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A Multilayer Self-Organizing Model for Convex-Hull
Computation
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Abstrace—A self-organizing nenral-network model is proposed
for computation of the convex-hull of a given set of planar points.
The network evolves in such a manner that it adapts itself to the
hull-vertices of the convex-hull. The proposed network consists of
three layers of processors. The bottom layer computes some angles
which are passed to the middle layer. The middle layer is used for
computation of the minimum angle (winner selection). These infor-
mation are passed to the topmost layer as well as fed back to the
hottom layer. The network in the topmost layer self-organizes by
labeling the hull-processors in an orderly fashion so that the final
convex-hull is obtained from the topmost layer. Time complexity
of the proposed model is analyzed and is compared with existing
models of similar nature.

Index Terms—Convex-hull, neural networks, planar set,
RANKNET, self-organization.

I INTRODUCTION

N THIS paper we deal with a well-known problem, namely,
I the computation of convex-hull of a finite number of points
in two dimensions (2-D). The convex-hull of a given set of
points 15 defined as the smallest convex polygon contaming all
the points in the set. The concept of 2-D convex-hull of a set
of points on the plane can be easily understood with the help of
rubber band: stretch a rubber band 1o surround the set of points
and then release it wo shrink. On equilibnum, the rubber band
defines the convex-hull.

The computation of the convex-hull of a finite set of points,
partcularly on the plane, has been swdied extensively and has
wide applications o patlem recognilion, Image processing,
cluster analysis, statistics, robust estimation, opeéralions re-
search, computer graphics, robotics, shape analysis, and several
other fields [1], [3]. [7]. [13]-[15]. [17] [21], [31]. [33], [37].
For example, convex-hull can be used for representation of
shapes insoil micro-structure study [27] where the objects 1o be
recognized or classified have almost random shapes, and there
are rarely two geometrically similar objects. A shape represen-
tation scheme should be normalized and invanant with respect
o coordinate motation, translation, and scaling. A convex-hull
based shape representation is suitable for classificaton and
recognition of imegular objects because it is invariant with
respect o coordinale rotaton, translation, and scaling.

Since 1970s, the problem of convex-hull computation has
been an interesting area of research. As a result, a number of
algorithms are available in the hterature o solve this problem.
These algorithms can broadly be classified into two categories:
computing ¢xact convex-hull [2], [5], [16]. [9]. [18]. [22], [30],
[40] and computing approximate convex-hull [4], [6], [19], [24].
There can be another classification of these algorthms: sequen-
tial (using single processor) and parallel (using multuple proces-
sors). Again, some of the convex-hull algorithms consider input
vectors m 2-D or three dimensions (3-D), which are the most
common ones in real life and some algordthms deal with higher
dimensional iput also. While processing, cither all points can
be presented together in a batch (the off-line mode) or they can
be presented one by one (the on-line mode).

The algorithms in [11]. [12], [24]. and [40] are designed on
artificial neural networks. Wennmyr [40] proposed an exact
convex-hull computation  algonthm based on a mululayer
network [25], [32]. The author designed a network that can
decide whether a given point is inside a convex polygon (using
the fact that a convex polygon is always the intersection of
half-planes). In this network every node at the lowest level has
a different decision boundary. Datta and Parui [11] proposed
a dynamic neural-network model for the computation of an
exact convex-hull with complexity ({n logn). In this model,
the il network siee 15 very small and the network 1s able
Lo growy through certain neuron insertion—deletion mechamsm.
Leung et al. [24] proposed an algorithm for the computation of
an approximate convex-hull. The network consists of an input
layer and an output layer of neurons. Similar to the adaptive
resonance theory (ART) [8], [34] the two layers of newrons can
communicate via feedforward as well as feedback connections
and use a new tmining strategy named “excited” learning.
The network produces two approximations, one from inside
and one from outside, of the convex-hull. Data er al. [12]
proposed a self-organizing model for the computation of an
exact convex-hull in 2-D with complexity €%}, where 0 is the
number of hull-points. The present paper proposes a different
self-organizing model for computation of the 2-D convex-hull.

Conceptually the proposed algonthm 15 a connectionist
implementation of Preparata and Hong's gift wrapping algo-
rithm [30]. We implement the algorithm by a self-organizing
neural network [10], [23]. The term “self-organization™ here
refers to the ability to leam from the input without having
any prior supervising information and 1o armange (or order)
“he processors accordingly. We stat with a network where
every point in the given sel is assigned a processor. The
network consists of three layers. The bottom layer is used for
the computation of angles which are passed onto the middle
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layer. The middle layer computes the minimum angle. These
information are passed 1o the topmost layer as well as fed
back to the bottom layer. Using these information, the topmost
layer and the botiom layer self-organize, to label the processors
(as hull-processors) in an orderdy fashion. Initially the model
identifies one hull-verex. Gradually the network self-organizes
to identify other processors that correspond to the rest of the
hull-vertices. These hull-vertices are generated in an ordered
fashion so that the convex-hull of the data points is obtained.
The learning takes place withoul any supervision.

Before gong into the proposed model, a network 1o compute
the extremum (maximum or minimum) of n given values will
be discussed as it is used by our model. We first briefly dis-
cuss different existing MAXNET models and propose an effi-
cient MAXNET model which requires ({1} time.

II. THE MAXNET MODEL
Several neural networks are available that compute the max-
imum of ve given values [25], [26], [28], [41]. The MAXNET
model proposed by Lippmann ef al. [26] 15 a fully connected
net made up of »oneurons with intemal thresholds set o zem.
The input values w;, ¢ = 1, 2, ..., n, are fed at time zero o
the input neurons. The output o), at time # = 01, is initialized
to the input value &, fore — 1, 4, ..., »n. Thatis
oy, t—1, 3 ... (1)
The network then iterates to find the neuron with the max-
tmum inpul value by

O 1:: =i r.'.';['t:: Z .u.ﬁ_xj::f'] (2)

i

where ;<0 1/ is the inhibitory connection weight between
neurons ¢ oand §, ¢ #Z g, and s the threshold logie function
defined by

il =00
floy=1{ =

1 otherwise.

(3}

By (2), every neuron inhibits all other neurons by an amount
equals o the neuron’s outpul muluplied by a small negatve
weight. Each neuron also feeds back iself with a unity gain.
Afer convergence, the single neuron whose value is initially
the maximum prevails as the *“wnner™ neuron, and the outputs
of all other neurons subside to zero.

To find the maximum of & values, the above MAXNET uses
n neurons and requires (2 n) iterations in the worst case. To re-
duce the number of iterations, Pecht and Gur [29] modified this
model by dynamically changing the weights afler every ilera-
tion as follows:

(4}

wiit) ——
-!I_-r vhy fl(f]
where nif] stands for the number of neurons at time ! with
nonzero output and »{0) = n. With these dynamic weights,
the time-complexity of the modified MAXNET reduces Lo
CHlogn). But, to implement the dynamic change of weights,
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Fig. 1. {a) The schematic diagram of RANKNET. Every neuron is connected
to every neuron. (bl The amchitecture of each neuron in {a) The intemal
threshold {used by function & ) of the ¢ th neuron is its input value =, .

additional hardware 15 necessary. Another MAXNET model
has been proposed by Suter and Kabrisky [36] which has the
worst-case ime-complexity {n). They observed that the
model converges in CHlog v iterations for some distributions,
This model demands more hardware than required by the
model o [29]0 Winters and Rose [41] have proposed an
improved MAXNET which takes €2 logn) time but requires
special switching neuron elements. Tseng and Wuo [38] have
used {Xn?} neurons to achieve a model that can compuie the
maximuom in (5 1) time.,

The MAXNET model proposed here is simple in tenms of
hardware and uses only hard-limiters and summers. The model
ranks all input values (and henceforth is called RANKNET) in
a single iteration and thus it can be used in & winner-take-all
(& = 1) networks,

The RANKNET is a fully connected network composed of
n neurons, one for each input. Every neuron is connected to
every neuron. A schematic diagram of the network is given in
Fig. 1(a). Letaxy denote the ith input value which is fed to the éth
neuron. The ith neuron receives each of the » input values r,,
g = 1.2, ..., nthrough a hard limiter, I, ;). Denote the
output of the ith neuron by ;. The #th neuron, i = 1. 2, ..., n,
CcompuLes

n
o0} =) Hixj. i) (5)
=1
where

; 1 e = r;
H',r-'-m'l':{ “3 = T
SR {1 otherwise.
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Thus, H 15 a hard-limiter that wses the respective neuron’s input
as the internal threshold. The ith neuron computes I ey, ),
4=1,2. ... nandthen adds them to get the output ¢;. Hence,
e gives the rank »; {1, 2, ..., n} of the input value ;. All
the neurons compute their outputs a5 stmultaneously. Thus, the
ranks of all input values are oblained in a single iteration. The
neuron which 15 associated with the maximuom input value gives
its output (rank) as one, if there is no te (for tie, see Case 11 of
examples below).

The hardware implementation of the proposed network
15 much simpler than the existing MAXNET (or MINNET)
models. Every neuron in Fig. La) (denoted by a cwele) 1s
composed of a building block given in Fig. 1(b). The difference
in architecture between our neuron and that in the MAXNET
model proposed by Lippmann ef all [26] 15 important. Each
neuron in the MAXNET model first computes the weighted
sum of the input values and then uses a threshold logic function
Lo compute the output. The neurons use hinear synapses. On
the contrary, we here use nonlinear synapses [35], [39]. Every
neuron in the RANKNET model first vses hard-limiters and
then computes the sum. Note that similar architecture for “non-

i for example, see [335] and [39]). The nonlinear synapses used
in the RANKNET model help us to reduce the time-complexity
of our model to CN1}. Let us illustrate the RANKNET using
some examples.

A, Examples

Case I Without Tie: Let the input values be [5.7, 2, 17,9,
15 }.

These input values are assigned 1o $1% neurons.

Denote Hy; = Hiwg,ows). Wiiting Hy; in yth row and <th
column we gel the following matrix, say 7(:

1 1 000
L L 1 0 @ 1
b v 1?] 1 0 1?]
S e L
L 1 1 i 1 10
11 1011

The column totals of 7 produce (54 6 13 2). The ith column
total gives the rank of ;.

Case II: With Tie: Letthe input values be [5.7,2,17,7, 15}

These mput values are assigned o six neurons. In this case
the matnx M obtaned s

101 000

L1 o 11

. o0 1 0 00
= 1 1 1 1 1
1 1 1 @ 1 0

11 1 011

The column totals of 7 produce (54 6 1 4 2) as the ranks of
different ;5. Note that, the input value seven is repeated twice
and both get the rank of four.
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III. THE PrROPOSED MODEL

Consider a setof v 2-D pomts representing the inpul vectors
(the signals)

e {Ii‘:f‘ i 1'| I:.‘i‘!'z._ Uz:l-_ el f-rn.-. 1 11]}
\P P D). ©®

The convex-hull of the planar set 5 is defined as

Definition I: The convex-fuff of a planar set 5 is the smallest
convex selcontaining 5. The convex-hull here is in fact a convex
polyezon. Each edge of the polygon is a hull-edge and each of its
vertices 15 a hull-vertex [31].

Result I: Every hull-edge of § partitions the plane into two
half-planes such that one of them contains all the points of S
and the other contains no point of 5 [31].

Suppose s, W, ..., By ANE T PrOCESSOTS (neurons) as-
sociated with the poinis My, H, .o H, rfcspu.'huly. The
processor s stores a vector Dy, g, u.:g'n:', -u:;-‘y:'} = i(X; W
where X; = ([#;. 94 i the coordinate of #; and
W, = {71_::;'“]_ -1.1.*2‘1"']:_| 15 its weight vector (later on we
shall see that the weight veclor is the direction ratio) for
i = 1. 2,..., n Each processor w; is connected with itself
and all other processors 7, forming a complete network. These
processors are termed as point-processors.

Definition 2: A point-processor @, 18 called a hnll-processor
if % Lreg.owe)) s a hull-vertex.

Initially, choose a processor at random, say @ p. Call it a seed-
processor. Now consider the processor . such that

[ X — Xl 1 X -3 (7
That is, w7 is the farthest processor from = Note that a
“MAXNET "-like network can be used here.

A standard result of computational geometry shows that, m
is a hull-processor [20]. Call it a mother (first mother) hull-pro-
cessor. Also assume that the initial weights for jth neuron; j =
1,2, ..., nname

A=A
W) {:{,,; X

ifj / k

W7 L (8)

The convex-hull computation algorithm consists of three
major steps: angle caleulation, finding the minimum angle and
weight update as deseribed next
A. Angle Computation

Compute the angles ;. with respect 10 the mother hull-pro-

cessor g, Fo— L2 Lo onlf S k), as
W, T
§; =cos™! I (9)
d [[FF]] W]

Here, #; initially measures the angle (by angle here we mean the
smaller angle) between the vectors Fi By and F0h (see Fig, 2).
€} isa point on the extension of the line segment I 0%

B. Finding the Minimum Angle
Let i, be the processor such that (see Fig. 2)

B — wind#, | (100
i



1344

The processor 15 declared as a hull-processor  and
as a danghter of the mother hull-processor @y, Again a
“MAXNET -like network can be used to compute wing {8}
The mother hull-processor oy now  becomes nactive and
the newly created daughter w,, becomes an active mother
hull-processor. By inactivating a processor we mean that it is
no longer a mother hull-processor in the sense of wpmduction
(1., 1t cannot produce a davghter) but its status as a hull-pro-
cessor remains o that it can participate in subsequent angle

M

computaton.

C. Updating the Weights

After finding the minimum angle weights are updated as fol-
lowws:
W, r_;tj — 1.1,.-“&{1*.;1 far =12 .. ..n
3 and ,'J: ?ﬁ il kL

— I, ()

for i

for j — k.

As mentioned earlier, in the first iteration £, measures the
minimum of the angles between vectors, TP? and TO‘_: 3=
1,2 ... 7 #F k(seeFig. 2). In the subsequent iterations, as
aresult of the weight updating, #,,, gives the minimum of the an-
zles between the vectors (after renaming £y, as 15, IT;..!_’»,.W‘; #
k), and the vector val Iy 15, where sl 3 stands for the inpul
point corresponding to the mother of ). The above process of
angle caleulation and finding the processor with the minimum
angle 15 repeated with the active mother hull-processor until the
most recent danghter processor is identical with the first mother
hull-processor.

We now discuss the neural-network architecture for mmple-
mentation of the proposed model. The network consists of three
layers: bottom, middle, and topmost layer [see Fig. 3a)]. The
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N

e f_.ini—_l,; P g Topmnat layer

- Zer
"'V}; y [comves-hull
ﬁ_ﬂ computatien)

Middle lsyer
[mlnimum angle
computation]

Fig. 3. {a) The neural-network architecture for comvex hull computation. Solid
dots indicate point-processors and the circled dots represent hull -processors. All
the links represented by lines ane bidirectional. {(b) The detailed within layer
comnection used in the bottom layer of {a).

bottom layer is used for the angle computation and the middle
layer is used for finding the minimum angle. The number of
processors in each layer is n, the number of data points. All
the layers have similar structures where every processor 1S con-
nected w every other. In the bottom and topmost layers, there 1s
no self-connection while in the middle layer every processor has
a sell-excitation connecbon as present in the “RANKNET™ de-
scnbed earlier. Moreover, the fth processor in the bottom layer
is connected to the ith processor in the middle layer by feedfor-
ward as well as by feedback links. Similady, the ith processorin
the middle layer is connected to the dth processor of the lopmost
layer [see Fig. 3(a)].

Suppose, i the bottom layer, =5 15 a hull-processor. The
within layer connections in the bottom layer in Fig. 3(a) are
shown in more detuls in Fig. 3(b). A processor m, 18 connected
Lo g by four Imks [in Fig. 30a), they are represented by a single
straight line|. In the beginning, the connection weights are set
as shown i the figure. The motivation behind such connection
weights is that #y, must know the coordinates of o, and @} must
know the coordinates of w3 . The output o; of the fth neuron is
computed by the activation function in (12).

When . 15 the most recently  generated hull-processor
(mother), the neuron § /7 & computes its output o, as

iy = fIL H’il S ;I
(W, W)
=
W% W]
fx), L) TRt
LT Y - M, T
e ot Bt kY (12)

Lark 12
:

PN E N o mlia by (@l P
el PP L T I SR ’
‘/ku-;‘_ 4 + I""""J-.: JI 1'r ,~.1,|_._i. 1 —+ '._"11_]'

Clearly, «v; is nothing but the angle #; in (9).
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Every processor ;{7 £ &1, in the bottom layer, computes
output ¢ according (o (12). These output values are passed to
the respective processors in the middle layer by the forward
links. The middle layer then selects the winner (in respectof the
minimum value) processor ., and passes this information back
Lo the bottom layer and o the topmost layer. The processor @,
is then declared as a hull-processor and as a daughter of 7 ; and
0y, 1s then inactivated. At the same time, the weight of the con-
nection from the mother o the davghter processor (in the wop-
most layer) 15 set o one [denoted by thick lines in the topmost
layer in Fig. 3(a)]. In the next ilemtion, the connecton weights
in the bottom layer are updated according to (11) and the most
recently created daughter processor plays the role of the mother
processor. The process continues until the most recent daughter
becomes equal to the first mother processor Initially all con-
nection weights on the topmost layer are set o zero and atevery
iteration only one weight is set 1o one.

MNoww we shall show, in Propositons 1 and 2, that the net-
work, formed by the hull-processors and the links with connec-
tion weights as one in the topmost layer, provides the required
convex-hull.

Proposition I: 1 the reproduction process is continued, the
algorithm stops in a finite number of iterations.

FProaf: Lel
S set of given points, thatis, 5 = {I*. %, .., B L
II = {s. w2, ..., 5 bethe comesponding set of proces-
SOTS;

Y = set of hull processors afler the tth iteration, where
Ca = {h
= sel of winner processors formed at the th iteration;
= first mother processor, such that . £ 11 after iteration
one;
w7 = daughter (winner) processor, selected at the fth itera-
tion; hence, w; € 7y and ¥ Z 11 €% U ) ] where
o=l cirymlnk
At iteration ¢ + 1, the daughter 7, becomes a mother and
produces a daughter w, | where m,, £ T3y, and f3y; C
I— L) Fowhich is produced in the middle layer If |4, | =
1 then =}, is chosen arbitrarily. €% is modified to Chyy =
Cp W {m b o = =f, the algorithm stops. Otherwise,
it continues. Since, S is finite and [[I — €% U {! }| decreases
with iterations, if the first mother does not te with any other
processor, the algorithm terminates in a finite number of itera-
tions el = 7). Now consider the case where first mother tics
with a set of processors V' ([V| = 2). This comesponds o a sit-
uation when the first mother falls on the line segment formed by
the points corresponding to the processors in V. Our method of
selection of the first mother ensures that the first mother is one
of the end points of this line segment. Hence, the most recent
daughter will be the first mother in at most V] — 1 additional
steps. Thus the algorithm again terminates in vl <} ilerations.
Proposition 2; The output network i the topmost layer pro-
vides the convex-hull of 5.

Proaf: Let wi be the first mother (Fig. 2) which come-
sponds to the input point Fy. Therefore, =] is a hull-processor,
Now suppose that wh is the daughter of = which comesponds
to the input point M, . Note that, the line 5, partitions the
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plane into two half-planes in such a way that one of them con-
tains all points of 5 and other contains none [3]. Therefore,
Pl is a hull-edge and P, is a hull-vertex. In the next it-
eration, ) is inactivated and 75 is activated as a mother pro-
cessor. By similar logic, every link, joining a mother processor
and its danghter, partitions the plane satisfying Result 1. More-
over, every link is directed from a mother to s davghter. Hence,
all the hull-verices of 5 are mapped as the hull-processors in an
ordered fashion in the wopmost layer of the resulting network.

The algorithm for computation of the convex-hull can now be
stated as follows,

Algorithm:

Step 1. [Initialization] Select the seed-processor wp al
random. Compute the first mother hull-processor mp, satisfying
(7) and declare it as the first mother hull-processor. Set the
mitial weights using (8).

Step 2. [Reproduction] The mother hull- processor creates a
daughter processor as follows:

Step 2(a) [Angle compuiation] All processors, except the
mother, in the bottom layer compute the angle (with respect 1o
the mother hull-processor) using the activation function in (12).

Step 2(b) [Minimum angle computation] The minimum
angle 15 computed in the middle layer, where the mother
hull-processor does not participate. The processor corme-
sponding 1o the mimmum angle 1s declared the davghter
PrOCEssor.

Step 2ic) [Report to topmost and bottom layer] The min-
imum angle information is sent o the opmost layer 1o set the
connection weight as one from the mother 1o the daughter. This
information is also passed to the bottom layer.

Step 3. [Weight updating] Update the weights in the bottom
layer using (11).

Step 4. Inactvate the mother and activate the daughter as the
mother.

Step 5. Repeat Steps 2) through 4) unul the most recent
daughter processor be the same as the first mother.

Step 6. Obtain the convex-hull from the topmost layer

Step 7. Stop.

A. Computational Aspects

Afer the inital hull-processor is created every processor
in the network computes s own outpul independently (in
parallel). Thus this computation takes a constanl amount
of time. The winner processor is selected in parallel by the
“RANKNET” in the middke layer (descnbed in Section 1)
which requires €1} time. It is casy o see that the network,
in the worst case, needs o compute the output (in the bottom
layer) and then selects the winner (in the middle layer) kb times
where h is the number of hull-points. Thus, the whole process,
in the worst case, takes O R time.

Computation of convex-hull of a planar set has been a
problem of considerable interest and several researchers have
developed various algorithms. While most of them are based
on conventional techmgues, Wennmyr [40], Leung et al
[24], Datia and Parm [11] and Datta er al. [12] suggested
neural-network-based techniques. For computing the exar
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| | 1/;
2]
Fig. 4. The intermediate and final results ona planar set. {a-{c) The results

after iterations one, five, and ten, espectively {where the dotenclosed by a bax
in panel {a) indicates the seed-pmcessor). {d) The final result after 13 itemtions,

t\ -'

il

convex-hull, Wennmyr proposed a multilayer perceptron-based
model. Leung et all proposed an ART-based maodel that can
compute an approximate convex-hull. Both algorithms have
complexities O} in off-line mode. Datta and Parui [11] pro-
posed 8 dynamic neural-network model for the computation of
the exact convex-hull with complexity (O{n log ), while Datla
et al’s self-organizing model computes the exact convex-hull
with complexity (X5} The algorithm proposed in this paper
provides a different self-organizing connectionist model also
o compule the exact convex-hull of a given set of 2-D points
in (2[R time in off-line mode.

V. RESULTS AND CONCLUSION

The proposed model 15 tested on several 2-D point sets. Fig. 4
shows one such example with intermediate outputs. The point
corresponding 1o the mandomly selected seed processor 15 en-
closed by a square in Fig. 4(a). After one ieration, the first hull
edge, as shown in Fig. 4ia), is determined. The hull edge ob-
tained afier five and ten iterations are shown, respectively, in
Fig. 4(b) and (c). The complete hull [Fig. 4id)] is obtained in
just 13 iterations.

We proposed aneural-network model for computing the exact
convex-hull of a planar set. It is shown that the neural network is
capable of learning from the input and can arrange itself 1o gen-
erate the convex-hull. The model is self-organizing in the sense
that the leaming is unsupervised. Moreover, the network orga-
nizes itself in an orderly fashion in such a way that a mapping
is established from the hull-vertices to the hull-processors and
form the hull-edges o the respective links in the topmost layer
of the network.

In this context it is worth noting the differences between the
model by Datta er al. [12] (model A) and the present model
(model B). In model A, there are four subnetworks each con-
sisting of two layers. These four subnetworks are connected o
another layer placed on their top. Every layer has » neurons,
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where n is the number of points. So each subnetwork requires
3n o neurons and the wopmaost layver needs n neurons. Thus, the
total number of neurons in model A is 4 = 2n | 2 = % Model
B uses only one network consisting of three layers each having
w neurons. So model B requires only 30 neurons. In model B,
the initial mother hull-processor is selected in 8 manner different
from that in model A. The activation functions of different types
of hull-processors in model A are different while asingle activa-
tion function for all neurons is used in model B. The activation
function in model B uses direction ratios and these direction
ratios are reated as weight vectors. The weight veclors are up-
dated in such a way that a single activation function serves the
purpose.

The Gift-wrapping concept used here can be extended to
compute the convex-hull of a set of 3-D points also [31]. In
that case, instead of rotating a line, a plane has to be rotated
about a line which is passing through a hull-point. Accordingly
the activation function is to be redefined. We are currently
investigating such possibilities.
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