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Cloud Tracking by Scale Space Classification

Dipti Prasad Mukherjee and Scott T. Acton, Senior Member, [EEE

Abstrace—The problem of cloud tracking within a sequence of
geo-stationary satellite images has direct relevance to the analysis
of cloud life cycles and to the detection of clond motion vectors
{CMVs). The proposed approach first identifies a homogeneous
consistent cloud mass for tracking and then establishes motion cor-
respondence within an image sequence. In contrast to the cross-
correlation based approach as adopted in automatic CMYV detec-
tion analysis, a scale space classifier is designed to detect cloud
mass in the source image taken at time t and the destination image
at time ! 4 A/ Boundaries of the extracted cloud segments are
matched by computing a correspondence hetween high curvature
points. This shape based method is capable of tracking in the cases
of rotation, scaling, and shearing, while the correlation technigque
is limited to translational motion. The final tracking results pro-
vide motion magnitude and direction for each contour point, al-
lowing reliable estimation of meteorological events and wind veloc-
ities aloft. With comparable computational expense, the scale space
classification technique exceeds the performance of the traditional
correlation-based approach in terms of reduced localization error
and false matches.

Index Terms—Cloud tracking, image classification, motion cor-
respondence.

I INTRODUCTION

FATIO-TEMPORAL analysis of meteorological evenls is
S an important part of routine numerical weather analysis. In
that context, a cloud tracking method is presented here for a
sequence of geostationary satellite images. Given a pair of re-
molely sensed images, captured at a fixed tume mterval (Lyp-
ically, 30 min), the objective is 1o derve motion vectors as-
sociated with the cloud mass. This comespondence process 1s
a useful precursor to clowd motion vector (CMV) studies and
spatio—temporal analysis of cloud life cycles. The spatio—tem-
poral life cyele includes the generation, dissipation and assim-
ilation of clouds that can be observed in a sequence of geosta-
tonary satellite images.

Cloud tracking is an example of motion analysis of de-
formable shapes in a sequence of monocular images. In the
absence of any meteorological disurbance, an assumption of
path and shape coherence of the cloud mass between subse-
quent image frames is tenable given a relatively shon (<21 h)
duration of observation.

The tracking of clouds involves two major subproblems.
First, a homogeneous cloud mass needs 1o be detected for
tracking. The detection of the cloud mass boundary is essen-
tially a problem of image segmentation, and a scale-sensitive
image classification approach is inroduced in this paper to

achieve this objective. The classification is performed on a scale
space representation of the satellite imagery generaled using
area-based morphological operators. This classifier detects
homogeneous cloud segments with mimmum intra-segment
classification error. The scale space approach gives improved
segment integrity over the fixed-scale approach.

The second subproblem s the evaluation of motion vectors. In
this case, feature points are specified on the boundary of an ex-
tracted cloud segment. These feature points are points of inflec-
tion on the contour that remain afmest stable (maintain curva-
ture properties ) over a brief period of observation. A cost func-
tion that enforces both path and shape coherence properties of
these feature points 15 minimized in order to establish comespon-
dences between feature points.

The organization of the paper isas follows. In the next section
we review the related work in the literature. This is followed by a
description of the image segmentation technigue in Section UL
Section IV presents the process of generating motion vectors.
In Section V, results of cloud tracking from the geostationary
satellite images are provided, followed by concluding remarks.

Il. BACKGROUND

Cloud classification technigues have attracted considerable
attention. A review of such schemes is provided in [18].
A multspectral classification of meweorological satellite
mmages using 4 pixelclustenng algorithm s described in
[19]. A number of cloud segmentation approaches have used
prixel-wise neural-network-based classifiers that exploit texural
and spectral feawres [13] [20], [25], [30]. In conlrast, we
have developed an area-based, shape-preserving morphological
segmentation scheme for cloud extraction. Since our primary
objective 15 cloud tracking, we are iterested in detecting a
homogeneous cloud mass which remains almoest consistent
during the perod of observation and then extracting the cloud
segment boundary. Using a pixelwise classification with a
predetermined set of cloud classes results in a number of
extraneous segments (minor regions) that lack significance
for cloud tracking. Such details also increase the occurrence
of intrasegment classification emror. The proposed area mor-
phological operators genertle a scale space. The scale space
contains & coarse-lo-fine collection of image representations,
for the inpul imagery, where the scale is defined as a function
of the area of connected components within image fevel sets.
The conventional classification schemes are adapted 1w classify
the scale space of the remotely sensed imagery. In Section 11,
a detailed description of the segmentation process is given.

Cloud tracking is of interest 1o meteorologists particulardy
in the estimation of wind velocity. Furthermore, tracking could
provide valuable information with respect to growth, dissipa-
tion and disintegration of cloud masses that transport pollu-
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tants. The complexity of the cloud tracking problem stems from
the fact that clouds are deformable in nature, and hence the
principles of rigid motion cannot be utilized naively [27]. The
most common technique for tracking meteorological structures
15 the cmoss-comelation-based approach. For example, i [8],
cross-correlation values at the inflection points of cloud con-
tour were used in cloud tracking.

The maximum  crmoss-comelation measure and  template
matching using a Euchidean measure are, by and large, adopted
by different operational agencies for CMVY analysis [9], [10].
The major motivation for using comrelation is computational
simplicity. In the cases of bias and nommalization of intensity
profiles, the Euclidean distance based matching of source and
target regions may yield betler results. A detarled gqualitatve
and quantitative comparison of these two methods is given in
[7]. Fully automated cloud drft wind estimation is reported
by NESDIS [17]. The NESDIS operational system includes
tracer selection, height assignment, tracking, and a guality
control step. Selection of the tracer involves estimation of local
mtensity gradient and a spatal coherence analysis in the target
tmage. The coherent cloud mass 1s then assigned a height based
on the numerical forecast model of the vertical atmospheric
temperature profile. This height assignment in lum assigns a
numerical forecast of the wind o predict the position of the
search domain in the destination image for the particular tracer
under consideration. A correspondence for tracking 15 then
established by a cross-comelation technigue. A broad summary
of the status and development of operational GOES wind
products s presented i [6].

The major limitation of the correlation approach is that the
correlation surface between the image sequence is Lypically
multimodal (due 1o nonunigueness of internal intensity features
within the cloud mass) and thus difficult o interpret. Also,
the cloud mass under observation typically undergoes not
only translation but also rotation and scaling (and possibly
sheanng), which cannot be accommodated by basic comrelation
techniques. In light of these drawbacks, [29] has proposed a
combination of comrelation and relaxation labeling to improve
the result of correlation based CMV analysis. Our solution
focuses on the tracking of cloud boundary features, instead of
correlating unreliable internal intensity features.

The fully automated NESDIS CMV  detection syslem
requires & number of parameters such as a threshold for
estimating the coherency of the cloud mass, parmmeters for
assigning cloud top temperature, and a threshold for selecting
maximum cross-comrelation measure. Most of the parameters
are empirically determined and tested for an exhauvstive set of
conditions. However, no attempt has been made 1o incorporate
cloud shape information in establishing a correspondence
between the source and destination images.

Reference [4] has modeled the atmospheric disturbances with
geometne shapes such as logarithmic spirals. A shape based
tracking method 15 then apphed, which depends on the presence
of specific geometnce shapes in the satellite image. Newland er
al. have vsed definition of a fuzey object 1o extract homoge-
neous cloud masses and 1o relate closely spaced CMV for im-
proved correlation based CMV results [16]. Reference [3] has
defined acost path for tracking using the minimal geodesic norm

between the contours of cloud observed at 30-min intervals.
However, they have indicated that geometne properties such as
curvature information in a small neighborhood of the contour
should be incorporated in the cost function. In the proposed ap-
proach, points of inflection on the contour are used for cloud
tracking. It is assumed that the amount of deformation is mar-
ginal at or close wo these high curvature points. The proposed
cost function measures the path and shape coherence of these
feature pointsin animage sequence. As opposed Lo conventional
tracking approaches [22], the correspondence between featre
points of image sequence is limited by an ordering constraint
and 15 established by generating an interpolated contour. The
correspondence algonthm 1s detailed in Section IV,

III. CLouD SEGMENTATION

In our point-based approach, cloud tmcking 15 implemented
on the segmented boundaries of the cloud masses. Cloud seg-
mentation 15 achieved through scale space classification, where
aset of scaled images (a scale space ) 1s constructed using shape
preserving arca morphological operators. In the next section,
some basic definitions and properties of this scale space are
discussed. This discussion is followed by the introduction of
scale space classification approach. To achieve a classification
within the scale space, a clustering technigue must be adapted
specifically for the scale space. The fuzey c-means (FCM ) clus-
tering approach s wsed w achieve this objective. The proposed
classification technigue is defined as scale space fuzzy c-means
(SSFCM) clustering. Finally the computational complexity of
the proposed segmentation approach 1s discussed.

A. Area Open—Close Scale Space

Scale is an imporant feature in cloud tracking. At the finest
scale, pixel-wise methods can be adversely affected by noise and
insignificant internal cloud features. We choose area morpholog-
ical operators o provide scaled versions of the remotely sensed
tmagery. The area morphological operators can provide scaled
tmage representations (that constitute a scale space) without dis-
torting the region boundanes. Since our cloud racking method
operates on the region boundaries, the area morphological oper-
ators are well matched o our tracking technigue.

The area morphological operators are founded on level set
theory. In a threshold decomposition of the image T, an associ-
ated level set LT, #) s a set of pixels that meet a given threshold
ffw ) & LIL )i I, ) = £ For adiscrete range of K in-
tensities, animage L can be decomposed into K level sets LT ¢
where

flre, o= max[t: [x, w) € LT, £)]. (1)

Typically, for an eight-bit gray level image, K= 256, There-
fore, such an image will have 256 different level sets. Each such
level set consists of connected components of “on™ pixels (pixel
value = 1) where fiz. 1 = t and “off™ pixels (pixel value =
() where £z, ) < £ This representation forms a three-dimen-
sional (3-D) stack of 236 level set (binary ) matrices. The inten-
sity of the image at position (¢, 1) may be defined by the highest
(in terms of £) level for which (v, 1) is a member, as depicted in
(1) With the area morphological filters, we essentially process
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(1) Pizel valves within a 10 = 10 image. (b) Level set 200, 225 for
g, Wa) {=1 for intensities =225 0 otherwise). {¢) After AOC of
image of Fig. 1{a) at scale s — 20,

each level set independently as a binary image. Then, using (1),
we can define a grayscale output image.

With respect o a given level set LT, £, an area open oper-
ator, denoted by gl; 1oremoves all connected components within
the level set that do not have a mimimum area of s. Here, re-
moval signifies replacement of the connected component with
pixel value zero, if one views a level set as a binary (/1 valued)
image. An area close operator, denoted by :l:If., FEMOVES Con-
nected components in the complemented level set L5711 1) that
do not possess the minimum area s. Apphed o each level setin
the image (for each intensity in the range of possible intensities ),
area open removes small bright objects, while area close re-
moves small dark objects nan mmage [21]. The area open-close
(ACOC) operator, denoted by i{-g:‘ 1. 18 defined as the concate-
nation of the area open and close operators. Thus, the AOC op-
erator is able 1o control the scale of both positive-going bright
objects and negatve-going dark objects.

The AQC operation 15 illustrated vsing a small 10 = 10 ma-
trix, shown in Fig. 1{a). An example level set L4T, 2237 of the
image of Fig. 1(a), at itensity value greater or equal o 225,18
shown in Fig. 1{b). To process this level set at scale s = 25, all
the connected components (of ones) having area less than 235 are
elimmated (replaced by zeros) in the area open operation. For
example, the connected component of ones at the top left corner
of the matrix shown in Fig. 1{b), with an area of four pixels, is
replaced by zeros at scale s = 25 due o area opening operation.
MNote that this region is part of a larger connected component in
LA, 224, with an area of 44, so the resultant intensity [shown
in Fig. 1ic)| becomes 224 in the upper left corner.
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{a) {b) {cl
Fig. 2. (a) Moisy synthetic image {100 > 100 pixels). (h) After ADC at s=
TEEL fe) After A at s—= 00,

TABLE 1
MEAN BRIGHTNESS {IN SCALE OF (-255) oF CLOUD CLASSES

Claws | Fig, Sia) | Tig. 5ibd | Fig. Sk i 13420 | Fig, 1300 g, 14(¢)
1 519 52.A 513 344 341 346
7 K 754 ] 641 i 612
3 1131 1155 1113 6 RN T35

The area close portion of the AOQC operation 15 complemen-
Lary 1n function Lo the area open. 50, area close memoves small
(with area beneath s) connected components of zeros, replacing
them with ones in the processed level set This level set oper-
ation is repeated for all 256 level sets. Take, for example, the
pixel located at row one, column eight of Fig. 1{a) with pixel
value 225, Within the level set LT, 226), this location has a
value of zero while all its neighbors have value one. During the
area close operation, the complement of level set LT, 226) is
taken when the pisel value al row one, column eight becomes
unity-valued, while the neighbors change 1o zero. The length
of the connected component at row one, column eight in the
complement of LiT. 2267 is less than scale s = 25 and is re-
movied (replaced by 2ero in the complement set). Hence this lo-
cation in L{L, 226} s now changed 10 one instead of its orig-
inal value zero. This forces the stray pixel at row one column
eight 1o take the value of 226 when all 256 level sets are added
together. Note that both area open and close operation encour-
ages homogeneous egion Lo grow by removing stray pixels and
connected components kess than the prespecilied scale. Recon-
structing via (1), the final ADC processed image for the input
tmage i Fig. 10a) 15 shown in Fig. Lic).

Fig. 2(a) shows a noisy synthetic image. Results of the AQC
operation on this image at scales 100 and 500 are shown in
Fig. 2(b) and (c), respectively. These examples show the scaling
and noise reduction capabilities of area morphology in gualita-
bive lerms.

The scale space [T} contains images T, comesponding to a
scale 5. To guarantee that new features are not created with m-
creased scale, the scaled representatons are defined recursively

. s+ a4
Ly = e{diL)) 2)

where I, is the next coarser scale representation in the scale
space after T,. The initial scale representation Ty is the ordginal
npul mage.

The use of the AQC scale space for classification is moti-
vated by several attractive propertes. Excluding error due 1o
discretization, the scaling method s mvariant to translation and
rotation. Hence, an mput image rotated or tanslated should me-
sult in an equivalently motated, translated scale space represen-
tation. The AQC scale space 15 also causal [14] in the sense
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that new regions are not inroduced at coarser scales. If the
scaling method imroduced new objects (new connecled compo-
nents within an image level set), the scale space classification
could produce false regions in the classification. Because our
cloud tracking technique utilizes the cloud contours, the preser-
vation of edge locations is also important. In contrast o linear
technigues such as Gaussian filtering and nonlinear echnigues
such as waditional morphological filtering, the AOC-generated
scale space preserves the location of leve! fines {connected com-
ponent boundaries) through scale.

An illuswation of these properties is provided in Fig. 2. The
AOC processing results in Fig. 2(b) and () at scales 100 and 500
have removed the nose and objects that do not meet the speci-
fied minimum scale. This scaling is achieved without distorting
the edges of the significant objects and withoul generaling any
new objects.

Now, we discuss the use of the AOC scale spacein classifying
the cloud imagery for tracking.

B. Scale Space Classification

The idea behind using the scale space for classification is that
the set of scaled representations allows objects of similar inten-
sity and similar scale charactenistics o be clustered wgether. It
is important W note that this is not simply a matter of treating
scale as an additional classification parameter. In fact, a pixel
in the image may be a member of multiple objects of different
scales. For cloud imagery, this property holds. We often view
several layers of clouds and several cloud components simulta-
neously in the same remotely sensed image.

For a scale space [T}, we inspect the intensity {503, ) at po-
sition [, 1) and scale s through scale space. We call Lz, i) the
scale space vector at Lr, ) it is a one-dimensional signal pa-
rametenized by scale 5. The scale space classilier clusters pixels
in the imput imagery according o the similarity between scale
SpAace Veclors.

Clustering, discussed in Section H1-C, groups pixels in the
image according o a distance from a cluster center {or cluster
mean). The distance between scale space vector Tz, 1) and a
cluster mean g 1) for class 1 is given by

AL, w). il = Z (e, ) — Ir.l__.,[.i_']|2 (3)
i

where {2, is the set of scales in the scale space.

The scale space classifier improves upon the taditional fixed
scale classifier in two ways. First, if two pixels were members
of cloud components of different scales, but had similar intensi-
ties, the two pixels would be clustered in the same class for the
fixed scale case. But, for the scale space classifier, the distance
between these two points would increase in scale space, smee
one point would be altered before the other (as the scales of the
cloud components are different). So, the scale space classifier
avoids clustering pixels that are similar in intensity, but are not
physically similar in the sense of region scale similarity.

The second case in which the scale space classifier excels
concerns intra-object classification error. Given an object in the
image, such as a cloud, the entire object should be classified

into one class. If noise or subtle variation of intensity in the input
image exists, then two pixels in the same object may be clustered
into different classes for the fixed-scale classification approach.
However, with the scale space classifier, the difference in in-
tensity between the two pixels in the same object will decrease
as scale is increased. For example, a fixed-scale classification
of Fig. 2(a) would result in classifying the interior objects (in-
side the large objects) as separate objects. Using the AOC-scaled
image shown in Fig. 2(c), the two distinet objects could be ef-
fectively extracted.

C. Clustering Algorithm

For both the fixed-scale case and the scale space classifier,
the pixels are grouped based on a similanty measure. Tradition-
ally, both parametric and nonparametric classification schemes
are used for emote sensing applications [23]. Due to the possi-
bility of a single pixel belonging to different objects at various
scales, we have adopted an unsupervised fuzzy c-means classi-
fier [3]. The fuzzy c-means wechnique allows fuzzy membership
to multiple classes for a single pixel.

The goal of the fuzzy c-means clustering algorthm may be
stated as mmimizing the squared distance between the pixel n-
Lensities (or scale space vectors) and their respective cluster cen-
ters. For a set of cluster centers g and partition of the image T7
into €7 classes, we seck 1w minimize

I

. _..;|:Lr.. Jl‘:l = 2:

o
IR T )l e o [ 4)
=1

For the scale space vector Iix, y) at location {1, gy}, the
measure ||, || = || Tie, w) — g is the distance between
the scale space vector and the ith cluster center ;. In the fixed
scale case, this distance 15 computed between the intensity
I:::r, ;t.':l and the cluster center f. The squared distances are
weighted by the fuzey membership value of each scale space
vector w,iw, o) for the ith class. For every scale space veclor
[, i), the error critedon e, {05 ) 5 minimized subject o
the conditions Z:=1 wild, g1 = 1.0 < 3 wle, 1) < |}
and wg e, y) 2= ), where £ is the domain of the image.

lterative updating of the cluster centers and membership
values 15 mmplemented according the FCM guidelines in [3].
The update of the membership values and cluster centers is
terminated when insignificant (1-2% of the current value)
changes n g oare observed between consecutive iterations.
Then, the fuzey class membership is defuzzified by selecting
the highest class membership for each image location.

The scale space classification approach improves upon
the fixed-scale approach in terms of classification error and
intra-object classification error. On five racking image exam-
ples tested with accompanying ground truth data, the scale
space approach provided between 0% and 20% decrease
in overall classification error, compared to fived scale fuzzy
c-means classification. In terms of the intra-object classifica-
tion error (instances of classifying an object into two or more
classes), the scale space approach again provided improvements
in the range of 10 o 20%.

WVarous approaches [12], [24] have been attempled for
determining the number of potential classes. However, the
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straightforward intensity histogram based technique works well
for cloud imagery. Because of the reasonable contrast of the
cloud image, the number of peaks in the intensity histogram
corresponds 1o the number of classes present in the image.
The number of significant maxima in the image histogram
automatically determines the number of classes [26] and can
be used for operational purposes.

In summary, the AOQC scale space allows a meanmngful
clustering that can be exploited in the case of cloud tracking.
The scale space preserves properties that are important for
cloud tracking, including the preservation and localization of
contours that are used for cloud tracking. Furthermore, the
ADC scale space does not introduce new segments {artifacts)
with mereased scale. In the next section, the method for cloud
tracking, using the extracted segments, 15 detailed.

IV. CLOUD TRACKING

The cloud tracking process involves two specific steps: shape
extraction and point comespondence. First, we determine the
areas of homogeneous cloud mass in the geostationary satellite
images at time tand { + &f. Afer scale space classification is
applied, we extract the segments with average intensities above
the average intensity of the (cloudless) background. The cloud-
less background represents the pixel inlensities comesponding
o the landmass and water bodies as seen m a subjectvely la-
beled cloud-free satellite image. For operational use in the case
of an IR image, the cloud class with maximum brighiness (con-
sequently with minimum temperature) is selected for tracking.
Table 1 gives the mean brightness for each class vsed in the ex-
ample sequence.

A setof feature points on the contour of this segment yields the
candidate points that are used o generale motion vectors. These
feature points are points of inflection along the contour. The
next step in cloud tracking involves establishing correspondence
between these feature points of the images at time # and ¢4 &
Let contours of cloud segments detected at time § and # | &
be labeled as souwrce and destination contowrs and denoted by
£ and C*, respectively. Points of inflection are determined
on (2 and € by fitting polygon chains and computing points
of maximal curvature change. The point coordinates are stored
in sets L® and L? afier counter-clockwise scanning of the
contours €% and 7, respectively. These points of inflections
are preserved even after projective image transformation [ 15],
[25].

The problem of racking is posed as a correspondence be-
tween L* and L. This corespondence is established by min-
imizing a cost functional based on disparities between L# and
L%, The selection of cost function is guided by following prin-
ciples

1} The function should be nonnegative.

2) The function should impose an ordering constraint in case
of potential matches between L¥ and LY. For example, for
a feature point on the source contour 15, there are three
potential matches on the destination conlour: if_l, Ff,
and I‘f_ L (i a specilic counter-clockwise order). Given
a maich between I and . IZ_, is not allowed to maich

with If_'_l.Thum the spatial ordering of the matched points
15 not violated.

3) The function should enforce both path and shape co-
herence between the contours. In the absence of any
meteorological disturbances, the deformation is assumed
to be smooth. The path coberence encourages potential
matches based on a minimum distance measure. The
shape coherence is measured as the minimum deformma-
tion between the destnation contour and an interpolated
contour based on potential matches between L2 and L9,
MNext we detail the implementation of the interpolated
contour.

Given the above principles, the correspondence (17, 1% is de-

termined by minimizing the following cost function:

Ny Fia

V. .
C=3 Y d(B ) +2D_ 3 &l ) @

=1 4=1

where (1>, 1“1 is the distance measure for a possible match,
given v, possible matches for each of the v, pointson the source
contour. The parameter #a{l*, i} is the sum of distance be-
tween the interpolated contour and ¢ for a possible match be-
tween (7, 11, The weight parameter A can be computed using
the cross-validaton technigue [2].

To minimize the cost function (5), a computationally expen-
sive, combinatorial search strategy 15 avoided vsing an ordenng
constraint, The potential matches of I* are limited o immediate
neighbors in  (both in the clockwise and counter clockwise
directions). The absolute minimum of ¢ for all such cases pro-
vides the best possible match.

To analyze the movement of contour points that are not in-
flection points, an interpolated contour is computed. The inter-
polated contour is generated using, following steps.

a) For #,, polential comespondences between (1%, 17}, con-

sider a unit mass particle that is accelerating from [ to
I* with a zero initial velocity. The tension T at [* could
be evaluated from the knowledge of time of travel and the
distance between % and I¥. Therefore, for any two con-
secutive points of inflection on the source contour, {2 and
!f_'__, lensions 7 and "IE‘H could be estimated.
by For contour pixels between [f and [7) |, the tension at
every point could be estimated from a combination of
tensions 47 and 7). The tension al a contour point
1% lies between {7 and £7,,, T, and is computed using
1=l + =} 0 = e = ], where, the weight
ix 15 the normalized distance between contour points [
and £, .
¢) The mterpolated contour 15 computed along the normal
at each source contour point from the tension at every
point 7 and the tme interval between the source and the
destination contour.

b

So, minimization of the cost functional allows a comrespon-
dence to be established between inflection points. The corre-
spondence of noninflection points is interpolated using a ten-
sion model. In Section V, results are given that demonstrate the
combination of scale space classification and contour matching.
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{a) (b} <)

Fig. 3 {ak(c) Sequence I: Cloud mass in GOES 8 IR image between 3040 N
latitude and 110-120 W longitude at (2 152, 02457, and 03152 on August 16th,
20040,

V. RESULTS

Two GOES image wiplet sequences are used o demonstrate
and compare our cloud tracking results with the CMVs gener-
ated by the NOAA/NESDIS operational procedure. The data
collected depict two distinet cloud movements. From each
image triplet, we have generated two cloud racking resuls for
cach 30 min interval. The efficacy of the proposed technique is
demonstrated by checking the consistency between these two
results produced by our algorithm. Also, mesults of our method
are compared with the comelation based method results. Fmally,
the results are compared with NOAA/NESDIS high-density
CMV results for the cloud pach under observation.

Sequence 1, shown in Fig. 3(a)—(c), consists of subimages
from three 30 min GOES 8 East Conus sector IR images ac-
quired on August 16th, 2000 taken at 02157, 02457, and 03157,
respectively. The resolution of the GOES 8 imagery is 8 km.
For Sequence 1L the clouds shown are of the cumulonimbus va-
riely, under observation over a region subjected w ropical con-
tinental air circulation. This region is located from 40 “N lati-
tude w just abowve the tropic of Cancer [11]. The vast dry areas
of Texas, Mexico, New Mexico, and Anzona generate hot, dry,
tropical continental ar. This air mixes with tropical mantime
airflow from the Pacific and generates a swirding wind flow
pattermn. The cloud tmcking result developed using the point
based method cormoborates such development. This 1s funther
observed in the images of the same cloud mass taken beyond
03154 h. Fig. #a)—c) are the wdentical IR images of GOES
H East Conus sector taken at 03457, 041532, and (04457, re-
spectvely. The main cloud mass shifts wward the north (up in
the mmage) against polar continental cold currents due o the
swirling action of tropical continental air dunng late summer.

For Sequence 1, the corresponding AOC scale space images
at scale s = 200 ame shown in Fig. S(al-(c) with the come-
sponding SSFCM results in Fig. 6ia)-(c). As defined in Sec-
tion I, the unit of scale & defines the minimum number of
connected pixels inoan image level sel.! In this case, 5 = 500
corresponds to 8000 km®. Note that these images are classified
into three classes. As stated eadier, the cluster of pixels with
maximum intensily corresponding 1o mimmuom emperature 1s
considered as the cloud mass o be tmcked in this sequence of
images. Notice the improvement of image segmentation result
compared o the output obtained from strmightforward imple-

"This scale could be interpreted in terms of the spatial resolution of satel lite
image. Inthe case of the GOES imager, spatial resolution at nadiris 4 km except
for the bands at {(L.55-0.75) and {6.5-7.00 ;xm when the resolution is | and §

km, respectively. S0, for 4 km msolution, one pixel = 16 km™ in actual area.
S0, the units of scale s can be multiplied by 16 km? to assess physical meaning.

LE] (b} {cl

Fig.4. {al-c) Subsequent frames from Sequence | acquired at 13452, 04152,
and (452,

{a) {h) {c)

Fig. 5. (a)—c) AQC scale space images of Fig. Ma)—+c), respectively, at scale
5 = ZU0.

{a) 3] {c)

Fig. 6. {ar{c) Three-class SSFCM results from Fig. 5.

{a) {h}

.3 as input.

{a) {h} {c)

Fig 8.

{a{c) Cloud houndary extracted from Fig. 6.

mentation of FCM image classification technigue as shown in
Fig. 7.

The boundaries used for tracking in the point based method
are shown in Fig. 8, while the vectors representing cloud mo-
ton are depicted in Fig. 9. For visualizaton, direction vectors
of uniform length (five-pixels in this case) are drawn starting at
every point of inflection on the source contowr and pointing Lo-
ward corresponding point of inflection on the destination con-
tour. Natwrally, in some cases, direction vectors end in desu-
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{a)

fa)

{b]}

Fig.9. (a) Direction vectors are shown on Fig. 3a) using the proposed point
hused tracking method. Here, the cloud motion is considered between Fig. 3a)
and (h). The squares are inflection points on the source contour, and the asteris ks
are points of inflection on the destination contour. {h) Direction veators shown
superimposed on Fig. 3(h) using the proposed point based tmcking method. The
cloud motion is tracked between Fig. 3ib) and {c).

nation points that are within five-pixel distance from the come-
sponding source points. Also, for marginal deformation of cloud
shape, some source points afmost coincide with the destination
points. Note that while each direction vector is pointing Lo a des-
tination point, in some cases there are destination points that do
not have direction vectors pointing Lo them. This is due to the
mismatch of number of point of inflections in source and desti-
nation contours. Also note that during the period of observation,
new points of inflection may be generated in the destination con-
tour with no comrespondence with any of the points of inflection
on the source conlour

In Fig. 10, the results for the traditional correlation based ap-
proach are given. Here, the standard operational procedure is
applied to detect the maximal cross correlation. Correlation is
evaluated fora 15 » 15 pixel mask around the {source) control
point and the mask of identical size within the search window of
61 » 61 pixels (assuming presence of medium o high clouds)

b}

Fig. 1. {a) Direction vectors obtained from correlation method for motion
incurred between Fig. 3a) and (h). (b} Direction vectors obtained from
comelation method for motion incurred between Fig. 3u) and (h).

Fig. 11. CMVs shown in high density clowd drift wind result for Sequence
I. This is 2 GOES & product from the NOAA/NESDIS forecast pmduct
development team at (300 on August 16, 2000,

in the destination image [ 17]. The search window centers in the
destination image are the same as those of the control points of
source contour. Fig. 11 gives the GOES East hemispheric (75 W
Long) cloud drift wind result at 0300 on August 16th, 2000 for
the cloud mass under observation. This image provides the ex-
perimental high density cloud drift motion vectors generated in
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[EN] (hi {c)

Fig. 12, {a)—c) Sequence I1: Cloud mass in GOES SR image between 25-30
M latitude and 80-85 W longitude off the Florida coast at 02152, 02452, and
(3152 on August 16, 2000,

{a)

Fig. 13 fa)—c) Subsequent frimes from Sequence 11 acquired at (3452,
0415, and (4452,

{a) {h) {cl

Fig. 14.

{a(c) ADC scale space images from Fig, 12 ot scales — T4,

every three hourdy interval by NOAA/NESDIS forecast product
development team. The result is available for the full disk GOES
mmage and 15 divided in 12 sectors.

To show the consistency of the method, a second sequence
i Sequence 11) is used off the Florida coast between 80-85 lon-
gitude and 25-30 latitude for the same day at 02157, 02457,
and 03157, shown in Fig. 12, In Sequence 1, the clowds are de-
veloping into a cirmo-cumulus fomation. This region 1§ active
with various atmosphenic phenomena such as the local warm
currents due to Caribbean and Gulfl streams from SE to NW and
from 5 o NE off the Florida coast. The current mixes with trop-
wcal mantime air from Atlantic generating swiring movemaents
towvird the E or NE. Such swirling cloud movement is evident in
the cloud tracking analysis results from the point based method.
The results are supported by subsequent frames in the image se-
quence shown in Fig. 130a)-(c) respectively, (acquired at 03457,
04157, and 04457, respectively).

Using the AOQC, the mages in Sequence 11 are scaled at
12y (Fig. 14). The three-class S5FCM mesults are
given in Fig. 15, Again, the efficiency of cloud mass extraction
using SSFCM s clear compared 1o the corresponding results
obtained vsing FCM classification process as shown i Fig. 16.
In Fig. 17, the boundaries used for cloud tracking by the point
based method are provided. The motion vectors developed
using the point based algorithm are shown in Fig. 18(a) and (b).

scale s

LE] (b} {cl

Fig. 15, {a)l-c) Three-class S5FCM results from Fig. 14

Fig. 16.  {a)l~c) Threeclass FOM results from Fig. 12

LE] (b} {cl

Fig. 17.

{a)~c) Clowd boundaries extmeted from Fig. 15.

For companson, the motion vectors based on the cormelaton
based method are shown in Fg. 19a) and (b). Again, the
corresponding NOAA/NESDIS CMV result for the cloud mass
under observation 1s given in Fig. 20

We compare the tracking results from the point based and
correlation based methods with the NESDIS high density cloud
drift wind results. The mean square emor (MSE) between mo-
tion vectors of the proposed method and the CMVs derived by
NESDIS approach 1s caleulated and shown in Table 11 To caleu-
late the MSE, the motion vectors within a neighborhood (20 =
20 pxels) of a given derived CMVY (from the NESDIS result) are
considered for both methods. As shown in Table 11, the corme-
sponding MSE measures are lower for the point based approach
in all cases.

The point-based results are clearly superior in intemal con-
sistency, as compared o the correlation based tracking, m all
instances. The directional consistencies of derived motion vec-
tors are compared between Figs, 9a) and 10a), 9(b)and 10b),
and 18(a)and 19a), and, finally, between Figs. 18(b) and 19h).
It 15 observed that neady 80% of the direction vectors derived
for the first image are consistent with that of the next image in
the sequence for the pomt-based method. We have earlier noted
that for sequence [ taken over the Southwestern US ., the mixing
of different airflows causes swirding wind flow pattern. This
fact is clear from the result derived by the point-based tracking
method. Because of this dynamic nature of the atmosphere and
the swirding flow, the directional consistency of wind flow over
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fa)

(bl

Fig. 18 (a) Direction vectors shown supedmposed on Fig. 123(a) from the
proposed poim-hased tracking method. The clowd motion represemed occurs
hetween Fig. 12(a) and (h). (b) Direction vectors superimposed on Fig. 12(h)
using the proposed point based tmcking method. The cloud motion considered
occurs between Fig. 12(b) and (c).

a longer period is not sustained. This has resulted in marginal
inconsistencies of wind flow directions observed in Fig. 9(a)
and (b). This is particularly concentrated near the bottom rght
corner of the cloud mass. In the subsequent pictures of this se-
quence, it is observed that the shear in this cloud shape has orig-
inated from that location.

We note that the NESDIS result and the correlation based re-
sult derived in this paper exhibit differences in certain points
of inflection on the contour. We have followed the NESDIS
suggested template sizes for the comelation based tracking re-
sult [17]. However, the NESDIS result is subjected o stringent
automatic quality control operations inclusive of the objective
editing system for refining the CMVs calculated from the pre-
liminary correlation resull. In contrast, our result reflects only
the maximum cross-correlation measure between source and the
destination mask. The operational NESDIS CMV detection pro-
cedure s also verified with respect v collocated rawinsondes

k)

Fig. 19, (a) Direction vectors from correlation method for motion between
Fig. 12{a) and {b). {b) Direction vectors from correlation method for motion
between Fig. 12(h) and (c).

data and speed and directional biases are adjusted based on
monthly collocation statistics [17]. The other important point
in this context is that the correlation based results developed in
this paper are derived from images at half houdy sequence. The
corresponding NOAANESDIS results shown are developed at
three 60-min intervals,

To further compare the new point based cloud racking
approach with the conventional correlation based approach,
we conducted additional experiments with full disk GOES
images. An example GOES 10 IR image sequence is used from
May 31st, 2001, Ten representative cloud masses are observed
in the sequence, and a total of 365 cloud contour points
describing the shape of the clouds are tracked. To compare
the internal consistency, the coefficient of variation (standard
deviation divided by mean) is computed for magnitude and
direction for both methods within each cloud structure (see
Table II). In seven of ten cases, the point based method was
more consistent in magnitude, and in six of ten cases, the point
based method was more consistent in direction. The correlation
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Fig. 20. CMVs shown in high density clowd drift wind mesult for Sequence 11
(300Z on August 16, 2000).

TABLE 1l
CoMPARISON OF TRACKING ACCURACY WITH RESPECT TO PERCEIVED
Croun MoTion

Example Dirplecement! MEE MSE

Direction Paint bascd va, Correlarion based
NESDIS ChY vi. NESTHS CMV

Sesuence ] Drisplocement 253 374

Direction Gl 5.3 1M

Swquence [ Displicems=nl 15.7 254

Eiirection B ] 21.1

TABLE 11l

INTERNAL CONSISTENCY MEASURED ViA COEFFICIENT OF WARIATION
(STANDARD DEVIATION MEAN ). KEY: CoMV = COEFFICIENT OF MAGNITUDE
VariaTion, Col'V = COEFFICIENT OF DIRECTIONAL VARIATION,

CB = CORRELATION BASED, anND PB = PoINT BASED

Clirued CahIy CoMy - Coldy Colly

o LB {FB) (CE [ (PI5 :
Clond 1 w240 0374 {1.59] 0.771
Clioned 2 1hA0G 0.334 U.571 [1.314
Cloud 3 13T 0.233 599 [1.488
Cloud 4 GRG0 N3y L) 0,736
Clovd3 | 0339 0329 HAER 0026
Clowd & 0427 0272 A0 1,309
Cloud 7 1,423 L27R 0106 | 0,719
Cloud 0.273 [1. 264 aall ) {422
Cloud & 0,335 0420 | 0FE5 [ D42
Cloud 1tk 0.3062 0AGL - 08621 D509

TABLE IV

CORRELATION BETWEEN POINT BASED (PB) AND CORRELATION BAsSED (CB)
TRACKING RESULTS FOR MAGNITUDE AND [MRECTION

Cloud

Magmitwle | Cloud Direcrion
Ne, : cocrelation | Mo, corcelation
. LICE) ]
Clowl I 5322 | Claud 1 1412
Clowl 2 e0% | Clowd 2 h3u7
Clowd 3 0.E% | Cloud 3 (.3214
Clowl 4 1.614 | Cloud 4 (A2
Clowd 5 _ 0353 | Cloud 5 0,243
Clonds | 0718 | Chowd & 0.462
Cloud 7 . 0337 | Cloud 7 0215
Clond 8| 0516 | Clowl § 0.302
Cloud9 | 038R Clowld 0.502
Clowd 10 | 0439 Clowd 1D 0.367

in magnitude and direction between the point based for each
cloud grouping 1s shown in Table 1V, The methods are more
highly correlated in magnitude (average comrelation of 0.49)
than in direction (average correlation of 0.39). Due 1o the

ability of the point based method to track high curvature points,
the point based method can track a given high curvature point
more reliably, which decreases the false detections that lead 1o
errors in computing the direction of motion.

We have mplemented the area morphology operations and
the clustering algorithms on a SUN Ulra 10 with 64 MB
RAM. We utilize a fast pyramidal implementation of the AQOC
operation [ 1] that is 1000 times faster than the standard level
sel implementation. For all images used in this paper, the fast
AOC algorithm requires less than | s of processing time. For
the fuzzy c-means based classification technique, the execution
tme needed w0 produce Figs, 3 and 5 15 less than 2 s, while
the execution time 15 less than 1 s for Fig, 4. With the current
implementation of establishing a correspondence belween
the source and destination contour curvature points for cloud
tracking, the execution time 15 less than 2 50 In comparison,
the correlation algorithm requires approximately 3 s each for
Figs. 3-5, which is comparable 1o the overall expense of the
scale space classification method. Given a search area of S
pixels and a template size of 5 pixels, the comelation approach
will increase in complexity as ({5 ). The fast AOC operation,
however, has an O0.5) complexity [1]. In cases of high-res-
olution mmagery with large search areas, the contour-based
tracking method provided by the scale space classification will
improve algorithm efficiency.

V1. CONCLUSIONS

The paper presents an integrated approach to cloud tracking
based on scale space classification. The area based morpholog-
ical operator generates scale space representation of the image
where unnecessary mage detals are eliminated and large scale
segments of similar intensity charmacteristics are preserved. In
images with objects of similar intensity and differing scale, the
scale space classifier is able to distinguish between the objects
where the traditional fixed scale classifier fails, producing clas-
stfication errors. The results demonstrate that the scale space
approach is superior o the fixed scale correlation approach at a
comparable computational expense.

The process of tracking presented here relies on a set of high
curvature points that have important invariant geomeLric proper-
ties. The racking algorithm utihze s a point-based approach and,
hence, 18 notconstrined by the rotational and scaling invariance
of intensity correlation-based approach. The path and shape co-
herence constraints embedded in the cost function are applicable
to deformable shapes, such as clouds. The complexity of the cost
function minimization problem is reduced by the use of the or-
dering constraint. An important future extension would imvolve
the application of a predictor—corrector scheme for the tracking
algorithm, over a number of images from geostationary satellite
HTAZE SeQUences.

REFERENCES

[I] 5. T. Acton, “Fast algorithms for area momphology,” in igited Signal
Processing.  New York: Academic, 2000, vol. 11, no. 3.

[2] 5.T. Acton and A, C. Bovik, “Piecewise and local image models for reg-
ularized image restoration using cross validation,” JEEE Trans. Image
Processing, vol. §, pp. 652-665, May 1999,

[3] 1.C. Bezdek, Futtern Recognition With Fuzzy Objective Function Algo-
rithms.  MNew York: Plenum, 1981.



MUKHERIEE AND ACTON: CLOUD TRACKING BY SCALE SPACE CLASSIFIC ATION

[4]

[5

L]

[7

[&]

[4

[14]

[15]

[1a]

[17]

[18]

(9]

[20]

[21]

(23]

[24]

F. Bouthemy and A. Bemveniste, “Modeling of atmospheric distur-
bances tracking in satellite images,"” in foage Sequence Processing
and yvnamic Scene Analvsis, T. Huang, Ed. Berlin, Germany:
Springer-Verlag, 1983, pp. 5805493,

I. Cohen and 1. Herlin, “Tracking meteorological structures through
curves matching using geodesic path,” in Proc. 6l fnr. Confs Compurer
Vision fCCV 'S8, Bombay, India, Jan. 1998, pp. 396401,

1. Dumiels, C. Velden, W, Bresky, and A. Irving, “Status and development
of operational GOES wind products,” in Proc. St fne. Winds Workshaop,
Lorne, Australia, Feh. 28-Mar. 3, 2000,

G. Dew and K. Holmlund, “Investigations of cross-correlation and eu-
clidean distince target matching technigues in the MPEF environment,”
in Proc. Sth dnr. Winds Workshop, Lome, Australia, Feb, 28-Mar. 3,
20000,

R. M. Endlich and [, E. Wolf, “Awtomatic cloud tracking applied o
GOES and METEOS AT observations,” J Appl. Metearol., vol. 20, no.
3, pp. 309-319, 1981,

EUMETSAT, “Workshop on wind extraction from operational meteom-
logical satellite data,” in Proc. 4o fee Wind Workshop, Saanenmiiser,
Switzerland, Oct. X123, 1998,

——, “Workshop on wind extraction from opemtional meteorol ogical
sutellite data,” in Prac. Seh s, Wind Workshap, Lorne, Australia, Feb.
2E-Mar. 3, 2000,

E. Mitchell-Christie, Practical Weather Forecasting.
William Luscombe, 1977

A, K. Jain and B, Dubes, Algarithms for Clstering Dara.
Cliffs, NI: Prentice-Hall, 1988,

1. Lee, R. Weger, 5. Sengupty, and R. Welch, “A neuml network ap-
proach to cloud classification,” fEEE Trans. Geasci. Remaote Sensing,
vol. 28, pp. #46-855, Sept. 1990,

1. Momel and 5. Solimini, Variational Methads in Image Segmenta-
fion.  Boston, MA: Birkhauser, 1995,

[x. P Mukherjee, A. Zisserman, and M. Brudy, “Shape from symmetry:
Detecting and exploiting symmetry in affine images” Phil. Trans. /.
Soc. Lond_ A, vol. 351, pp. 77-106, 1995,

F. T. Newland, A. Tatnall, and M. Brown, “Fuezy object-hased genera-
tion of cloud motion from sequences of Meteosat satel lite imagery,” in
Froc. 1st Amer. Meteorol. Soc. Meeting Artificial Intelligence, Phoenix,
AZ, Inn. 13-15, 1998,

5. 1. Nieman, W. P. Menzel, and C. M. Hayden eral, “Fully automated
cloud-drift winds in NESDMS operations,” Swll. Amer Metearol. Soc.,
vol. 78, no. &, pp. 1121-1133, June 1997,

G. 5. Pankiewice, “Pattern recognition technigues for identification of
clowd and cloud systems,” Merearol. Appl, vol. 2, pp. 257-271, Sept.
1995,

1. Parikh and A, Rosenfeld, “Automated segmentation and classifica-
tion of infrared meteorological sntellite data™ fEEE Trans. Svsr Man.
Cybern., vol. SMC-8, pp. 736743, 1978,

1. Peak and P. Tag, “Segmentation of satellite imagery wsing hiemr-
chical thresholding and neural networks"" . Appl. Mefeornl., vol. 33,
pp. 65616, 1994,

F. Salembier and 1. Serra, “Flat zones filtering, connected operators, and
filters by reconstruction,” fEEE Trans. fmage Processing, vol. 4, pp.
11531160, Aug. 1995,

I. Sethi and K. Jain, “Finding trjjectories of feature points in a monoc-
ular image sequence,” IEEE Trans. Parern Anal. Machine fnsell, vol.
PAMI-9, Jan. 1987,

R. A. Schowengerdt, Remaore Sensing: Models and Methods for fmage
FProcessing.  New York: Academic, 1997,

5. P. Smith and A. K. Jain, “Testing for uniformity in multidimensional
datn,” fEEE Trans. Patterm Anal. Machine fniell., vol. PAMI-6, pp.
TI-B1, lan. 1984,

London, ULK.:

Englewood

415

[25] B. Tian, A. Mukhtiar, B. Mahmood, T. V. Haar, and D, Reinke, “A
study of cloud classification with neuml networks using spectral and
textural features,” IEEE Trans. Newra! Networks, vol. 10, pp. 138-151,
Jan. 19499,

5.E. Umbaugh, Campuser Vision and fmage Processing: A Pracical Ap-
proach Using CVIFTaols.  Englewoods Cliff, NI1: Prentice-Hall, 1997,
1. F. VegrRiveros and K. Jabbour, “Heview of motion analysis tech-
nigues,” Proc fest Elect. Eng, pt. 1, vol. 136, no. 6, Dec. 1989,

I. Weiss, “CGeometnc invariance and object recognition,” frr. J. Compr.
Vis, vol. 10, no. 3, pp. 200-231, June 1993,

[26]
[27]

[28]

[29] Q. X, Wu, A correlation relaxation labeling framework for computing
optical flow template matching from a new pemspective,” fEEE Frans.
Pastern Anal. Machine fntell vol. 17, pp. 843-853, Sept. 19495,

[30] 5. Yhann and J. Simpson, “Application of neural networks o AVHER

clowd segmentation,” FEEE Trans. Geasci. Remaote Sensing, vol. 33, pp.
590604, May 1995,

Dipti Prassd Mukherjee moeived the B.E. degree
from Jadavpur University, Calcutta in 1985, the M.S.
degree from the University of Suskatchewan, Saska-
toon, SK, Canada in 1989, and the Ph.D). degree
from Indimn Statistical Instinate {150, Caloutty, SK,
in 1996,

He is currently a Faoulty Member with the
Electronics and Communication  Sciences  Unit,
I5I. He was a Visiting Assistant Professor at the
Oklahoma Imaging Labomtory, School of Electrical
md Computer Engineering at Oklahoma  State
University, Stillwater, in 19951999, He was UNDP Fellow with the Robotics
Reseach Group at the University of Oxftord, Oxford, UK., in 1992 His
research interests are in the areas of computer vision and graphics. He has
published 25 peer reviewed joumal papers and is the muthor of a texthook an
Cevmputer Graphics and Midnimedia.

Dr. Mukherjee was the recipient of UNESCO-CIMPA fellowships o INRLA,
France in 1991, 1993, and 1995 and fellowship to ICTPE, Treste, Ialy in 2040,

Scott T. Acton (SM"9) meeived the B.S. degree in
electrical engineering from Virginia Tech, Blacks-
burg, in 1988 a5 a Virginia Scholar. He received the
M.S. degree in electrical engineering and the Ph.D.
degree in electrical engineening from the University
of Texas, Austin, in 1990 and 1993, respectively.

He is currently an Associate Professor, Depart-
ment of Electrical and Computer Engineering,
University of Virginia, Charlottesville, He has
worked in industry for AT&T, the MITRE Cor-
pomtion, and Maotorola, Inc., and in academia for
Oklahboma State University, Stillwater, His research interests include biomed-
ical image malysis, multiscale signal representations, diffusion algorithms,
active comours, video tracking, ares momphology, image segmentation, and
content-hased retrieval.

D Acton is the winner of the 1996 Eta Kappa Nu Outstanding Young Elec-
trical Engineer Award, a national marard that has been given annuall y since 1936,
He also meceived the 1997 Halliburton Ohastanding Young Faculty Awand. He
serves as Associate Editor of the [EEE TRANSACTIONS ON IMAGE PROCESSING
and is an active participant in the [EEE, SPIE, and Fta Kappa Nu.



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg

