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The principle of placing hyperplanes to model the class boundaries for pattern recognition problems using the
searching capabilities of genetic algorithms (GAs) is explained. Various classifiers using fixed string length
GAs, variable string length GAs and GAs with chromosome differentiation are described. The superiority of
these classifiers over the Bayes classifier (with assumption of multivariate normal distribution), k-NN rule and
multilayer perceptron is demonstrated for both speech and remotely sensed data. Some of the results reported

here are taken from the existing literature.
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1 Introduction

Genetic algorithms (GAs)!* are randomized search
and optimization techniques guided by the principles
of evolution and natural genetic. The term was first
mentioned by Bagley!S when he devised a genetic
algorithm based game playing program using some
commonly used operators. He found that the GA was
insensitive to the game non-linearity, and performed
well over a range of environments. It was then with
the pioneering work of Holland!! that GAs were firmly
established as an effective search and optimization
strategy.

GAs mimic some of the processes observed in
natural evolution, which included operations like
selection, crossover and mutation. They perform
multimodal search in complex landscapes and provide
near optimal solution for objective of fitness function
of an optimization problem. They are efficient,
adaptive and robust search processes, with a large
amount of implicit parallelism®!! Genetic algorithms
are gradually finding widespread applications
during the past decade in solving problems requiring
efficient and effective search, in business, scientific
and engineering circles!5810.131617  Some of the
applications of GAs, so far being made, include
pattern classification and feature selection!618,
image processing and scene recognition'®2 rule
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generation and classifier systems?*28 neural network
design?>% scheduling problems3’3® VLSI design®,
path planning® and the traveling salesman
problem*3, graph colouring3, and numerical
optimization®. Moreover, several researchers are
actively engaged in developing enhanced and more
effective genetic operators and models, and
analyzing their performance for different applications.
Some such attempts are described below.

The issue of convergence of GAs to the globally
optimal solution has been pursued in ref. [45], where
GAs are again modelled as Markov chains having
a finite number of states. A state is represented by
apopulationtogether with a potential string. Irrespective
of the choice of initial population, GAs have been
proved to converge to the optimal string for infinite
number of iterations, provided the conventional
mutation operation is incorporated. Murthy et al.%
have provided a stopping criterion, called &-optimal
stopping time, for the elitist model of the GAs.
Subsequently, they have derved the g-optimal stopping
time for GAs with elitism under a ‘practically valid
assumption’.

An attempt to incorporate the ancestors influence
into the fitness of individual chromosomes has been
made in ref. [47]. This is based on the observations
in nature where an individual is not an independent
entity, but is highly influenced by the environment.
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Ghosh er al.*8 have incorporated the concept of aging
of individuals for measuring their suitability for
participation in genetic operations, by combining both
the functional value and the age of an individual
for computing its effective fitness. Results have shown
that this scheme provides enhanced performance and
maintains more diversity in the population.

“Bhandari et al.% have proposed a new mutation
operator known as directed mutation which follows
from the concept of induced mutation in biological
systems®. This operation uses the information
acquired in the previous generations rather than
probabilistic decision rules. In certain environments,
directed mutation will deterministically introduce a
new point in the population. The new point is directed
(guided) by the solutions obtained earlier, and
therefore the technique is called directed mutation.

In ref. [33], Pal and Bhandari incorporated GAs
to find out the optimal set of weights (biases) in
a layered network. Weighted mean square error over
the training examples has been used as the fitness
measure. They introduced a new concept of selection,
called non-linear selection, which enhances genetic
homogeneity of the population and speeds up searching.
Implementation results on both linearly separable and
non-linearly separable pattern sets are also reported.

An attempt has also been made for evolving
architectures of Hopfield type optimum neural networks
for extracting object regions from gray images using
GAsS!, where each binary chromosome represents a
network architecture. The presence (or absence) of
connectivity between neurons is represented by 1
(or 0). The proposed GA based technique has been
abletoevolve network architectures whose connectivity
is about two-third of the requirement of the
corresponding fixed fully connected ones in order
to produce comparable segmented output. The
optimized networks have been found to be more noise
independent. Other attempts forevolving the architecure
of neural networks using GAs can be found in refs.
[36, 52, 53].

Many tasks involved in the process of recognizing
a pattern need appropriate parameter selection and
efficient search in complex and large spaces in order
to attain optimal solutions. This makes the process
not only computationally intensive, but also leads
to a possibility of losing the exact solution. Therefore,
the application of GAs for solving certain problems
of pattern recognition, that require optimization of
computation requirements, and robust, fast and close

approximate solution, seems appropriate and natural.
Additionally, the existence of the proof of convergence
of GAs to the global optimal solution as the number
of iterations goes to infinity*5, further strengthens the
theoretical basis of its use in search problems.
Significance of GAs to pattern recognition and image
processing problems is adequately demonstrated in
refs. [16, 17, 53-55]. Some of the investigations are
mentioned below.

A method for determining the optimal enhance-
ment operator for both bimodal and multimodal
images is described by Pal et al. in ref. [21]. The
algorithm does not need iterative visual interaction
and prior knowledge of image statistics for this
purpose. The fuzziness measures are use as fitness
function.

Selection of a subset of principal components
for classification using GAs is made in ref. {56].
Since the search space depends on the product of
the number of classes and the number of original
features, this selection process by conventional means
may be computationally very expensive. Results on
two data sets with small and large cardinalates are
presented.

Murthy and Chowdhury’” have used GAs for
finding optimal clusters, without the need for searching
all possible clusters. The experimental results show
that the GA based scheme may improve the final
output of the K-means algorithm® where an
improvement is possible.

Another hybridization of the K-means algorithm
with GAs (called, GKA) for partitional clustering
is reported in ref. [59], where the superiority of GKA
over other algorithms is demonstrated. The GKA is
applied for codebook design that are used in image
and speech coding. A class of representation schemes,
called Voronoi Net-works, has also been proposed
in ref. [59] and a new heuristic learning algorithm
for them, called supervised K-means algorithm, is
formulated.

One of the important and natural applications
of GAs for supervised pattern classification is to search
and appropriately place a number of surfaces in the
feature space such that the decision boundary of a
given data set is closely approximated. Attempts in
this direction can be found in refs. [60, 61]. In ref.
[59], Srikanth et al. described a genetic algorithmic
approach to pattern classification, both crisp and fuzzy,
where clusters in pattern space are approximated by
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ellipsoids. A variable number of ellipsoids is searched
for, which collectively classify a set of objects by
minimizing a criteria based on the number of
misclassified points and the fuzzy distance of a patterns
from the surface of the ellipsoid.

The present article provides, in this direction,
some key features of the results of investigation that
has been carried out in Machine Intelligence Unit
of Indian Statistical Institute, Calcutta, under the
project Soft Computing in Pattern Recognition. This
includes the GA-classifier (where the decision boundary
is approximated by a fixed number of hyperplanes),
the VGA-classifier (where variable string length GAs
are used to approximate the decision boundary by
a variable number of hyperplanes) and the GACD-
classifier (where the concept of chromosome
differentiation incorporated in designing GA based
classifiers), along with some of their real life
applications. Some of the results are taken from the
existing literature.

A distinguishing feature of the above approach
is that the boundaries need to be generated explicitly
for making decisions. This is unlike the canventional
methods or the multilayered perceptron (MLP) based
approaches, where the generation of boundaries is
a consequence of the respective decision making
processes.

2 Overview of Genetic Algorithms

GAs are modelled on the principles of natural genetic
systems, where the genetic information of each
individual or potential solution is encoded in structures
called chromosomes. They use some domain or
problem dependent knowledge for directing the search
in more promising areas: this is known as the fitness
function. Each individual or chromosome has an
associated fitness function, which indicates its
degrees of goodness with respect to the solution it
represents. Various biologically inspired
operators like selection, crossover and mutation are
applied on the chromosomes to yield potentially
better solutions.

Since a GA works simultaneously on a set of
coded solutions it has very little chance of getting
stuck at a local optimum when used as an optimization
technique. Again, the search space need not be
continuous, and no auxiliary information, like derivative
of the optimizing function, is required. Moreover,
the resolution of the possible search space is increased

by operating on coded (possible) solutions and not
on the solutions themselves.

A schematic diagram of the basic structure of
a genetic algorithm is shown is Fig. 1.

| Initialize the population |

l

Perform the job with decoded
versions of the strings

!

I Compute fitness values I

Yes
Termination criterion attained? Stop

| No
i

Reproduce/select strings to
create new mating pool

!

Generate new population by
crossover and mutation

]

Fig. 1 Basic steps of genetic algorithm

The evolution starts from a set of chromosomes
(representing a potential solution set for the function
to be optimized) and proceeds from generation to
generation through genetic operations. GAs require
only a suitable objective function, which is a mapping
from the chromosomal space to the solution space,
in order to evaluate the suitability or fitness of the
derived solutions.

To solve an optimization problem, GAs start with
the chromosomal representation of a parameter set.
The parameter set is to be coded as a finite length
string over an alphabet of finite length. Usually, the
chromosomes are strings of 0’s and 1’s. A set of
such chromosomes in a generation is called a
population, the size of which may be constant or
may vary from one generation to another. A common
practice is to choose the initial population randomly.

The fitness/objective function associated with a
chromosome is chosen depending on the problem
to be solved, in such a way that the strings (possible
solutions) representing good points in the search space
have high fitness values. This is the only information
(also known as the payoff information) that GAs use
while searching for possible solutions.
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Subsequently, the selection/reproduction process
copies individual strings (called parent chromosomes)
into a tentative new population (known as mating
pool) for genetic operations. The number of copies
that an individual receives for the next generation
is usually taken to be directly proportional to its fitness
value; thereby mimicking the natural selection
procedure to some extent. This scheme is commonly
called the proportional selection scheme. A commonly
used strategy known as the elitist selections? is
adopted in GAs, thereby providing an elitist GA
(EGA), where the best chromosome of the current
generation is retained in the next generation.

The other two frequently used genetic operators
applied on the populaticn of chromosomes are cross-
over and mutation. The m:J'1 purpose of crossover
istoexchange information between randomly selected
parent chromosomes by recombining parts of their
corresponding strings. It recombines genetic material
of two parent chromosomes to produce offspring for
the next generation. Single point crossover is one
of the most commonly used schemes.

The main aim of mutation is to introduce genetic
diversity into the population. Sometimes, it helps to
regain the information lost in earlier generations. In
case of binary representation it negates the bit value
and is known as bit mutation. Like natural genetic
systems, mutation is GAs is usually performed
occasionally. Here a random bit position of a
randomly selected string is replaced by another
character from the alphabet.

As shown in Fig. 1, cycle of selection crossover
and mutation is repeated a number of times till one
of the following occurs :

1. The average fitness value of a population
becomes more or less constant over a
specified number of generations,

2. A desired objective function value is attained
by at least one string in the population,

3. The number of generations (or iterations) is
greater than some threshold value.

3 Description of the Genetic Classifers

A) GA-Classifier: GA Based Classifier Using Fixed
Number of Hyperplanes

The GA-ClassifierS attempts to place Hhyperplans
in the feature space appropriately such that the number
of misclassified training points is minimized. From

elementary geometry, the equation of a hyperplane in
N dimensional space (X,-X, - ... X,) is given by

Xy cos ay+ By, sinay,=d e (D)
where S, = X, €0s Oy, + By, sin ay,

Brey = Xy, COS Gy 3+ Py, sin a4

B, = x,cos a, + B, sin o
The various parameters are as follows :
X, : the i th feature of the training points.
(x;, X ..., Xy) : a point on the hyperplane

a,._, . the angle that the unit normal to the hyperplane
makes with the X, axis.

a,_,.the angle that the projection of the normal in the
(X=X, ..., — Xj_,) space makes with the X, axis.

a, .the angle that the projection of the normal in the
(X,-X,) plane makes with the X, axis.

a,: the angle that the projection of the normal in the
(X,) plane makes with the X, axis = 0. Hence,
B, sin = 0.

d : the perpendicular distance of the hyperplane from
the origin.

Thus the Ntuple < a,, a,, ..., @y, d > specifies a
hyperplane in N dimensional space.

Each angle a,,j =1, 2, ..., N-1is allowed to vary in
the range of 0 to 2 =. If b, bits are used to represent an
angle, then the possible values of o, are

0,6*2m,26*2x,36*2n, ..., (20-1) 6* 2«

1 . . .
where 6 = > Consequently, if the b, bits contain a

binary string having the decimal value v,, then the angle
isgivenby v, * § *2x.

Once the angles are fixed, the orientation of the
hyperplane becomes fixed. Now only d must be speci-
fied in order to specify the hyperplane. For this pur-
pose the hyper rectangle enclosing the training points

min

is considered. Let (x, x™) be the minimum and

maximum values of feature X, as obtained from the
training points. Then the vertices of the enclosing hyper
rectangle are given by

chi x{:hZ

(x5, )

9 ey

where each ch,, i = 1,2, ..., N can be either max or min.
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(Note that there will be 2¥ vertices.) Let diag be the
length of the diagonal of this hyper rectangle given by

diag = J(x,‘"‘"_ ,‘:,""")2 +(x2"""_ x;i')z + .. +(x§"“, xﬁ"‘)z

A hyperplane is designated as the base hyper-
plane with respect to a given orientation (i.e., for some

a, a, ..., ay,)if
1) it has the same orientation

ii) it passes through one of the vertices of the en-
closing rectangle

iii) its perpendicular distance from the origin is
minimum (among the hyperplanes passing
through the other vertices). Let this distance
be d,,.

If b, bits are used to represent d, then a value of v,

in these bits represent a hyperplane with the given
diag
orientation and for which d is given by d,,,, + 22, *v,.

Thus each chromosome is of a fixed length of
I=H((N-1) *b,+ b,), where H denotes the number

299

of hyperplanes. These are initially generated
randomly for a population of size Pop.

Using the parameters of the hyperplanes encoded
in a chromosome, the region in which each training
pattern lies is determined based on eq (1). A region is
said to provide the demarcation for class i, if among
the points that lie in this region, majority belong to
class i. Other points that lie in this region are considered
to be misclassified. The misclassifications associated
with all the regions (for these H hyperplanes) are
summed up to provide the total misclassification, miss,
for the string. Its fitness is defined as (n — miss), where
n is the size of the training data.

After computing the fitness, the genetic operators
of selection, crossover and mutation are applied® to
generate a new population of chromosomes. Elitism is
incorporated in the process for preserving the best
candidate found so far. Fitness computation followed
by genetic operations are executed for a fixed number
of generations at the end of which the best chromosome
provides the set of hyperplanes constituting the final
decision boundary. The flowchart for the GA-classifier
is given in Fig. 2.

Gen =0

l

Population Initialization

|

v

For each chromosome (encoding a decision
boundary), compute miss and fit = n — miss.
Mark a chromosome with maximum fitness

value = fit,,. Gen = Gen + 1

Selection, Crossover,
Mutation, Elitism

Output decision
boundary encoded in
marked chromosome

S

‘ Stop ]

Fig. 2 Flowchart for the GA-classifier
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B) Determination of Optimal H : VGA-Classifier

Since it is very difficult to estimate a proper value
of H, the GA-classifier often suffered from the problem
of over fitting of the data set, resulting from a
conservative estimate of H. This also led to the presence
of redundant hyperplanes in the final decision
boundary. In order to overcome this limitation, the
concept variable string lengths in GAs%, encoding the
parameters of a variable number of hyperplanes, was
incorporated in the GA- classifier, thereby providing
the VGA-classifierss.

In the VGA-classifier, the chromosomes are
represented by strings of 1, O and # (don’t care),
encoding the parameters of variable number of
hyperplanes. Let H, , represent the maximum number
of hyperplanes that may be required to model the
decision boundary of a given data set. It is specified
a priori.

Fitness Computation

For each string i encoding H, hyperplanes, the
number of misclassified points miss,, is found as in
the case for GA-classifer. If n is the size of the training
data, then the fitness of the ith string, fir, is defined
as

fit, = (n—miss;) — aH,

1
where a = H

max

and H, is the number of hyerplanes

encoded in the string. A string with zero hyperplane
is defined to have zero fitness. Maximization of the
fitness function ensures the minimization of, primarily,
the number of misclassified points and then the number
of hyperplanes.

Genetic Operators

Since the strings have variable length, the
operators crossover and mutation were newly defined
as follows.

Crossover

Two strings, i and j having length /;, and [
respectively are selected from the mating pool. Let
l; < |, Then string i is padded with #s so as to make
the two lengths equal. Conventional crossover like
single point crossover, two point crossover® is now
performed over these two strings with probability
H.. The following two cases may now arise :

1) All the hyperplanes in the offspring are complete
(A hyperplane is a string is called complete if
all the bits corresponding to it are either defined
(i.e., Os and 1s) or #s. Otherwise it is incomplete).

2) Some hyperplanes are incomplete.

In the second case let ¥ = number, of defined
bits (either 0 or 1) and ¢ = total number of bits per
hyperplane. Then, for each incomplete hyperplane,
all the #s are set to defined bits (either 0 or 1 randomly)

with probability % . In case this is not permitted, all

the defined bits are set to # Thus each hyperplane
in the string becomes complete. Subsequently, the
string is rearranged so that all the #s are pushed
to the end.

Mutation

In order to introduce greater flexibility in the
method, the mutation operator is defined is such a
way that it can both increase and decrease the string
length. For this, the strings are padded with #s such
that the resultant length becomes equal to /.. Now
for each defined bit position, it is determined whether
conventional mutation® can be applied or not with
probability x,. Otherwise, the position is set to #
with probability x,,. Each undefined position is set
toadefined bit (randomly chosen) according to another
mutation probability z,,.

Note that mutation may result in some incomplete
hyperplanes, and these are handled in a manner, as
done for crossover operation. Also, mutation may
yield strings having all #s indicating that no
hyperplanes are encoded in it. Consequently, this string
will have fitness = 0 and will be automatically
eliminated during selection.

C) Theoretical Studies of the Genetic Classifiers

Theoretical analyses of the above mentioned GA
based classifiers show that for infinitely large number
of iterations it will provide the minimum
misclassification error during training; at the same
time the number of hyperplanes required to model
the decision boundary for providing the minimum
number of misclassified points will also be the
minimum.

It is known from the literature that Bayes
classifier® is the best possible classifier if the class
conditional densities and a priori probabiiities are
known. No classifier can provide better performance
than Bayes classifier under such conditions. In
practice, it is difficult to use Bayes classifier because.
the class conditional densities and a priori probabilities
may not be known. Hence new classifiers are devised
and their performances are compared to that of the
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Bayes classifier. The desirable property of any
classifier is that its performance should approximate
or approach that of the Bayes classifier under limiting
conditions. There are many ways in which the
performance of a classifier is compared to that of
the Bayer classifier. One such way is to investigate
the behavior of the error rate (defined as the ratio
of the number of misclassified points to the size of
the data set) as the size of the training data goes
to infinity, and check whether the limiting error rate
is equal to the Bayers error probability. Such an
investigation® establishes that this is true for the
aforesaid genetic classifiers when the number of
iterations goes to infinity. In other words, the decision
boundary provided by the genetic classifiers approaches:
the Bayes decision boundary as the number of training
data points and the number of iterations approaches
infinity.

D) Experimental Results

This section has two parts. In the first part, some
experimental results are presented for the genetic
classifiers on Vowel data set. This includes a
description of the data set, variation of the recognition
scores of the GA- classifier during testing for different
values of H, performance of the VGA-classifier and
its comparison to the Bayes maximum likelihood
classifier and k- NN rule. In the second part, the
above genetic classifiers are used for pixel classification
of satellite images of parts of the cities of Calcutta
and Bombay for locating different landcover regions.

For the GA based classifiers the numbers of bits
used to represent an angle and the perpendicular
distance are 8 and 16 respectively. Roulette wheel
selection is adopted to implement the proportional
selection strategy, Single point crossover is applied
with a fixed crossover probability (4,) value of 0.8.
The mutation operation is performed on a bit by bit
basis for a varying mutation probability value (z,)
in the range [0.015, 0.333]. The form of the variation
of x4, with the number of generations is shown in
Fig. 3. The range is divided into eight equispaced
values. x4, is slowly decreased in steps from 0.333
to 0.015, and then increased again. This ensures that
initially, a random search is performed through the
feature space. The randomness is gradually decreased
with the passing of generations so that now the
algorithm performs a detailed search in. the vicinity
of promising solutions obtained so far. In spite of

F in Hz

this, the algorithm may still get stuck at a local
optimum. This problem is overcome by increasing
the mutation probability to a high value, thereby
making the search more random once again. 100 and
200 1iterations are executed with each value of 4,
forthe GA-classifier and the VGA-classifierrespectively.
(Note that since the search space is larger for the
VGA-classifier, it is allowed more time to execute).
The algorithm is terminated if the population contains
at least one string with no misclassified points.
Otherwise, the algorithm is executed for a prespecified
number of generations.

Mm

0.015

Generations

Fig. 3 Variation of mutation probability with the number of
generations
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Fig. 4 Vowel data in the F-F, plane

D.l Results on the Vowel Data

Vowel data consists of 871 Indian Telugu vowel
sounds®’. These were uttered by three male speakers
in the age group of 30-35 years. The data set has
three features F,, F, and F;, corresponding to the
first, second and third vowel formant frequencies,
and six classes {da,iueo0}. Fig. 4 shows the
distribution of the six classes in the F|—F, plan. (It
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is known®’ that these two features are more important
in characterizing the classes than F;). Note that the
boundaries of the classes are seen to be very ill-
defined and overlapping. The scores provided here
are the average values obtained over five different
runs of the algorithms.

Table I presents the test recognition scores of
the GA-classifier for different values of H. The
scores are found to improve with the value of H
upto H =7 which provides the maximum score. Low
values of H viz., 2 and 3 are seen to provide quite
low recognition scores indicating that they -are
insufficient for modelling the overlapping class
boundaries appropriately. Even H = 4 is not a proper
choice since in this case one class was not recognized
at all (class a). Interestingly, although it was found
that the recognition scores during training of the GA-
classifier consistently improved with the increase of
H from 2 to 8, a decrease in the test recognition
score is observed from H = 7 to H = 8. The reason
for this is that as H is increased upto a certain point
(from 2 to 7), the GA- classifier is able to surround
the data points more easily during training thereby
providing improved scores. However increasing H
beyond a certain point (in this case 7) results in
overfitting of the training data points at the cost of
reduced generalization capability. Therefore,
although the training scores improve even further,
the recognition scores during testing degrades.

Table 1
Variation of overall recognition scores (%) during testing
with H for Vowel data with perc = 10

to compare the performance of the VGA-classifier
and GA-classifier starting with the same number of
hyperplanes, i.e., H,, for VGA-classifier and H for
GA-classifier.

Table 1I
H,., and the comparative overall recognition scores (%) during
testing (when 10% of the data set is used for training and the
remaining 90% for testing)

VGA-classifier Score for GA-classifier

H,. Hy, Score(%) when H = H,, (%)
6 6 71.19 71.99
10 6 73.66 69.21

Number of hyperplanes Overall recognition score

74.56
74.68
71.99
71.37
69.21
57.50
53.30

N WA UV I

Table II shows the number of hyperplanes H,,
as determined automatically by the VGA-classifier
for modelling the class boundaries of Vowel. Two
different values of H,_,, viz., 6 and 10, are used for
this purpose. The overall recognition scores obtained
during testing of the VGA-classifier along with their
comparison with those of the corresponding fixed
length version (i.e., GA-classifier with H = 6 and
10) are also shown. The purpose of this exercise is

It is found from the table that the VGA-classifier
automatically reduces the number of hyperplanes to
6 when it was initiated with a larger value (=10).
When initiating the algorithm with H, = 6, it was
not able to eliminate any hyperplane. Interestingly,
although its recognition score on the test data set
is found to be higher than that of the GA-classifier
for H,, = 10 (where finally six hyperplanes are
utilized), this is not the case for H,,, = 6. This may
be due to the fact that with ten hyperplanes the VGA-
classifier has more flexibility of placing a smaller
number of hyperplanes appropriately than in the case
when H, . = 6. Therefore on termination of the
algorithm after a fixed number of generations, the
former is able to better approximate the decision
boundary than the latter. However, it may be noted
that the recognition score. ..1ay have improved further
if more iterations of the classifier are executed.

Regarding the time taken for training of the
classifiers, the VGA-classifier is found to take longer
than the GA-classifier even for a fixed number of
generations. As is mentioned earlier, this is because
the search space is larger for the VGA-classifier (where
the number of hyperplanes varies in the range
[1, H,,]) than for GA-classifier (where the number
of hyperplanes is fixed).

For the purpose of comparing the performance
of the VGA-classifier we have used Bayes maximum
likelihood classifier (which is well known for
discriminating over-lapping classes), and k-NN
classifier and the multilayer perceptron (both of which
are well known for discriminating non-overlapping,
non-linear regions by generating piecewise linear
boundaries).

Recognition scores on the 90% test data when
the remaining 10% of the data set was used for training
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were 77.73%, 70.35% and 68.48% for Bayes maxi-
mum likelihood classifier (with assumption of normal
distribution, and estimation of the covariance
matrices and a priori probabilities from the data set),

k-NN rule (for k= ./;) and MLP (with two hidden

layers and 20 hidden nodes per layer) respectively.
As can be found from comparison with the results
in Table II, Bayes Maximum likelihood classifier
performs the best for Vowel (which conforms to earlier
findings made in ref. 67), followed by the score of
the VGA-classifier for H,,, = 10. MLP is found to
perform the poorest for this data. Detailed results
considering other parameters are provided in ref. [65].

Table Il provides acomparison of the performance
of our concept of using variable string length in GAs
with that used in ref. {60]. Before providing the results,
let us briefly describe the method of incorporating
variable string lengths in GAs as in ref. [60].

The initial population is created randomly such
that each string encodes the parameters of only one
hyperplane. The fitness of a string is characterized
by just the number of training points it classifies
correctly, irrespective of the number of hyperplanes
encoded in it. Among the genetic operators, traditional
selection and mutation are used. A new form of
crossover, called modulo crossover, is used which
keeps the sum of the lengths of the two chromosomes
constant both before and after crossover.

Two other operators are used in conjunction with
the modulo crossover for the purpose of faster
recombination and juxtaposition. These are the
insertion and deletion operators. During insertion,
aportion of the genetic material from one chromosome
is inserted at a random insert-location in the other
chromosome. Conversely, during deletion, a portion
of a chromosome is deleted to result in a shorter
chromosome.

Table III shows the comparative overall reco-
gnition scores during both training and testing of
the VGA-classifier (H,,, = 10) for Yowel when 10%
and 50% of the data set are used for training. For
keeping parity, the VGA of Srikanth et al® is
implemented such that no more than 10 hyperplanes
are used for modelling the decision boundary of the
data sets. The table also shows the number of
hyperplanes. H,,, generated by the two methods for
one particular run. Since the method in ref. [60] does
not take care of the minimization of the number of

hyperplanes while maximizing the fitness function,
the H,, is usually higher than that of our method.

As is evident from the tables, the performance
of the classifier during training is better for the VGA
in ref. [60] than the one in ref. [65]. The former,
in general, uses more hyperplanes (of which many
were found to be redundant on investigation), which
results in an increase in the execution time. From
the training performance, it appears that the operators
used by Srikanth et al., are better able to recombine
the subsolution blocks into appropriate larger bloks.
However this is seen, in general, to result in
comparatively poorer scores during testing. To consider
a typical example in one of the cases for the vowel
data set when 10% data is used for training, 10
hyperplanes were used to provide a training recognition
score of 97. 47% while the recognition score during
testing reduced to 68.95%.

Table III
Comparative classification performance of VGA-classifier for
H,,. =10 using two types of variable string lengths for different
percentages of the training data

VGA[65] VGA[60]
Perc  Training Test Hyua  Training Test Huga
score (%) score (%) score (%) score (%)
10% 80.00 73.66 6 97.36 70.22 9
50% 79.73 78.26 6 85.48 78.37 9

D.2 Pixel Classification of Spot and IRS Images

In this section, the utility of the genetic classifiers
for classification of pixels for partitioning different
landcover regions in satellite images is investigated.
Note that satellite images usually have a large number
of classes with overlapping and nonlinear class
boundaries. Fig. 5 shows, as a typical example, the
complexity in scatter plot of 932 points belonging
to seven classes which are taken from the SPOT image
of a part of the city of Calcutta. Therefore, for
appropriate modeling of such non-linear and
overlapping class boundaries, the utility of an efficient
search technique like GAs is evident. Moreover, it
is desirable that the search technique does not need
to assume any particular distribution of the data set
and/or class a priori probabilities.

SPOT Image of a Part of Calcutta

The image considered in this experiment has three
bands. These are :
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Band 2

Fig. 5 Scatter plot for the training points in Calcutta image

Band 1- green band of wavelength 0.50-0.59 gm,
Band 2- red band of wavelength 0.61-0.68 xm, and

Band 3- near infra red band of wavelength
0.79-0.89 um.

The training set comprises 932 points belonging
to seven classes, with three features corresponding
to the above mentioned bands. The seven classes are
turbid water (TW), pond water (PW), concrete
(Concr.), vegetation (Veg), habitation (Hab), open
space (OS) and roads (including bridges) (B/R). Some
important landcovers of Calcutta can be identified,
from a knowledge about the area, more easily in
Band 3 of the image (Fig. 6 shows the image with
75% stretching to make it more prominent). These
are the following : The prominent black stretch across
the figure is the river Hooghly. Portions of a bridge
(referred to as the second bridge), which was under
construction when the picture was taken, protrude
into the Hooghly near its bend around the center of
the image. There are two distinct black, elongated
patches below the river, on the left side of the image.
These are water bodies, the one to the left being
Garden Reach lake and the one to the right being
Khidirpore dockyard. Just to the right of these water
bodies, there is a very thin line, starting from the
right bank of the river, and going to the bottom edge
of the picture. This is a canal called the Talis nala.
Above the Talis nala, on the right side of the picture,

there is a triangular patch, the race course, On the
top, right hand side of the image, there is a thin
line, stretching from the top edge, and ending on
the middle, left edge. This is the Beleghata canal
with a road by its side. There are several roads on
the right side of the image, near the middle and top
portions. These are not very obvious from the images.
A bridge cuts the river near the top of the image.
This is called the Rabindra Setu.

IRS Image of Bombay

The Image considered here has three bands. These
are :

Band 1- green band of wavelength 0.52 — 0.59 um,

Band 2-red band of wavelength 0.62 — 0.68 um,
and

Band 3-near infra red band of wavelength
0.77 - 0.86 um.

Some important landcovers of Bombay, as seen
more prominently from Band 3 (Fig. 7 shows the
image with 75% stretching to make it more
prominent), are as follows : The elongated city area
is surrounded by the Arabian sea. There is a concrete
structure (on the right side top corner) connecting
Bombay to New Bombay. On the Southern part of
the city, there are several islands, including the well
known Elephanta islands. The dockyard is situated
on the south eastern part of Bombay, which can be
seen as a set of three finger like structure. On the
upper part of the image, towards left, there is a distinct
criscrossed structure. This is the Santa Cruz airport.

The training set comprises 198 point belonging
to five classes, with three features corresponding to
the above mentioned three bands. The five classes
are labelled rurbid water (TW), concrete (Concr.)
habitation (Hab), vegetation (Veg) and open space
(0S.)

Issue of Large Value of H

In view of the complexity of the data sets, high
values of H like 15 and 20 for the GA based classifiers
were considered. Since the maximum number of
regions provided by H hyperplanes is equal to 27,
the aforesaid high values of H, make the number
of regions (=2#) also very large. This leads to a practical
limitation of the method. However, an important point
that needs to be taken into consideration is that the
possible number of regions can never be larger than
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Fig. 7 Band 3 of the Bombay image with 75% stretching
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the number of points » in the training data set. Also,
n << 2Hfor large H. Thus we need to consider atmost
n regions while tackling this problem. In fact, the
number of regions for this problem was found to
be considerably less than n as well.

Results for SPOT image of Calcutta

Figs. 8 and 9 present the output classified images
of the GA-classifier and VGA-classifier for H and
H,,. = 15 respectively. Note that for the GA based
classifiers, some of the pixels remain unclassified
in the output images. These are labelled as ‘Uncls’
Figs. 10 and 11 present the output classified images
corresponding to the Bayes classifier and k-NN rule
(for k=,/;). Extensive experiments with other
parameters of the different classifiers have been carried
out, but here we present only one result for each
classifier.

From the results it is found that all the classifiers
able to identify Hooghly, Rabindra Setu, Garden
Reach lake, Khidirpore dockyard and race course
properly. Overall, the prevalence of concrete on the

right bank of Hooghly (corresponding to the Calcutta
metropolis area), and vegetation, open space and
habitation on the left bank (corresponding to Howrah
region) are correct. Also, the pixels corresponding
to the second bridge, are identified as those of either
concrete or road class.

Although the performance of the Bayes classifier
is found to be quite good, it appears to over estimate
a large road class on both the sides of the Hooghly.
For the VGA-classifier, which succeeds in reducing
the number of hyperplanes from 15 to 9, most of
the road pixels on the right hand side of the image
have been identified as members of the class PW
and Concr rather than B/R. This is because of a large
overlap between the Classes Concr and B/R on one
hand (in fact, the latter class has been extracted from
the former) and PW and B/R on the other hand. These
are evident from Figs. 12 and 13 respectively. The
performance of the k- NN rule was found to depend
heavily on the value of k. The performance of the
GA-classifier was also found to be poor for H=10,

which improved for H=15, and then again degraded

oncr Uncls

oS EB-R

Yeg

Fig. 8 Classified Calcutta image using GA-classifier for H = 15
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Fig. 9 Classified Calcutta image VGA-classifier tor H

nuLy

= 15. Final Value of Hop[ =9

Habo oS BR
Fig. 10 Classified Calcutta image using Bayes classifier
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P Concr

Fig. 11 Classified Calcutta image
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for H=20. Overfitting of the data set and the subsequent
reduction inthe generalization capability is responsible
for the degradation of performance from H=15 to
H = 20, while H = 10 appears to be too small for
classifying this complex data set. We have provided
the results corresponding to H = 15 here.

™ Concr Uncis

Results for IRS Image of Bombay

Figs. 14 and 15 provide the output classified
Bombay image for the GA-Classifier and VGA-
classifier for H and H_,, = 15 respectively. Figs. 16
and 17 present the output classified images
corresponding to Bayes classifier and k- NN rule

Hab Veg 0s

Fig. 14 Classified Bombay image using GA-classifier for H = 15

Concr Uncis

Fig. 15 Classified Bombay image using VGA-classifier for H,

"

Veg 0s
= 15, Final vaiue of H = 11

ek opr
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(for k = /) for the Bombay image. Like the Calcutta

image, extensive experiments with other parameters
of the different classifiers had been carried out for
the Bombay images as well, but here we present
only one result for each classifier.

Overall, from most of the output images one can
identify the huge water body of Arabian sea, several
road structures, the airport, several islands, dockyard
and the bridge connecting Bombay to new Bombay.
The southern part of Bombay is found to be identified
as having large concrete area. This is known to be
the most industrialized part of Bombay. As in the
case of Calcutta image, it was found that the
performance of the GA-classifier was better for
H = 15 than with H = 10, but poorer for H = 20.
We have provided the result for H = 15 here. The
VGA-Classifier (Fig. 15) is found to provide good
classification while reducing automatically the

S BANDYOPADHYAY et al

number of hyperplanes to 11. The structure of the
dockyard has come out distinctly. Only a small number
of points (= 266) have remained unclassified in the
image. The Bayes classifier is found to identify an
unusually large portion of the image as belonging
to the concrete class. The bridge connecting Bombay
to New Bombay has come out as a more or less
continuous structure. This is in contrast to the other
classifiers where it has come out as a discontinuous
structure. However, because of the predominance of
the concrete class, the shape of the dockyard is found
to be lost.

4 Incorporating Chromosome Differentiation
in Genetic Algorithms

In this section, we investigate the effect of incorpo-
rating chromosome discrimination, thereby providing
a methodology called GACD®, on the performance
of the said GA-classifier.

Concr

S
Hab

‘Yeq 0s

Fig. 16 Classified Bombay image using Bayes classifier
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TH Concr

Hab

Yeag [a}=3

Fig. 17 Classified Bombay image using k-NN rule for k= \/-,;

A) Description of GACD

In GACD (GA with chromosome differentiation),
the chromosomes are distinguished into 2 classes,
M and F. The structure of a chromosome of GACD
is shown in Fig. 18. Here the [ bits, termed the data
bits encode parameters of the problem. The initial
two bits, termed the class bits indicate the class
(M, when the class bits are either 01 or 10, F, when
the class bits are 00) of the chromosome. The M
and F populations are initially generated in such a
way that the hamming distance between the two is
maximized. @ Two separate populations, one
containing the M chromosomes (M population)
and the other containing the F chromosomes (F
population), are maintained over the generations.
The sizes of these two populations, p, and p,
respectively, may vary. Let p,, + p, = p, where p

is fixed (equivalent to the population size of
conventional GA). Intially p, = p,= £. The data

bits for each M chromosome are first generated

randomly. One of the two class bits, chosen randomly,
is inititalized to O and the other to 1. The data bits
of the F chromosomes are initially generated in
such a way that the hamming distance between the
two populations (in terms of the data bits) is
maximum. The hamming distance between two
chromosomes c,, and c,, denoted by h (¢, ¢,), is
defined as the number of bit positions in which the
two chromosomes differ. Hamming distance
between two populations, P, and P,, denoted by
h (P, P,), is defined as follows :

2 l

LI [ el

class data bits
bits

00 - F class bits
01, 10 - M class bits

Fig. 18 Structure of a chromosome in GACD
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h(PpPz)=ZZ h(Ci,CI-), Ve, € B, Vcl. eP.
i g

Only the / data bits are used to compute the fitness
for the chromosomes in a problem specific manner.
Selection is performed over all the p (= p,, + p)
chromosomes, (i.e. disregarding the class information)
using their fitness values. In other words, all the
chromosomes compete with one another for survival.
The selected chromosomes are placed in the mating
pool. Crossover is applied probabilistically between
an M and an F parent chromosome. Each parent
contributes one class bit to the offspring. Since the
F parent can only contribute a O (its class bits being
00), the class of the child is primarily determined
by the M parent which can contribute a 1 (yielding
an M child) or a O (yielding an F child) depending
upon the bit position (among the two class bits) of
the M parent chosen. This process is performed for
both the offspring whereby either two M or two F
or one M and one F offspring will be generated.
Bit by bit mutation is performed over the data bits
only with probability p,,. The class bits are not mutated.
Elitism is incorporated by preserving the best
chromosome, among both the M and F chromosomes,
seen till the current generation either inside or outside
the population

B) Schema Analysis for GACD

A schema, of same length as the chromosomes being
considered, is a string over the alphabet {0, 1,#}
(where # represents the don’t care symbol). It
represents the subset of all the binary strings that
match the schema at positions where the latter has
Is and Os. The schema theorem® which is of
fundamental importance in GA, states that short, low
order, above average (characterized by fitness value)
schemata will receive exponentially increasing
number of trials in subsequent generations. It has
been proved in ref. [68] that the schema theorem
holds good for GACD. It is also shown that in
certain cases the lower bound of the number of
schema sampled by GACD is greater than or equal
to those of CGA. Or,

lower_bound (m,,, (ht+1)
> lower_bound (mcg, (ht+1)),

where m,, (h,t+1) and mg, (h,t+1) denote the number

of instances of schema A at instant ¢ + 1 obtained
by GACD and CGA respectively.

C) Results

The concept of chromosome differentiation and
restricted mating is incorporated in the above mentioned
GA-classifier to construct the GACD-classifier. The
recognition scores of the GACD-classifier for Vowel
are provided in Table IV for two values of H. The
corresponding scores of the GA-classifier are also
provided in the table for the convenience of readers.
The GACD-classifieris found to provide a performance
superior to that of GA-classifier for both the values
of H. The recognition scores during training of the
GACD-classifier (viz., 94.12% and 95.29% for H=6
and 7 respectively) were also found to be significantly
superior to those of the GA-classifier (viz., 82.35%
and 88.23% for H = 6 and 7 respectively).

Table IV
Variation of the average recognition score (%) during testing
for Vowel data with H for y. = 0.8

H Recognition Score (%)
GACD-classifier GA-classifier

6 75.19 71.99

7 74.94 74.68

5 Discussion and Conclusions

This article dealt with the development of several
pattern classifiers, along with their theoretical and
practical aspects, using both conventional genetic
algorithms and some of their modifications/
enhancements. The search and optimization capability
of genetic algorithms has been exploited for the
placement of an appropriate number of surfaces in
the feature space such that the associated number
of misclassified points is minimized. The classifiers
store the parameters of the surfaces constituting the
final decision boundary, and the region-class
associations. These are later used for determining
the region and hence the class of an unknown pattern.
Various versions of the genetic classifier e.g., GA-
classifier using fixed number of surfaces, VGA-
classifier using variable number of surfaces. GACD-
classifier incorporating the concept of chromosome
differentiation have been formulated. Some theoretical
results have been provided.

The effectiveness of these genetic classifiers and
their comparison with Bayes maximum likelihood
classifier (which is well known for discriminating
overlapping classes), k-NN rule and MLP (both of
which are well known for discriminating non-
overlapping, non-convex regions by generating
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piecewise linear boundaries) are demonstrated on a
speech data Vowel. The way of incorporating the
concept of variable string length in VGA-classifier
is also compared with that of Srikanth er al.® in
a part of the experiment. Besides these, the problem
of pixel classification from satellite images for
partitioning various landcover types with ill-defined
boundaries is considered as another real life application.

In this regard one may note the analogy between
the classification principles of the GA based classifiers
and MLP with hard limiting neurons. It is known
in the literature® that the latter approximates the
decision boundary by piecewise linear surfaces. The
parameters of these surfaces are encoded in the
connection weights and threshold biases of the
network. Similarly, the VGA-classifier also generates
decision boundaries by appropriately fitting a number
of hyperplanes in the feature space. The parameters
are encoded in the chromosomes. The obvious
advantages of the latter over the MLP is that it performs
concurrent search for a number of sets of hyperplanes,
each representing a different classification in the
feature space. On the other hand, the MLP deals
with only one such set. Thus it has a greater chance
of getting stuck at a local optimum, which the VGA-
classifier can overcome. Moreover, VGA-classifier
does not assume any fixed value of the number of
hyperplanes, while MLP assumes a fixed number of
hidden nodes and layers. This results in the problem
of over fitting with an associated loss of generalization
capability for MLP. As a consequence of the above
discussion, an attempt to determine the architecture
of MLP automatically, based on the results of the
VGA-classifier, was reported in ref. [53]. This
constitutes another interesting application of the
VGA-classifier.

In this article, binary representation of chromo-
somes in linear form has been used, primarily because
it is well studied in the literature, and it maximizes
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