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We explain how connectionisi models can be used
in research and development in the areas of
materials o make it more productive and wseful ai
much lower cost and time. The basic idea is to
identifv a computational model wsing newral net-
works to characterise the relation between the out-
put characteristics, input ingredienis and process
parameters. As an illustration, we focus on the
problem of characterising the sorption properties of
hvdrogen storage materials. We consider the com-
posite materials La.Mgy; — x wi% 2 with 2 =
LaNi: and £ = MmNi, Al 5 for various values of
x. We use mraining data on the desorbed amount of
hvdrogen jor two different temperatures and differ-
ent time of desorption. These training data are used
te train a multifaver network which is then wsed 1o
predict the amount of released hvdrogen for new
desorption temperature, and desorpiion time. Our
results show that for both materials with differen
values of x, the network is able 1o learn the non-
linear desorption characteristics guite successfully.
Hence, for different temperatures and desorption
tine, we are able to predict the defivdriding kinetics
and storage capacity of hvdrogen storage materials
withowt doing the actual experimenis.

Keywords: Connectionist models; Hydrogen storage
material; Sorption property

1. Introduction

With significant advancement in computer techno-
logies {e.g. amificial intelligence, neural networks,
database management, computer graphics, wvirtual
reality, etc.), the research and development activities
in the area of compuier-assisted materials science
can be made more productive and useful. New
computational tools such as Neural Networks (NNs)
can be used to identify the inherent characteristics
of materials, which can in turn guide the next
experiments. Let us illustrate it with an example.
Suppose we want to produce tyres with some target
specification. The problem is to identify the pro-
portions in which different ingredients like rubber,
carbon, sulphur, etc. are 0 be mixed in order to
achieve the desired specification. Apart from the
ingredient materials, other factors such as the time
of mixing and temperature at which mixing is done
may also be important to determine the final charac-
teristics of the mixed material. This is not an easy
problem, as the nature of the highly non-linear
relation between the percentage of different input
materals and other process pammeters is not only
unknown, but it is also difficult to find an explicit
relation for it. Consequently, the researchers conduct
many experiments based on experience to get the
desired material. There are many other materials
science problems, which can also be wviewed as
finding an input-output relation like this. In such a
case, if we could find a computational model
describing the input-output relation implicitly, our
task would be much easier. Connectionist models
(neural networks) as well as fuzzy logic can indeed
be used to realise this objective. In fact, this could
be a highly promising area of materials science, and
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we hope that it will lead to co-operative research
endeavour between computer scientists and materials
scientists in the use of powerful new computational
models to result in significant advances in materials
science. We can call this new area computational
materials science. In this paper, we consider how
neural networks can be used to chamcterise the
desorption properies of different composite hydro-
zen storage materials.

Because of growing awareness of the earth’s
environmental problems, and our limited stock of
fossil fuels, hydrogen energy is expected to become
one of the clean energy sources to replace fossil
fuel. To be able to make use of hydrogen energy,
hydrogen absorbing alloys are being given attention
for energy conversion, hydrogen purification and so
on. Such alloys are key materials for the develop-
ment of future pollution-free clean fuels. The techno-
logical and scientific interest in intermetallic com-
pounds as hydrogen storage systems has increased
during the last few decades.

In the search of viable storage materials, consider-
ing the cost, weight, storage capacity and materials
availability, we make recourse to Mg-bearing
materials as the most attractive option for hydrogen
storage. The maximum storage capacity of pure
magnesium  is 7.6 wi%. However, it reacts with
hydrogen only at a very high temperature and under
high pressure, and even then the reaction is slow
and the degree of hydrmogenation is incomplete.
Moreover, the rate of release of hydrogen from
magnesium hydride is unacceptably low. To elimin-
ate the limitations of magnesium, and also to find
the optimum alloy for hydrogen stomge, several
workers have used various metal additives to mag-
nesium [l-4]. One of the major objectives is to
reduce the dissociation temperature of magnesium
hydride while retaining the high hydrogen stomge
capacity. We attempted to eliminate or reduce these
disadvantages by alloying Mg with La [5]. It was
observed that the intermetallic compounds La.Mg;
and LaMg,. are very attractive materials for hydro-
oen storage. At this point, we explain the notations
for intermetallic compound and composite materials
that will be used. For example, la.Mg; represents
an intermetallic compound obtained by meliing a
mixture of La (Lanthanum) and Mg (magnesium)
. . . 2x 17y
in the rmtio (by weight) of Hr 1Ty 1Ty
where v and v are the atomic weights of La and
Mg, respectively. A composite material ‘P — x
wi% Q' means that before melting the ratio of the
intermetallic compound P and ©Q is 100:x. By
‘storage capacity of an intermatallic compound P is
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rowt %, we mean that 100 gm of P can store x
em of hydrogen. The symbol ‘Mm’ is used to
represent a compound which is the mixture of five
metals, Lanthanum, Cerium, Praseodymium, Neo-
dyrmium and Samarium.

The hydrogen storage capacity of the intermetallic
compound La.Mg 5 is 42 wi% at 400 ° = 10°C,
and these materials absorb and desorb hydrogen
reversibly at high temperature. But again, its disad-
vantage is its slow hydrogenation-dehydrogenation
rate — about 10 times slower than that of the well
known hydrogen storage material LalVis.

In recent years, one of the most interesting fields
of metallurgy and materials science has been the
study of composite matenals [6-8]. The greatest
promise of composite materials lies in the concept
itself, which can free us from the limited set of
single monolithic materials. The goal is © maximise
the desirable properties, while minimise the undesir-
able ones. Generally, most of the efforts to establish
suitable hydrmgen storage systems have been con-
centrated on  individual intermetallic compounds
.I{IIN!-_-;, FE"TP-, MH:N!-, I_IIM#'”, LII:MHH, etc. ﬂﬂd T.h.ﬁllt'
substituted versions. There are some investigations,
which suggest that mixed-type magnesium-based
composite matedals may possess better hydriding
characteristics [9-11].

We observed in our previous investigations that
if Lalis or MmNi, Al s, a material of lower stability
(having comparatively lower hydrogen storage
capacity ) 1s combined with La.Myg ,, a highly stable
material (with higher storage capacity), in a proper
ratio, then it is capable of giving a promising
material with higher storage capacity and lower
stability (easier absormption/desorption) [12,13]. We
used composite materials LaMe; — © wife Z,
where Z could be either LaNis or MmNi, . Al .. As
the sorption rates of storage alloys are important
from the application point of view, we have already
carried out kinetic evaluations for La.Mg . based
composite materials at different temperatures and
the results of the investigation have been reported
elsewhere [14,15]. The absorption and desorption
chamctenstics of the composites are dependent on
the amount (x) of the material Z, absorption tempera-
ture (7). desorption temperature (7)., absorption
time (') and desorption time (r°).

Since it is difficult to find an explicit relation
between different interacting factors, our intention
in this paper is to explore the possibility of finding
a computational model using a connectionist frame-
work (neural network) for the relation between the
amount of desorbed hydrogen (y) and desorption
temperature (T"), composition (x) etc. We illustrate
the general idea with a simple example: suppose for
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temperatures T = T, T, and T, we observed from
experiments the amount of hydrogen that comes out
for different desorption time () from a paricular
composite material, i.e. for a paricular choice of x
and Z. Now we use a multi-layer neural network to
learn the relation between v and TV, . Once this
is known, we can find the amount of desorbed
hydrogen for a completely different temperature T
= T, for different desormption times, without doing
the actual experdment. Such a scheme will cut down
on the time and cost of research and development
drastically. To the knowledge of the authors, no one
has investigated the hydriding-dehydriding kinetics
of hydrogen storage materials using neural networks.
Note that for such problems, not many data points
will usually be available. However, since the relation
to be learnt is governed by the physics of metals,
we expect a smooth but non-linear relation between
output and various input parameters. [f the relation
is a smooth one, it may be possible to extract a
fairly good computational description of the input-
output relation, even using limited data. To establish
the fact, we generated several noisy samples, and
demonstrated that even in this case, the relation can
be identified.

The rest of the paper is organised as follows. For
the sake of completeness, we provide a summary
of the experimental procedure in Section 2. A brief
discussion on multilayer perception networks is pro-
vided in Section 3. Section 4 explains how an MLP
can be used in the present context. The resulis are
presented in Section 3, while the paper is concluded
in Section 6.

2. Experimental Procedure

The materials used in this investigation are highly
pure lanthanum (99.9%), magnesium (99.99%), and
intermetallic compounds LaNis and MmN Al .
High purity hydrogen (IOLAR grade) was used in
this study. The mother alloy La.Mg,; was syn-
thesised through a solid state diffusion process, by
taking the pellet of stoichiomeiric quantities of lan-
thanum and magnesium [12]. The pellet was melted
in a quartz tube under a protective Ar-aimosphere
with the help of a radio frequency induction furnace.
In the next step, the composite matenals La. Mg,
— x wi% Z, where £ = LaMNi; or MmNij Al s were
synthesised for varous values of v by melting pellets
of homogeneous mixtures of the intermetallic com-
pounds La.Mg,, and Z in approprate ratios. The
synthesis procedure of the intermetallic compound
La-Mg; and composite materials La.Mg; — x wi%
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LaNi. and La. Mg, — x wi% MmNi, Al, . has been
demonstrated in detail by Pal [12.13].

Generally, at room temperature, the hydriding
reaction of La.Mg ;-based composites is very diffi-
cult to nucleate. Some activation procedure is neces-
sary for this. The activation as well as the hyddding
charactenstics of the composite materials were per-
formed using a reactor vessel of known volume.
The amount of materials used was about 3 gms.
After evacuating the vessel, the sample was brought
in contact with hydrogen under a pressure of neady
33 kg/em?. The material was heated at neady 360°C
for several hours (depending on the sample), and
then cooled to room temperature. Then at 3607 =
10°C, hydrogen was desorbed and the vessel con-
taining the materal was evacuated. Again, hydrogen
zas was introduced into the reactor vessel. We
continuously heated and degassed the composite
materal under study for several cycles at high tem-
perature, and applied high hydrogen pressure for
full activation. When the sample is in contact with
hydrogen, it usually takes some time before any
noticeable change in hydrogen pressure can be
observed. Depending on the stability of the com-
posite material, the composition of the samples, the
activation temperature and the pressure, the acti-
vation penod might be anything between a few
seconds and a few days.

It was found that the initial reaction of hydrogen
with the fresh sample is a very slow process, and
the hydading behaviour improves with subsequent
absorption-desomtion cycles. After a number of
hydrogenation-dehydrogenation runs, there was no
appreciable change with cycling in the dehydriding
kinetics and in the amount of desorbed hydrogen
by the composite material. This indicates that the
activation treatment is over. The kinetic experiments
were carried out after full activation of the matenal
for varous values of x. The quantities of desorbed
hydrogen were measured by a volumetric method
after preliminary outgassing of the reactor vessel.
The dehydriding kinetics of the la.Myg ,-based com-
posite materials were studied between 330°C and
400°C under a pressure of 4 kg/lem®. The tempera-
ture was kept constant within = 10°C. To calculate
the desorption rate, data were collected after remov-
ing hydrogen from the synthesised materials. The
procedure consisted of (i) putting the material under
study into the reactor vessel, (i) sealing the reactor
so that there is no leakage, (iii) evacuating the
reactor vessel and then pressurising the system under
33 kg/em? with hydrogen, (iv) activating the sample
for several cycles before measuring the dehydriding
rate to ensure that the sample is fully hydrided, (v)
heating the material at high temperature under high
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hydrogen pressure, and (vi) measuring the amount
of hydrogen coming out of the material with time
at a particular pressure.

Mext, with an introduction to neural networks, we
describe the model required for our study.

3. Neural Networks

Although the concept of artificial Neural Networks
(NM) has been inspired by biological neural net-
works, the heart of this emerging technology is
rooted in different disciplines. Biological neurons
are the structural constituents of the brain, and
they are much slower than silicon logic gates. But
inferencing in biological NN is faster than the fastest
computer available today. The brain compensates
for its relatively slower operation by a large number
of neurons with massive interconnections between
them. Biological neural networks

(i) are nonlinear devices, which are highly paral-
lel, obust and fault tolerant;

(11) have built-in capability to adapt their synaptic
weights to changes in the surrounding
environment;

(111) can handle imprecise, fuzzy, noisy and proba-
bilistic information; and

(iv) can generalise from known tasks or examples
o unknown ones.

Research on Arificial Neural Networks (ANN)
started with a view to mimicking some or all of
these characteristics [16-18]. But at present, the
focus is not just to mimic the brain, but o use
pranciples from nervous sysiems (o solve complex
problems in an efficient manner. This new compu-
tational paradigm is different from programmed
instruction sequences. Here information is stored in
the synaptic connections. A neuron is an elementary
processor with primitive types of operations, like
summing the weighted inputs coming to it, and then
amplifying or thresholding the sum. The compu-
tational neuron model of Me-Culloch—Pitts is a sim-
ple binary threshold unit where a neuron has a
number of input links and one output link. The ith
neuron computes the weighted sum of all its inputs
from other units and outputs a binary value, zero
or one, depending on whether this weighted sum is
ereater than equal or less than a threshold #. Thus:

e+ D =f (Ewyx(n — 8)
where fix) =1 ifx =0
= () otherwise

Here wy is the connection weight between neuron i
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and neuron j, and x; is the input to the jth neuron.
Often the hard threshold function f of Mce-Culloch—
Pitts neuron is replaced by a sigmoidal type non-
linear function [16.17].

A neural network is charmctensed by the network
topology, connection strength between pairs of neu-
rons (weights), node characteristics and updating
rules. The updating or learning rules may be for
weights and/or states of the processing elements
ineurons). Normally, an objective function is used
to represent the status of the network, and its set
of minima corresponds to different stable states of
the network. The adaptability of a neural network
comes from its capability of learning from ‘environ-
ments’ {(as represented by the training data). There
are different models of NNs [17], but our interest
is in the multilayer perceptron network (MLP).

An MLP (Fig. 1) is a layered network which can
be trained to learn an unknown relationship between
a set of inputs and outputs. The first layer is the
input layer and the last layer is the output layer.
All remaining layers are hidden layers and nodes in
them are called hidden nodes. Each node in a hidden
layer is connected to all nodes in its immediately
preceding and following layers wia connection
weights. At each neuron (nodes except those in the
input layer), all incoming signals are summed up
and transformed by an activation function to give
the output of the node.

For an MLP the problem is to select an appropn-
ate set of weights 0 minimise the error between
the network outputs and the target outputs. Among
the wvariety of training schemes [19,20] that have
been developed, the most celebrated one is the back-
propagation algorithm, which is a gradient descent
in the weight space over a surface generated by the
sum of the squared errors between the targel outputs
and the network outputs.

Let S= (X.¥) be the training data, where X =
(X, o Xy)ix; e MPand Y= [y, ... 3whi Wi €
e, y; is the g-dimensional output corresponding to
the p-dimensional input x,.

We use the following notation:

-

[ B e N

Fig. 1. Multilayer perceptron network.
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: ith component of an input vector x in the
training set.

¥i : ith component of the target vector y corre-
sponding o X

I : Activation function.

n : Number of hidden layers in the network.

i, : Number of nodes in the ith layer.

of : Output of the ith node in the kth hidden
layer and o = x, and o' = v,

e : Derivative of the activation function of the
ith node in the kth layer.

wi; @ Weight connecting the jth node of the kth
hidden layer to the ith node of the k +
lst layer.

€, : Error comesponding to the pair (x.¥).

7 : learning rate or step size.

The back-propagation algonthm consists of a for
ward pass and a backward pass, the latier being the
weight adjustment pass. The forward pass computes
the output at each node by:

of = fi% (of "'wi))
of = x5, when, k = 0.

In the backward pass, with a view to minimising
Ye, over the entire training data-set § weights are
adapted using gradient descent on each e, in the
training set, where

when, k=1, ....n+ 1; (1}

i

€ =112 (3, — o*')? (2)
Using the gradient descent technique one can obtain
the following learning mle [19]:

Awj; = md} "' of where
e+

B=fY @ whwhenk=1,..,n @)
I=1

B (v, — o fEwhen k= n+ 1

The incremental changes Awj, may be summed up
over the entire data-set § and then wjs may be
updated by the resulting sums, or the updating may
be done separately for each pair (x, y) in S. The
former method is called the baiehh mode, while
the latter is called the onfine or pattern mode of
training [17].

4. Use of MLP in Materials Science

Suppose we want to characterise composite materials
La:Mg; — x wi%h Z. Our interest is o find out
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how the absorption rate (v,), and desorption rate
(v2) are related o wi% of Z (ie. x, absorption
temperature 7", desorption temperature 77, time of
absorption * and time of desorption 7). We assume
that there is a non-linear relation between (x, T,
™, ™) and (v,. w,). Let us denote the set (x, T,
T2, ', rP) by a vector x in fR¥ and (v,, v2) by a
vector ¥ in H* Here our assumption is that there
exists a smooth, but non-linear relation F between
x and y, such that ¥ = Fix). In the NN terminology,
x will be called the input vector while y the output
vector. The objective is to find a computational
scheme (NN) to identify F. To do this we need
X

some data. So we find y = ( ) for several values

¥a
of x. Let there be N such experimental results: X
= (X, X3 o0, Xy) TR and ¥ = [y, ¥5 405 ¥o)
C H*, where ¥, is the output for x;. In general, let
us assume that x, = H” and y, & N9 Given (X,
¥y, we can train an MLP with p input node, g
output node and 1 = | hiddenlayers, where the ith
hidden layer has n; nodes, { = 1, 2, ..., n. Let the
computed output of the net for input x; be y5. The
connection weights of the net are then adapted with
a view to minimising ¥, |y, — y/|]* using the back
propagation algorithm described in the previous sec-
tion.

In the present investigation, we would like 1o
leam the relation between the amount of desorbed
hydrogen from La.Mg; — x wit% Z and desorption
time and temperature for a particular x and Z. In
other words, for a fixed x and Z, we perform
experiments for several /* and T, use these results
to train an MLP, and finally, use the trained MLP
to predict the desorbed hydrogen for different
and T, not used in the experiment.

In this case, each x has two components v;, =
r’ and x, = T while the output vector has only
ong component ¥, = v = amount of desorbed
hydrogen. Thus, a net with two input nodes, one
output node and n = 1 hidden nodes will be used.
In the subsequent discussion, we use the notation
ip-h-q) to represent a net with p input nodes, one
hidden layer with i hidden nodes and an output
layer with g nodes. Thus, (2-5-7-1) will represent
a net with two input nodes, one output node and
two  hidden layers with five and seven nodes,

respectively.

5. Results and Discussion

Figures 2 and 3 show the Kinetic curves of hydmgen

desorption for the composite materials LaMg; —
X owit%h MmNiysAlys at 350° = 10°C, 375" = 10°C
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are measured at three different temperatures 350°C,
375°C and 400°C under a hydrogen pressure of
4kg/em®. In the initial stage the rate increases rap-
idly with time at an almost uniform rate. Sub-
sequently the rate decreases rapidly. In all cases,
desorption increases rapidly in the beginning and
then it slows down. The detailed analysis of these
results has been reported elsewhere [14,15].

Each series of experiments (for a fixed x, Z,
activation procedure, the set of observations for a
particular T and T¥ is called a series) takes at least
1) days (of course, if the experimental procedure is
optimised, otherwise it may even take more than a
month). Let us pretend that we have only two series
of experimental data for 77 = 330°C and T =
400°C. Given such two sets of observations, is it
possible to learn the characteristics of the composite
material so that we can predict the desorption kin-
etics at T = 375°C without doing the experiment?
To explore this possibility, we first consider Z =
MmNiysAls and x = 20 and a network with (2-
4—6—1) architecture. We trained the net for 25,000
iterations with 26 observations for each 79 (17 =
350°C and 400°C). Figure 5(a) shows an excellent
match between the actual output and the network
output for the training data at two different tempera-
tures 350°C and 400°C. Although the net is able o
leam the training data quite well, it does not neces-
sarily mean that it has acquired a good generalisation
capability. To check this, we pretend as if we do
not have observations for T = 375°C and predict
the description kinetics at T = 375°C for different
s, Figure 5(b) shows the network predicted output
and the actual output for T = 375°C, and we
indeed find a very good match. The network pre-
dicted output is shown by ocoooo, while *#** indi-
cates the output of the actual experiment. In this
case, we have training data for T = 350°C and
T = 400°C, and the net could predict (interpolate)
values for the desorption kinetics at 7% = 375°C.

Usually, MLP is not good for extrapolation unless
the input-output relation is nice and the test input
are not far from the training data. Keeping this in
mind, let us see whether the net could do extrapol-
ation. Since the input-output relation o be leamt is
eovemed by the physics of materials, the underlying
relation is expected to be smooth and extrapolation
might work. And, if it does, it will be of great help
to the material scientists. With this hope, we train
the net using the data for 7 = 350°C and T =
375°C and predict the dehydrogenation rate for T
= 400°C. Figure 6(a) shows the match with the
training data for an architecture (2-6-5-1), while
Fig. 6(b) displays that the network predicted dehyd-
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riding kinetics for T = 400°C agrees quite nicely
with the actual desorption amount at 400°C.

The preceding two computational exercises were
done with MLPs with two hidden layers, but our
experience shows that in most cases, a MLP with
a single hidden layer is sufficient. As an illustration,
we report the results for the case when a net of (2-
9-1) size was trained with data for 7% = 350°C
and T = 400°C. Figure 7(a) shows the match
between the predicted output and the actual output
for the training data, while Fig. 7(b) shows the
agreement between the network suggested desorption
kinetics and the actual. Figure 7 clearly reveals that
even a single layer net is enough to capture the
desorption characteristics of La.Mg,; — 20 wi%
MmNiy sAly 5.

Experiments were also conducted using the same
material for x = 10% with both one hidden layer
and two hidden layers, and for both interpolation

and extrapolation cases. In all cases, we gol quite
satisfactory results. We just report here only one
result with an architecture (2-7-1) for the interp-
olation case (Figs 8i(a) and 8(b)).

Mext we consider a different composite material
La Mg, — Swit% LaNi, ie. 2 = LaNi. and x =
5. Figure %a) shows the performance of a (2-7-7-
1y architecture on the training data when training
was done using data for ¥ = 350°C and T° =
400°C for 25000 iterations. Figure 9(b) depicts an
excellent match between the actual amount of
desorbed hydrogen and the predicted amount of
desorbed hydrogen at T = 375°C. Similady. we
trained a net with a single hidden layer having nine
nodes for T = 350°C and T = 400°C and pre-
dicted the amount desorbed hydrogen as a function
of time. The results obtained after 25,000 iterations
with the (2-9-1) net are shown in Figs 10 (a) and
10ib). Figure 10 exhibits that even a single layered
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net can identify a computational model for the
desorption kinetics.

Let us now explore how good the connectionist
model is for extmapolation with La.Me; — 5 wit%h

LaNi;. Here the training data consist of 21 obser-
vations at each of ™ = 350°C and T = 375°C.
Figure 11{a) displays the performance of the net for
the training data. Again, we see a good agreement
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between the actual output and the computed output
by the net. Figure 11({b) depicts the network output
and the actual experimental output for T = 400°C.
In this case, the computed desorption amount for
= 40 is little less than the actual output, while for
= 40, the computed output is little more than the
actual, but still the agreement is quite satisfactory.

For such applications, it is not possible o get
many observations and so was our case — we did
not have too many observations. However, since the
underlying relation that we are trying to learn is
coverned by the laws of physical sciences, we could
identify the correct relation and that is established
through both interpolation and extrapolation. To
demonstrate mobustness and reliability of such sys-
tems, we generaled some noisy data. We assumed
that instruments, which measure time and desorbed
hydrogen, have less that 5% error on the measured
value. For a particular reading the error is andom.
There are two types of randomness: the error (noise)
can increase or decrease the observed value with

probability 0.5 and the amount of error is also
random but less than equal to 3%. It is a two step
process. In step | we draw a random number in
[0,1], and if it is = (.5 then the noise will be
added or else it will be subiracted. In step 2, we
draw another random number, say r, in [0, 0.05]. If
the observed value is %, then the noise is e = xXr.
Now e is either added to or subtracted from x
depending on result of step 1. This is done for all
observations for both ¥ = time and x = amount
of hydrogen desorbed. This way we generate an
augmented data set and the network is trained with
this. Figure 12 shows the noisy data set correspond-
ing to Fig. 4 {considering only the curves for 350°C
and 400°C), while Fig. 13(a) compares the actual
desorbed amount with the output obtained from the
net trained using the noisy data. We find a very
nice agreement between the net output and the
original data, and it is quite comparable to Fig. 9(a).
For this experiment we used the same architecture,
initialisation, etc. as used for the result shown in
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Fig. %a). To test the generalisation ability of the
trained net, we predicted the desorbed amount of
hydrogen with time for 375°C and Fig. 13(b) shows
that there is a very good agreement between the
predicted value and the actual. Comparing Fig. 13(b)
with Fig. 9b), we see that the noisy data did
not influence much the generalisation ability of the
network. We repeated such expernments for several
other noisy data sets generated using the same philo-
sophy, and results obtained were pretty consistent
with the one reported.

These observations show that the connectionist
framework is very effective to identify quite accu-
rately and consistently the relation characterising the
amount of desorbed hydrogen as a function of T
and 7, even though we have a limited number of
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data points. As a result, we could predict the amount
of desorbed hydrogen for given T and " without
doing the actual experiments, and this saves both
time and cost of research. This is possible, mainly
because, the relation is smooth and it is governed
by laws of physical science.

6. Conclusions

We have explained how connectionist models, in
particular, multilayer perception networks can be
used in the materials science research and develop-
ment Computational materials science appears (o
have high potential to make research and develop-
ment in the areas of materials science more pro-
doctive and useful at low cost and time. As
examples, we have shown that for La.Mg,; — x wi%
LaNi. and La.Mg,, rwtt MmNi, Al . the
desorption kinetics for a fixed x can be identified
(learnt) easily by an MLP with limited experimental
data. Once the computational model of the kinetics
is obtained (ie. after the neural net is trained), it
can be used to find the desorbed amount of hydrogen
at new desorption temperature 77 and desorption
time ¢ without actually doing the experiment. The
success of the scheme has been demonstrated on
two different composite materials La. Mg, — v wi%
LHNE-_-; ﬂﬂd LII:MH” g WT.% MJ?‘INE-4_5M.:;_5 fﬂf difrﬁf'
ent values of x. It would be interesting to investigate
the utility of this new approach to identify the
relation of the amount of desorbed hydrogen to x,
77 and 7. A further more complex study would be
to train the net with five dimensional input x = (x,
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5wt % LaNi; on the noisy data in Fig. 12, (a)

Performance of a (2-7-7-1) architecture on the noisy training data with T = 350°C and 7 = 400°C: (b agreement between actual
desorbed ammont at T = 375°C and the network imempolated output using the trained net cormesponding 1w Fig. 13 (o) (the net was

trined using the noisy data in Fig. 12).



Connectionist Models in Materials Science

T, 17, ) and two dimensional output ¥y =
(vi. va)', where v, is the amount of absorbed hydro-
zen and v, is the amount of desorbed hydrogen. We
would like o explore these possibilities in future.
MNote that the proposed methodology is not only
applicable to hydrogen storage materials, but also in
many other matenals science problems, like crystal
erowth, in medicine to realise desirable features in
mixed chemicals, in rubber industries to produce
tyre-material with specified characteristics, and so
o,
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