provided the exact value of p used in simulation ex-
periments nor recommended the suitable value/mnge
of p for different types of systems. The model of the
Pl-type FLC proposed by Lee [ 10] is shown in Fig. 1.
In Fig. 1, G, Ga. and G, are the respective scal-
ing factors for e, Ae and w. The resetting factor » is
caleulated using fuzzy rules of the form:

R.: Il e1s E and Ne 1s AE then ris R

-

In all cases Mamdani-type inferencing [19] and height
method [2] of defuzzification are used. Lee [10] re-
marked that the controller perfornmance is not much
sensitive to the furzy partitions of the input—output
space. Moreover, based on the results reported we
could not reproduce the membership functions used
by the author [10]. Hence we have used symmetric
triangles with equal base and 50% overlap with neigh-
boring membership function as shown i Fig. 2. This
15 the most natural and unbiased choice for member-
ship functions. We use the same rule-base of Lee [10]
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Fig. 2. Membership functions of (a) e, Ae, 1 and Ax and (b)) the resetting rate (r).

for computing Aw and # as shown in Figs. 3a and b,
respectively. Note that for the FPDC we use the same
rule-base in Fig. 3a where the consequent fuzzy mem-
berships are defined on U, not on AU. Since Lee did
not mention the exact/suitable value of p, we assume
p=1

3. Sieady-state error analysis

31 Cualitative analysis on steadv-state error
of FPICR [10]

The Pl-type fuzzy controller [10] (FPICR) is de-
scribed by

ulk 4+ 1) = (1 = (r(&))" k) + Anl ).

This can be written as
wlk + 1) = wl(k) — [(#( ) i k) — Aulk))

The value of ¥ changes between 0 and 1, and value of
Au can vary over a cerain range [ —a, al.
Now if

[(PE) u(k) — Au(k)] =0
or

(FEV k) = Aulk) (2)

for some value of £ then wik 4+ 1) = (k).

Case 1: If condition (2 ) s satsfied when both ¢ and
Me become zer, then wi(k + 1) = w(k) will be the
desired control input at steady state. In this situation
no steady-state error (offset) will be present.
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Fig. 3. (a) Fuzzy rules for computation of Aw and &, (b) Fuzzy rules for computation of r.

Case 2: Suppose due to the resetting action after
some time step & e(k) has a reasonable value but
Ae(k) s nearly zero. I, under this situation, condition
(2) s sansfied then wik + 1) = wik ). Smee Ae(k) =
0, practically e( &) will not change; e, e(k + 1) =
elk) and of course, Ae(k + 1) = Ae(k) = 0. Since
elk) =elk+ 1) and Ael(k 4+ 1) = Aelk ) the same set
of rules will be fired at tme step & and (8 + 1), and
hence Awl(k+1) = Aw(k)andr(k+1) = #( k). There-
fore, Wik + Lyulk + 1) = Awik + 1) = wik +2) =
wlk + 1) = wik). The process will thus maintain a
steady-state error ek )= ek + 1) =elk +2) = ---.
Thus we see that FPICR can maintain a steady-state
error {offset) and this can happen with both step input
and mmp input. In fact in the next section we are go-
ing to demonstrate that FPICR behaves like a FPDC
both for ramp input and step input and this 15 tue
for a wide vanety of processes. Since the basic struc-
ures of conventional controllers and their fuzey ver-
sions are the same, the response characteristics of a
eiven process under a particular type of fuzzy or con-
ventional controllers are not expected to differ much.
Hence, first we briefly analyze the steady-state behav-
wor of conventional controllers.

320 Steady-siate ervor analysis for lnear sysiems

Consider a unity feedback control system as shown
in Fig. 4. The open-loop transfer function of the sys-
temis (5] = Gol 5) 05 ). Here Ge(s)is the controller
transfer function and Gpls) is the process or plant
transfer function. For a PD control Guls) = K Tis +
1) and for Pl control Go(s) = (K /Tis W Fs + 1), where
Ky Tj and T are, respectively, the proportional sen-
sitivity, derivative time and integral time. Now G{s)
can be written as

e (N{"':'
&)

- ) where K 15 a constant,
5
Nis)=(z154+ 1 zs+ 1)z, + 1)

and

Ns)y=(ps+ 1M pas+ 1) (pes+ 1)
Here zy,za. ...,z and py, pa. ... py, are the zeros and
poldes of Gis), respectively. A system is called fype-
0, type-1, type-2,..  ifg =0 g=l,g =2,...,
respectively. Therefore, a Pl controller increases the
systems” type by one but PD controller does not.
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Fig. 4. Unity feedback control system.

Table 1
Steady-state error for dilferent systems with different inputs

- Inpur Step [oput Famp npm
S}rmalh_ i) My -t
Type-it 1K P
Type-1 V] LK
Type-2 0 i}

Now the closed-loop transfer function of the unity
feedback control system is

Cls)  Gls)
R(s) 1+ G(s)
and

E(s) = R(s)— C(s)

ar

E(s) 1
R(s)  1+G(s)
Therefore,

. Ris)
= TTeeT

From the final value theorem the steady-state error
(&) can be calculated as [17)]

ey = Lt [5.£(5)]
s—b

or

L 5.R(5)
Eyy = _-,-_.[“ -1—+ f;{ .i.'j s

For step mput Ris)=1/s, and for unmt ramp input
R(s)=1/s*. Now e,, in terms of K for different types
ol systems can be caleulated as shown in Table 1 [17].

4. Simulation analysis

Now we show simulation results for several second-
order linear and non-linear systems with step as well

as mamp input using FPIC, FPDC and FPICR in or-
der to establish our hypothesis about the equivalent
steady-state behavior of FPICR and FPDC. A second-
order system is fairly common and also a useful model
for many practical systems. 1n all figures (Figs. 5-13),
responses for FPICR, FPDC and FPIC are, respec-
tively, shown by solid (—), dotted (---) and dashed
(== lines, and the set point is shown by dash-dos (——)
line. First we consider a few linear systems.

4.4, Linear systems

(i) Gyls)= (3)

s+ 1)
The system desenbed in (3) is associated with an
integration and this is the same and only system as
considered by Lee [10] while demonstrating the im-
proved performance of fuzzy Pl-type FLC with reset-
ting action. In this case the open-loop transfer function
for PD control will be Gis) =Ky Tas + 1)/s(s + 1).
This is a type-1 system, so Tor step input e, =0 and
for ramp input e, = 1/K, 7 0. Results obtained from
FPICR and FPDC with step input are shown in Fig. 5.
From these results it is seen that the performances of
FPICR and FPDC are similar in nature.

For Pl controller Gis) = (K, T3)(Tis + 1)/s (s +1)
and this is a fype-2 system. For this controller the
steady-state error, e, should be zero (Table 1) for
step response and this is indeed reflected in the result
obtamed by using FPIC as shown in Fig. 5. Fig. 5
shows that the performance of FPICR for step mput is
similar to that of FPDC. Note that the step response of
FPICR is quite different from FPIC. Fig. 6 depicts the
ramp responses corresponding to FPICR, FPDC and
FPIC, respectively. Here again, the mmp responses of
FPICR and FPDC are very similar, though there is a
small difference in the values of the tracking errors.
Moreover, the offset for FPIC, as expected, s zer,
but for FPICR, like FPDC, there is a non-zero offset.
() Gpl3)= sibs+ ko o

where &) =015 a constant,

F stk =(s+ Pi)s + pa)

5 5
={pm.p2) (ﬁ‘l + 1) (pg + 1)

when py.opa =k, and (py+ p2)=1.
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Fig. 6. Ramp responses of (3) for FPICR (—), FPDC (-« ) and FPIC (- -).

For a PD controller is)= [{K],\.-'h NTgs+ 1)
(s/p1 + 1N/ p2+ 1)) This is a fype-0 system, so for
step inpute, = 1/( 14K )(Table 1), where K = K, k).
On the other hand, for mmp input e,, = 2o (Table 1),
which means ¢, will increase with time. Here as £
decreases e, decreases and when &) =10, e, =0, and
in that simation the system becomes identical to that
m{3)

For this system (without integration) we report
results with ) = 0.5 and 0.2 with both ramp and step
set point mputs. Fig. 7 displays the system’s step re-
sponses with &, = 0.5 for three controllers. Here again
the responses for FPICR and FPDC are similar in
nature and in both cases there are some offsets though
they are not equal. Fig. 8 shows the ramp responses of
the same system (&) =0.5). For both FPICR and FPDC
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Fig. 7. Step msponses of (4) with & = 0.5 for FPICR (—), FPDC (-« <) and FPIC (- -).
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Fig. . Ramp responses of (4) with &y =05 for FPICR (—), FPDC (- ) and FPIC (— ).

error 15 found to inerease with ume and in the lemit it

becomes infinite. For Pl controller Gis ) = [(K/T7)( Fis+

Vysis/pr + Lis/pa + 1)) Le., a ippe-l system. As
expected, for FPIC ¢, =0 for step input (Fig. 7) and
there 15 an offset for ramp input (Fig. 8).

Fig. 9 presents the step responses for the same sys-
em with &) =0.2. The basic characteristics of the

responses remain the same with those of & = 0.5 but
the offsets for FPDC and FPICR are smaller than that
obtamed with k) =0.5. We have also experimented
with other values of &k (like & = 1.0.7) and the results
show that for this system the offset value increases
with mncreasing &) for both FPICR and FPDC. Next
we consider two non-linear systems.
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Fig. 10. Step responses of (5) for FPICR (—), FPDC (- ) and FPIC (- -).

4.2 Non-linear systems

We have examined the pedonmances of FPICR
for several non-linear second-order systems. Here we
shall report only two of them. Since it is very difficult
o get an exact analytical expression for the steady-
state error (e,,) of non-linear systems, we compare

performances of the controllers with respect to step
and mmp response characteristics only.

Figs. 10 and 11, respectively, show the step re-
sponses and ramp responses of the three controllers
for the non-linear system with integration:

d’y

= {}.ﬁ_r% =ult).

q
an -
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Fig. 12, Step responses of (6) for FPICR (— ), FPDC (- ) and FPIC (- ).

On the other hand, Figs. 12 and 13, respectively, rep-
resent the step responses and ramp responses {or the
non-linear system without integration:

div dy
R e 35 =u(r). (6)

From Figs. 10-13 once again we see that the perfor-
mances of FPICR and FPDC are similar (though not
idenucal) for non-linear systems too.

As mentioned eardier, the basic structures of van-
ous types of conventional controllers and their cormre-
sponding fuzzy controllers are the same, the response
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Table 2
Summaries of steady-state errors for dilferent systems under different controllers
N‘T‘m Step Input Rarnp Taput
— - ;
Sysleut \ FTIC FrDC FTICR THIC PPDC [
1
B 1 h Lk [t ({ Mfzer { Hfsct
ar—1%
1
13 LLEENS Oz Oifset =S i
R
1
o m e It (M5t [3ffsct (¥t o o
2+ 402
iy dy
d; -0 J.-E} i) 0 0 0 Ofset = S5
‘(]1—"' F 1].5% -+ 3w = e ] {scr {ffser e o o
= ¢

charactersties of a given system under a particular
type of conventional and furzy controllers are not
expected to differ much. And this fact is clearly re-
flected in the simulaton results of various linear and
non-linear systems under FPIC and FPDC. B the
FPICE of Lee [10], although presented as a Pl-iype
Juzzy controdler does not show the expected behar-
ior. Rather it is found to behave like a ficzy PD
coniroller.

Table 2 summarizes the results for different sys-
tems with three different types of fuzzy controllers. It
clearly reveals that due to the resetting operation in

FPICR, its behavior 1s more or less similar to that of
FPDC. Although the resetting operation i FPICR can
improve the transient response of some systems hav-
g mtegrating elements, 1t may lose a very important
charactenstics ( zero offset for step response) of FPIC,
hence, the basic purpose of using Pl-type fuzzy con-
trollers 15 lost

5. Conclusions

We have analyzed the fuzzy Pl controller with
resetting operation proposed by Lee [10]. We have
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shown that the resetting operation augmented by
Lee can destroy the desimble chamctenstics of Pl-
type controllers for some systems ( systems without
mtegration) though it can improve significantly the
ransient responses of some other systems (systems
with mtegration ). We have also demonsirated through
simulations for both step and ramp responses of a wide
vardety of second-order linear as well as non-linear
systems that the fwezy Pl-type controller with reset-
ting action behaves more closely to a furzy PD-type
controller.
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