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Abstract

The M-band wavelet decom position, which isa direct generalization of the standard 2-band wavelet decomposition is
applied to the problem of an unsupervised segmentation of two texture images. Orthogonal and linear phase M-band
wavelet transform is used to decompose the image into M = M channels. Various combinations of these bandpass
sections are taken to obtain different scales and orientations in the frequency plane. Texture features are obtained by
subjecting each bandpass section to a nonlinear transformation and computing the measure of energy in a window
around each pixel of the filtered texture images. The window size in turn is adaptively selected depending on the
frequency content of the images. Unsupervised texture segmentation is obtained by simple K-means clustering. Statistical
tests are used to evaluate the average performance of features extracted from the decomposed subbands.

Kevwards: M-band wavelets; Texture segmentation; Feature extraction; Multiscale representation

1. Introduction

Most natural surfaces exhibit texture. The char-
acterization of texture plays an important part of
many computer vision system. Texture analysis has
wide range of applications like medical diagnosis,
content-based-image retrieval, satellite imaging
and many others. Image segmentation is a difficult
yet very important task in image analysis and many
computer vision applications. The problem of seg-
menting an image into meaningful regions based on

textural cue is referred to as texture segmentation
problem. A large number of technigues for ana-
lyzing textured image have been proposed in the
past [13] and in a recent review, Tuceryan and Jain
[34] have discussed some of those techniques.

In this paper we focus on a particular approach
to texture (image) analysis which is referred to as
multichannel filtering approach. This approach for
texture analysis is intuitively appealing because it
allows us to exploit differences in dominant sizes
and orientations of different textures. In several
papers the successful applications of multichannel
filtering for texture segmentation were reported
[10,16,3] using various filtering techniques, such as
isotropic filters [ 5] discrete cosine transform (DCT)
[23] and Gabor filters. The reason for the popular-
ity of Gabor filters is due to their joint optimum
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resolution in time and frequency. Randen and
Husgiy [28] have examined the performance of
multichannel segmentation schemes based on
a more general class of filters including Gabor
filters. However a large combination of parameters
makes texture discrimination using Gabor filters
computationally expensive.

Recent development in wavelet theory has
provided a promising alternative through multi-
channel filter banks that have several potential
advantages over Gabor filters namely,

(i) Wavelet filters cover exactly the complete fre-
quency domain.

(i) Fast algorithms are readily available to facili-
tate computation.

Maore recently, studies on successful application
of wavelet theory on texture analysis have been
reported using the multiresolution signal decompo-
sition developed by Mallat [22]. He used quadra-
ture mirror filters to relate information at different
scales of decomposition of the embedded subspace
representation.

Unser [36] used overcomplete wavelet decompo-
sition of the standard wavelet and characterized the
texture by a set of channel variances estimated at
the output of the filter bank. The standard or the
octave band wavelet decomposition imply finer fre-
quency resolution in the low-frequency region than
in the high-frequency region. The work of Chang
and Kuo [3] indicates that the texture features are
more prevalent in the intermediate frequency band.
Laine and Fan [20] carried out studies on texture
analysis based on this indication. They used multi-
channel wavelet frames for feature extraction. Rep-
resentations obtained from both standard wavelets
and wavelet packets were evaluated.

One of the drawbacks of standard wavelets is
that they are not suitable for the analysis of high-
frequency signals with relatively narrow band-
width. So the main motivation of the present work
is to use the decomposition scheme based on M-
band wavelets, which yield improved segmentation
accuracies. Unlike the standard wavelet decompo-
sition which gives a logarithmic frequency resolu-
tion, the M-band decomposition gives a mixture
of a logarithmic and linear frequency resolution.
Further as an additional advantage, M-band
wavelet decompositions yield a large number of

subbands which is required for good quality seg-
mentation.

The analysis of textures using an M-channel
wavelet approach was investigated by Greiver et al.
[12]. They used a 3-channel extension of 2-channel
biorthogonal wavelets. Relevant texture features
were used to design a 3-channel biorthogonal
wavelet, that were subsequently used in the de-
composition and classification of textures. Recently
Chitre and Dhawan [4] have used the M-band
wavelets for texture classification. Randen et al.
[26] have proposed a class of optimally designed
filter banks for texture segmentation purpose. Sev-
eral recent techniques, other than multichannel
filtering method for unsupervised texture seg-
mentation can also be found in the literature
[14.24].

Here we investigate the problem of segmentation
of two texture images by using a generalization of
the wavelet transforms to the M-band case. We
conjecture that the AM-band wavelet transform has
the potential to perform multiscale, multidirec-
tional filtering of the images, since it is a tool for
viewing signals at different scales and decomposes
a signal by projecting it onto a family of functions
generated from a single-wavelet basis via its dila-
tions and translations [1,31].

A typical system set-up for the texture segmenta-
tion algorithm is illustrated in Fig 1. The image is
first wavelet transformed into M x M channels by
applying the M-band transform in a separable
manner, without downsampling which gives an
overcomplete representation of the image. Then
various combinations of these bandpass sections
are taken to obtain different scales and orientations
in the frequency plane. In the next step, a local
energy estimator consisting of a nonlinear opera-
tion (which basically rectifies the filter response)
and a smoothing filter, is applied to the various
combinations of these bandpass sections. The size
of the smoothing window is determined adaptively
based on the spectral frequency content of the im-
ages. These operations give the texture features that
can be classified successfully. The use of overcom-
plete wavelet representation alleviates the problem
of inaccurate edge localization of the texture ele-
ments and discrepancies in detection of boundaries
of different texture classes. The ahility of the filters
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to exploit the characteristics like difference in fre-
quency (size) and orientation of different textured
regions is the key to multichannel approach to
texture analysis.

The organization of the paper is as follows. Sec-
tion 2 briefly overviews the wavelet transform and
M-band wavelet transform. Section 3 presentis the
analysis of the multichannel filtering technique
used in the proposed texture segmentation scheme,
and extraction of features and further discusses the
integration of these extracted features. Section
4 gives experimental results and finally in Section
5 we give critical comments of the present work and
conclude our study.

2. Wavelet transform and M-band wavelet
transform

In this section the wavelet transform and M-band
wavelet transform are described briefly. An exhaust-
ive mathematical treatment is available in [7,31].

2.1, Discrete wavelet transform

The wavelet transform is a signal decomposition
onto a set of basis functions called wavelets. The

wavelets are obtained from a single-prototype func-
tion by scalings and shifts [6,22.30]. This is the
standard 2-band wavelet transform. The wavelet
transform of a 1-D signal f{x) is defined as

Wb} = '.J'{I]'!P;T.n{-t}iit-.. (1)
where ¢ 15 the mother wavelet and a and b are
dilation and translation parameters respectively.
The wavelet decomposition can be interpreted as
signal decomposition in a set of independent, spa-
tially oriented frequency channels. Under these
constraints an efficient real space implementation
of the transform using quadrature mirror filter
exists [22]. The full discrete wavelet expansion of
a signal f{x) e l; ([, is the space of square summable
functions) is given as

J
S =Y spdnia+ Y 8 dpaix, (2)

ke =1 kez
where ¢ and v are the scaling and wavelet func-
tions, respectively and are associated with the ana-
Iyzing (or synthesizing) filters h and g. d;,'s are the
wavelet coefficients and s;,'s are the expansion
coefficients of the coarser signal approximation of

Jix). It also follows from this construction that the

family of sequences {eby ooty eeWans oWk biez
constitutes an orthonormal basis. The discrete nor-

malized basis functions are defined as
(J['_r'.A{-t]' = z'f':.xh_f{}f-‘f — k). (3}
e (x) = 292g,(20x — k), (4}

where j and k are the scale and translation indices,
respectively and the factor 22 is an inner product
normalization.

Wedenote V; as V; = Spany {¢ 4 (x).z } which is
the subspace spanned by the scaling function at
resolution j, (£ corresponds to all integers) and
consider the sequence of nested subspaces
lz=Vype V= Vi... =V, We also introduce
the subspaces W; (j = 1....J), where W; is the
residue (or detail) space at resolution j and is de-
fined as the orthogonal complement of V; with
respect to Vg (e Vi, =V, @W, and ¥V, LW ),
It can be shown by induction that the families of
sequences {d, by and {1, .z provide ortho-
gonal bases of V; and W, respectively [2].
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2.2 M-band waveleis

M-band wavelets are a direct generalization of
the conventional wavelets [6,22.30]. The standard
dyadic wavelets are not suitable for the analysis of
high-frequency signals with relatively narrow
bandwidth [31]. To resolve this problem M-band
orthonormal wavelets were developed as a direct
generalization of the 2-band orthogonal wavelets
of Daubechies [6]. These M-band wavelets are
able to zoom in onto narrowband high-frequency
components of a signal and have been found to give
better energy compaction than 2-band wavelets
[37].

An M-band wavelet system form a tight frame
for the set of square integrable functions defined
over the set of real numbers L*(R) [2]. There are
M — 1 wavelets, hix), i=1,....M — 1 associated
with the scaling function. For any function
fix)e L}(R). it can be shown that

Z Z {_,ﬁ:.t},, ttl‘lfl'.j.k{-t}}ttl‘l"|'.j.k{-t}s {5}

Jef ked

fx)=

I=M-1
i=1

where Z represents the set of integers and . is the
inner product operator. The i ; ,(x) fanctions are
obtained by scaling and shifting the corresponding
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wavelet yr(x):
Wi a(x) = MU (M x — k),
i=1.. . . M—1keZ jeZ (6)

Given a scaling function yy(x) in L3(R), the wavelet
functions are defined as

k=N—1

Wilx) = M Y hikio(Mx — k),
k=0

i=1,....M—1 (7}

The scaling function satisfies the recursive equation
and is compactly supported in [N — 1)
(M — 1],

f — 1

-

k=
Wy (x) = M

k=10

ho (kg (Mx — k), (8)

where the sequence hy, is the scaling filter [2] and
satisfies the following linear and quadratic con-
siraints:

k=N—1

Y holk) = /M, ©)
k=0
k=N—1

Y holkMg(k + MI) = al. (10}
k=0

(b)

Fig 2. Nested vector spaces spanned by the scaling and wavelet functions in {a) standard wavelet and (b) M-band wavelet.
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The (M — 1} vectors called the wavelet filters
satisfy the equation

k 1

N byt (k + MI) = 306 — (11)
k=0

2.3, Multivesolution analysis

The scaling function and the M — 1 wavelet
functions also define a multiresolution analysis [2].
A multiresolution analysis is a sequence of approxi-
mation spaces for L2(R). If the space spanned by the
translates of yr,(x) for fixed j and ke Z is defined by
W, ; = Span{i; ;. }. then it can be shown [2] that

M-1

Wo,= & W, ,_\. (12)
=10

lim W, = Li(R). (13)

Jra

Thus the Wy, ; spaces form a multiresolution space
for L3(R). An important aspect of M-band wavelets
is that a given scaling filter h, specifies a unique
thyix) and consequently a unique multiresolution
analysis. For example, with M =4,

Vi=Vo@ Wi o@WinE Wi,
Vz = V]@W”@Wz,@'wu,

e

soale (xpalial-freguency)

where Vs are the spaces spanned by the scaling
function at different resolution and W s are the
spaces spanned by the wavelet functions. It is pic-
torially illustrated in Fig. 2b.

The scale-space tiling for the standard wavelet
(M = 2)and for M-band wavelet (M = 4) are depic-
ted in Fig. 3. The figure clearly shows that the
frequency tilings in the standard wavelet decompo-
sition are logarithmic (octave band) while the
M-band decomposition gives a mixture of logarith-
mic as well as linear frequency tilings.

There is also a close relationship between M-
band wavelets and M-channel filter banks [2].
A typical M-channel filter bank is shown in Fig. 4.

3. Computing texture features

An important aspect of texture analysis is to
develop a set of texture measures (features)that can
successfully discriminate arbitrary textures. The
feature extraction scheme that we have used has
a multichannel filtering, and a subsequent nonlin-
ear stage followed by a smoothing filter (both these
constitute the local energy estimator) as shown in
Fig. 1. The objectives of the filtering and that of the
local energy estimator are to transform the edges
between textures into detectable discontinuities.

5

scale {sparial- frequency)

tirres [&ace

M =2 {standard wesealsl)

L [space)

b = 4 W -band wavcleo

Fig 3. 2-band and 4-band basis tlings.
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3.1 M-band wavelet filters

The filter bank in essence is a set of bandpass
filters with frequency and orientation selective
properties. In the filtering stage we make use of
orthogonal and linear phase M-band wavelet
transform [ 1] to decompose the texture images into
M = M-channels, corresponding to different direc-
tion and resolutions. The 1-D M{ = 4)-band
wavelet filter impulse responses are given by i, and
their corresponding transfer functions are denoted
by H; for i =1,...4. 4, is the scaling function
(lowpass filter) and the other i, ’s correspond to the
wavelet functions (bandpass filters). In this work we
have obtained the MZ-channel 2-D separable trans-
form by the tensor product of M-band 1-D wavelet
filters but without downsampling, which are
denoted by v ;. for ij = 1.2.3.4 with M = 4. The
i.jth resolution cell is obtained via the filtering step
H;; =t b, for i,j = 1,234 with M = 4. The de-
composition of the image into M x M| =16)
channels is illusirated in Fig. 5a.

Since the spectral response to edges of an image is
strongest in direction perpendicular to the edge,
while it decreases as the look direction of the filter
approaches that of the edge. Therefore we can per-
form edge detection by using 2-D filtering as follows:
o Horizontal edges: are detected by highpass filier-

ing on columns and lowpass filtering on rows.
o Verfical edges: are detected by lowpass filtering

on columns and highpass filtering on rows.

o Diggonal edges: are detected by highpass filtering
on columns and highpass filtering on rows.

o Horizontal-diagonal edges: are detected by high-
pass filtering on columns and lowpass filtering
Of FOWS.

o Vertical-diagonal edges: are detected by lowpass
filtering on columns and highpass filtering on
rOws,

A typical edge detection filter corresponding to
a particular direction covers a certain region in the
2-D spatial frequency domain, this is illustrated in
Fig. 5b where, f, and j, are the horizontal and
vertical frequencies. Based on this concept several
wavelet decomposition filters are possible which
are given by, } p. H;;. where Reg denotes the
frequency sector corresponding to a certain direc-
tion and scale.

The filter system we are using here is orthogonal
and has quadrature mirror filter (QMF) structure,
that is M, Y, ¥ = 1. The resulting 2-D
filters treats all the frequencies in a resolution cell as
equally as possible. The number of channels as well
as the number of possible filier combinations depend
on the number of bands (M) The decomposition
filters ¥ ., H;; are formed as follows for different
directions in increasing level of resolutions.

o Horizontal direction:

Filty; = Hiz,
Filtyr, = Hyz + Hys,
Filtysr, = Hyz + His + Hig + Has.
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o Vertical direction: o Hovizonial—diagonal direction:
Filt,,, =H,,. Filtyy, = H 2.
Filt,,.,, = H,, + H3,. Filtygi, = Hyz + Haa,
Filtyer, = Ha1 + Ha1 + Hay + Hao. Filtnaiag, = H12 + Has + Hs.
o Diagonal direction: o Vertical-diagonal direction:

Filty,, = H Filtyiue = Hiis

P

Filt g0, = Hsz + His. Filt, g0, = H2y + Haa,
Filty,,, = H:; + Hiz + Hy,. Filt, g, = Hay + Hiy + Hys.
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These filter outpuis basically give a measure of
signal energies at different directions and scales,
the corresponding filtered images are denoted by
Fy,. Fy, ete for i = 1,2.3 as shown in Fig. 5c.

3.2, Local energy estimator

The objective of the local energy estimator is to
estimate the energy of the filter output in a local
region. The purpose of the estimator is to transmit
the sirong bandpass frequency components result-
ing in a high-constant gray value and weaker fre-
quency componenis into a low-constant gray value.
MNow, in essence accurate edge preservation and
accurate energy preservation conflicts each other.
This is because high spatial resolution calls for
accurate edge localization, while high spatial fre-
quency resolution is required for accurate energy
estimation. Although energy is usually defined in
terms of a squaring nonlinearity, but in a generaliz-
ed energy function, other alternatives are also in
use. We have used the most popular magnitude
operation | +|. One reason for choosing this nonlin-
ear operator is that it is parameter free, meaning it
is independent of the dynamic range of the input
image and alko of the filter amplification.

The nonlinear transform is succeeded by a Gaus-
sian low-pass (smoothing) filter of the form

1

L M
g 1120T WX .'riﬁ

hgl X, y) =
L0
where, 7 defines the spatial extent of the averaging

filter. Formally, the feature image Feat,(x, y) corre-
sponding to filtered image F,(x,y) is given by,

Feat,(x,y} = 3%

Lo Dty

I(Fla.bhg(x — a.y — b)).(14)

where k = H, V', etc, I'[ ) is the nonlinear function
and G, 15 a G % G window centered at pixel with
coordinates (x, y). The size G of the smoothing or
the averaging window in Eq. (14) is an important
parameter. More reliable measurement of texture
feature demands larger window sizes. On the other
hand, more accurate localization of region bound-
aries requires smaller windows. Another important
aspect is that, Gaussian weighted windows are
naturally preferable over unweighted windows,

because, the former are likely to result in more
accurate localization of texture boundaries, since
averaging blurs the boundaries between textured
regions.

3.2.1. Choice of o of the smoothing filter

The choice of the space constant o of the aver-
aging filter is very crucial. The problem is how to
determine the size of the smoothing filter. If we
want to estimate the local energy of an image with
low spatial frequency the smoothing filter must
have a wide unit impulse response, while narrower
filter is to be used for higher-frequency content
image.

In the present work we set the smoothing filter
size based on the measure of the spectral content of
the image. Spectral flatness measure (SFM) gives
a measure of the overall image activity. The spec-
tral flatness of a digital image is defined as the ratio
of the arithmetic and the geometric mean of the
Fourier coefficients [18]. For two-dimensional
digital image this can be expressed as

_ HMNYIS! ¥ 1Fi )
O T T= ™

F(i.j) is the (i.j)th Fourier coefficient of the two-
dimensional image. SFM has a dynamic range of
[0.1].

Highly active image means SFM close to 1, then
the image has many edges or has predominantly
high frequencies. So the image requires a smaller
window for smoothing. Moderately active image
has SFM of somewhat moderate value within 0 and
1. That means the image contains moderate range
of frequencies and require a moderate window size
for good feature extraction. Finally an image with
low SFM is lowly active and has low spectral con-
tent. It is evident that this type of image would
require larger window size of the smoothing filter.

We have found experimentally that the spatial
extent of the windows, for these three categories of
image activities range from 11 x 11 to 31 x 31.

With these choices we have worked successfully
on all the test images that have been experimented.
Thus we can adaptively select the size of the aver-
aging window depending on the spectral content of
the image. Our scheme is adaptive in the sense that

SFM (15)
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we do not use any fixed windowing operation and
hence it can accommodate diverse set of textured
images as input.

3.3, Integrating the feature images

Having obtained the feature images, the main
task is to integrate these feature images to produce
a segmentation. Let us assume that there are K tex-
ture categories. C,, ..., Cy, present in the image. If
our texture features are capable of discriminating
these categories then the patierns belonging to each
category will form a cluster in the feature space
which is compact and solated from clusters corre-
sponding to other texture categories. Pattern clus-
tering algorithms are ideal modes for forming such
clusters in the feature space. Segmentation algo-
rithm accepts a set of features as input and assign
a class for each pixel. Fundamentally this can be
considered as a multidimensional data clustering
problem. Texture segmentation algorithms can be
divided into two categories: supervised and un-
supervised segmentation [33]. We emphasize on
the feature extraction (representation) part in this
work. So we have used a traditional K -means clus-
tering algorithm. An overview of the unsupervised
K-means clustering algorithm is depicted below.

K-means (x[1:N.1: M), NC)
x[1:N,1:M]: array of structure containing vectors
N — Number of feature elements in a feature
vector
M — Data size (number of pixels in the image)
NC — Total number of classes
begin
begin (Initialization)
Select NC number of vectors arbitrarily from
the array x[1:N,1:M] and then each of these
are assigned a class, these form the initial class
centers C,'s.
end

begin
Euclidean distance between each of the M vec-
tors and the selected NC vectors are found out
taking one out of M vectors at a time. A vector
is assigned to the class k if it is closest to Cy.
Recompute the class centers C, by taking

mean of the vectors assigned to class k. Repeat
until there is no change in the class centers.
end
end

3.4, Post processing

After the class maps are obtained, segmentation
results can be improved by post processing. The
simple K-means clustering algorithm labels each
pixel independently and does not take into account
the high correlation between neighboring pixels.
A more sophisticated algorithm should incorporate
some neighborhood constraint into the segmenta-
tion process, such as relaxation labelling. So we
have used median filtering to simulate the benefit of
a local constraint.

3.5 Algorithm

The texture segmentation algorithm based on
the AM-band wavelet decomposition is illustrated in
the block diagram (Fig. 5c).

This algorithm consist of the following steps:

o Theinput image is first decomposed into M x M
channels by wavelet analysis without down-
sampling as referred in Section 4.1. In this work
we have used an eight tap 4-band wavelet[1], so
in all we get 16 decomposition channels as dis-
cussed in Section 3.1, which means the fature set
comprises of 16 feature elements. Out of these 16
features we ignore the low-frequency channel
feature corresponding to H,, and FHD, and
FVD, since these are nothingbut FH, and FV,,
respectively. Now we are left with 13 features.

e These outputs are subjected to the nonlinear
operation followed by smoothing as discussed in
Section 3.2, which then form the feature images
Feat,.

o We have a matrix of N = M, where N is the
number of feature elements in each vector (13 in
this case) and M is the total data size (the total
number of pixels in the input image). The fea-
tures are normalized between [(,1] along each
column of the feature matrix and subjected to the
clustering algorithm. This step gives us the class
map corresponding to the composite texture
image.



136 M. Acharyva, MK, Kundn | Signal Processing 81 {21 ) 1337- [356

3.6, Statistical significance of features

The performance of the different extracied fea-
tures have been compared using a statistical signifi-
cance test. We test whether two distributions have
significantly different variances. The F-test exam-
ines the hypothesis that two samples have different
variances by trying to reject the null hypothesis
that their variances are actually consistent [25].
The statistics F is the ratio of one variance to the
other, so value either < 1 or & 1 will indicate very
significant difference. The F-test routine returns the
value of fand its significance as prob. Small value
of prob indicate that the two samples have signifi-
cantly different variance.

; df2 )
b = 2betail 05 wd [ 2054dfl,————————
pro HI( wilf wd [ @12+ df i)

s

where,

S =varl/var?
dfl =nl — 1,

if varl = var2,

df2=n2—1
or

J=var2/varl
dfl =n2 —1,

if var2 = varl,
df2=nl —1.

i
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varl and var? are the variances of the samples and
nl and n2 their sizes respectively. betai is the incom-
plete beta function.

We have tested the set of features corresponding
to the two textures in each image for significance.

4. Experimental resulis

We have applied our texture segmentation algo-
rithm to several two texture images, in order to
demonstrate the performance of our algorithm.
These images are created by collaging subimages
extracted from various natural texture from images.

It has already been mentioned in Section 3.5 that
out of the 16 features possible for M = 4, we con-
sidered only 13. The number of features could even
be reduced in many texture images. In case of Nat2
and Nat3 (Figs. 6 and 7) of size 256 x 256 texture
pairs, only 5 features were sufficient for successful
segmentation of the images. It is to be noted that
the results shown are without any post processing
of the class maps. Randen et al. [26] proposed
a technique for unsupervised optimal feature ex-
traction and segmentation of texture images. The
image was first divided into cells of equal sizes and
similarity measure on the autocorrelation function
for the cells were estimated. The similarity

3]

Fig. 6. {a) Texture nat2. {b) Corresponding class map.



M. Acharyva, M K. Kundu [ Signal Processing 81 (2N ) 13371356 1347

(hi

Fig. 7. {a) Texture nat3. (b) Corresponding class map.

la)

(b

Fig B Unsupervised segmentation using {a) optimal Gabor filters by Teuner et al. [32] and (b) optimal flters by Randen et al. [267.

measures were used for clustering the image into
clusters of cells with similar textures. Figs. 8§ and
9 show the results obtained by Randen et al [26]
applied to the texture images Nat? and Nat3 and
also the results that had been obtained by applying
the approach of Teuner et al. [32]. Two examples
are by far not enough experimental data to judge
which approach is best, but the figures clearly dem-
onstrate that the approach we have proposed is
better for these two images.

We have tested our segmentation scheme on
several other textured mosaics. A representative set
of images are D1TD55, D092, DEDE4, D12D17,
09024, In Fig. 10 for the texture pair D17D355 of
size 256 x 256 we took only 3 features, correspond-
ing to the horizontal, vertical and diagonal frequen-
cies, at second level of resolution (Featy, . Feat,,
and Featp, ). The percentage of correctly classified
pixels has been used as the segmentation quality
measure in this work. We present a comparative
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{a) (b

Fig 9. Unsupervised segmentation using {a) optimal Gabor filters by Teuner et al. [32] and (b) optimal filters by Randen et al. [267.
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(a} (h

Fig. 10, {a) Texture DITDA5. {b) Corresponding class map.

performance evaluation of several approaches of Table 1
texiure ‘ﬁ}glllclll'tlit‘lll found in the literature so far Performance evaluation lor texture mosaic D17 D55
and ll_ml proposed by us with respect to the texture Method Percent classification
mosaic D1703535. Several approaches to muliichan-
nel filiering for texture segmentation have been Farrokhnia [9] 98 3%
proposed [9.58.27]. Farrokhnia [9] used a bank of Dunn [£] 9L.6%
- : anden [27] (/32 97 4%

Gabor filters with even symmeiry and an octave i'“'{: ; Fw:ll :}..,;,r_\l S 3,,;“

i i R T i anden [27] (F_2_1.09) 7.0%
band decomposition, the segmentation result of Pronoset ethod 98 1%

which is presented in Table 1. Although this
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method gives a good result, but it applies a large set
of fixed filters, and consequently results in a high
computational complexity. Dunn et al. [8] intro-
duced a method for finding the optimum para-
meters to the Gabor filters to be used for a given
pair of textures and achieved good computational
savings. Randen Husgy [27] proposed a set of
critically sampled FIR filter /324" [19] and 1IR
filter *F_2_1_09" [15] for the purpose of segmen-
tation. All the segmentation resulis for texture
mosaic D17D55 are summarised in Table 1.

Although so far the best result is still obtained
using the bank of Gabor filters in [9], the result we
have obtained is very close to it

When comparing the performance results, com-
plexity issues should also be taken into account
The method presented in [9] gives good segmen-
tation, but the most important drawback is its
high computational complexity. An image of size
256 » 256 requires 28 feature images of the same
size as the input image. The method introduced in
[#] gives a large savings in computational cost, but
with a modest degradation of performance com-
pared to [9]. Instead of the 28 features used in [Y],
only 1 feature is required in [8], but this method

has its weaknesses,

(i) The computational cost for calculating the
optimal Gabor filter parameters is very high.

(i) To find out the optimal parameters an
a priori knowledge about the input textures is re-
quired. So for an unsupervised approach to texture
segmentation this method cannot be applied.

For critically sampled filtering method in [27],
there is a good savings in computational cost. But
the feature dimension i 10, and also there is
a degradation of the segmentation result. One ma-
jor advantage of our scheme over other methods is
that even though we have made use of overcom-
plete wavelet representation of images, which imply
large feature space (ie. 13 feature images of the
same dimension as the input image), we have ex-
perimentally found that 3-35 features suffice for the
desired segmentation and hence dimensionality of
the feature space can be greatly reduced. So com-
pared to the methods in [9.8.27] our method has
reduced feature space and is computationally
simple, while still maintaining the segmentation
quality comparable to [9].

We present a comparative performance measure
on two test images that is reported in [29]. Fig. 11

(h.ii}

Fig. 11. {a) Texture image (ai) DI2D17, (aii) DAD92. (b) Class map of (bi) DI2D17, (baii) DADR2,
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shows two of the texture pairs D12017 and DADY2
of size 256 x 512 that we have worked on. Although
Fig. 11a (ii) looks simple, it was very difficult to
segment using different techniques that are avail-
able in the literature.

Table 3 in [29] summarizes the performance of
several heuristically designed filter banks used as
the feature extractors. If the performance results for
the texture mosaics mentioned above are taken into
consideration then discrete cosine transform (DCT)
appears to have produced the best result. On the
other hand if the average performance for several
other texture mosaics is considered then the quad-
rature mirror filter (QMF) and wavelet frame
approaches produce better results. Most of the heu-
ristically designed filter banks have been reported
to yield successful segmentation on several test
images. But most of the filter banks imply large
number of features and consequently high com-
putational complexity. Therefore optimization of
the filtering operation with respect to some explicit
criterion related to texture classification is desir-
able. Randen and Hus¢gy [29] made extensive
study on the performance of several optimized filter
banks like, Gabor filter and finite impulse response
(FIR) filters [19]. These were optimized following
Mahalanobis and Singh (Jy5) [21], Unser () [35]
and Fisher () [11] criterion. Table 6 in [29] gives
the resulis of various approaches using several opti-
mized filters, while Tables 8 and 9 summarize the
performance results vwsing full rate and critically
sampled wavelet filters. In Table 2 we summarize
the results achieved using the present method and
those reported to have given the best resulis in
[29]. for a comparative study.

It is quite clear from the above discussion that we
have been able to obtain high-quality segmenta-
tion.

For the filtering approaches, filtering and classi-
fication are the main contributors to the total com-
plexity of the system. The heuristically designed
filter (DCT) approach has low-filtering complexity
(short separable filter masks with fast implementa-
tion schemes) and low feature dimensionality with
number of features equaling 8. The optimized filter-
ing approach has low feature count and conse-
quently low computational complexity. But it is not
possible for an unsupervised system, because for

Table 2
Performance evaluation for texture pair 207 and D042

Methods filters Test Ggures (%)
1Lafi) L1 afii)
Heuristic DCT 978 97.5
Optimized wr , J 9748 4.9
Full rate QMF (324 {d) 995 932
Critically sampled QMF (324 {d) 9.1 36
Proposed method M-band wavelet w7 «a0

finding out the optimal parameters a first hand
knowledge about the input images have to be
known. The QMF filter banks have high filtering
complexities. A 40-dimensional feature extractor
puts high requirements on the system [29]. Where-
as in our method for both of these texture pairs the
number of features were limited to 3.

Almost all the texture pairs were well dis-
criminated by our algorithm. The spatial extent of
the smoothing filter that have been used in our
approach ranges from 11 x 11 to 31 x 31 depending
on the spectral content of the images.

In order to prove the efficacy of our algorithm we
have tested it over two other texture pairs of size
256 % 512 Fig. 12, Fig. 12a(i) DED84 was tested by
Jain and Karu [17] by the back propagation de-
signed mask. The result obtained by their method is
taken from [29] and given for a comparative study
with our result. While D9D24 shown in Fig. 12afii)
is visually difficult to discriminate. The segmenta-
tion accuracy for these two images are 99.3 and
499.5%, respectively. In Fig. 13 we present the ex-
perimental results of a texture pair, which is also
difficult to discriminate. We also give the texture
feature images that have been used for this particu-
lar texture pair and it is guite evident from the
figures that the two texture regions are appreciably
discernible on the basis of features extracted. This is
also reflected from the corresponding graphs which
give the features averaged per column of the feature
images. Very good results have been achieved in
this case also which is evident from the class map.
Simple morphological operation like median filter-
ing of size (5 x 5) was applied to the class maps as
4 post-processing step.
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{a.ii)

fc.d)

(hii}

Fig. 12, {a) Texture image (ai) DEDES, {aii) D9 D24 (b)) Class map of (bi) DEDES, (boii) D9D24 (i) Sepmentation result obined in [17].

All the test images discussed so far have simple
texture boundaries. Itis to be noted that the feature
extractors extract features using some window or
neighborhood, so subsequently the complexity and
shape of the boundary is of major interest. The
ability to cope with texture boundaries is of course
an important feature and the test images should
be appropriate in this respect.

Our studies have been extended to images con-
sisting of two textures but having complex bound-
aries Fig. 14. Performance measure for Fig. 1da(i)
has been found to be 98.8% and for Fig. 14afii)
is 93.8%.

The proposed scheme has been examined over
composite textures having rotated versions of the
textures Fig. 15, The segmentation result is appeal-

ing in the sense that our algorithm is rotation
invariant, the segmentation accuracy being 97.1%:.

We have also worked on natural scenes, one such
example is given in Fig. 16. We have segmented the
image considering the two regions of sky and
erass/plant as two different textures.

We have particularly focused our studies on two
texture images, because there are several real world
images comprising of two textures, one such
example being document images. But we have also
examined our algorithm over composite texture
images comprising of a moderate number of tex-
tures Fig. 17. Fig. 17a(i) consists of four different
texture classes and Fig. 17al(ii) consists of three
texture classes with a more or less complex bound-
ary. Classification percentage for these test images
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(ad)

At A Fain
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{i.ii)

(.

Fig 13 (wi) Feature imape corresponding to {aii) Fealy., (bi) Featyp., (ci) Featp, . Features averaged along columns in {aii) Featy.,

(buii) Featyp. , {eil) Fealp. . (di) Texture image. (i) Corresponding dass map.
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Fig. 14 {aip-{aii), Compoesite image consisting of two textures with complex boundaries. (boij<{b.ii), Corresponding class maps.

are 97.4 and 94.8%, respectively. This ensures that
our algorithm works appreciably well for moderate
number of textures also.

It is to be noted that for test Figs. 14-17 we have
not done any post processing. While post process-
ing like median filtering or morphological opera-
tion like dilation would have definitely improved
our classification performance we opted to present
our result without it to show how robust our
scheme is under various conditions.

Another important point which is mention
worthy is that except for the knowledge about the

number of classes present in a composite image we
otherwise do not have any a priori knowledge re-
garding the test images. That is we do not have any
ground truth data and our scheme is completely
unsupervised. While all the other approaches re-
ported in [29] are supervised.

5. Conclusion

For good edge boundary localization, intuitively
we would desire the filter to have a compact spatial
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o
ERL

(i)

(b}

Fig. 15. Composite image consisting of rotated exture and the corresponding dass map.

thi

Fig 16, A natural scene and the corres ponding class map.

domain representation, while for reliable discrim-
ination of different texture frequency contents the
filter should have a good frequency response local-
ization and high-stop band attenuation. The QMF
filters have significantly compact frequency re-
sponse. Also symmetry of the filter responses is an
important factor. A nonsymmeiric filter response
would consistently lead to edge detection error and
consequently higher classification error. The filter
we have used has perfect reconstruction and quad-

rature mirror filter (PR-QMF) struciure and is
symmetrical.

In the case of standard dyadic wavelet decompo-
sition, the low-frequency band of an image is split
as the level of decomposition increases. Since we
expect the textures to have their characteristic fea-
tures in the higher frequency bands, we have pro-
posed an M-band decomposition of the textured
images which splits the lower as well as the higher-
frequency bands.
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Fig 17. (wi) Composite imapge consisting ol four textures; (aii) corresponding class maps. (bui) Composite image consisting of three

textures; (bai) corresponding class maps.

Here we have presented a multichannel filtering
technique for texture segmentation using M-band
wavelet transform in this work. It can be inferred
that the use of M-band wavelet decomposition of
the texture image gives an efficient representation
of the image in terms of frequencies in different
directions and orientations at different resolutions.
This representation thus facilitates an improved
segmentation of the different texture regions. The
filtering and the feature extraction operations ac-
count for most of the required computations, how-

ever our method is very simple, computationally
less expensive and efficient. It has been experi-
mentally found that 3-5 features out of the 13
features are sufficient for good-quality segmen-
tation. So dimensionality of the feature space is
ereatly reduced. Also since we have used an over-
complete wavelet representation of the textured
images (i.e. without downsampling) translational
invariance can also be achieved.

We have also worked on natural scenes the result
shown is impressive. Although the major impetus
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in this work has been the segmentation of two
textured images, we have shown that the algorithm
works appreciably well in case of images consisting

of a

moderate number of textures.
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