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Abstract

This paper presents a method for coding binary contour images. Coding is lossy in nature. A contour is first
decomposed into line and arc segments through an extraction of some of its dominant pixels (called the key pixels
including the pixels of inflexion). Detection of inflexion points (pixels) is made through the Gauvssian circle and its image.
Each contour arc is then approximated by suitably stretching a locally defined discrete circular arc through affine
transformation(s). Stretching can be performed iteratively. To get discrete circular arcs, a generation algorithm has been
presented along with their properties in conjunction with rings and discs. Performance of the coding algorithm has been
compared to that of a method which reconstructs the contour image approximately. Comparison with the performance
of exact or lossless methods has also been carried out to show how far it is away from them.
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1. Introduction

One of the techniques in gray image coding is to
consider the gray part of the homogeneous regions and
their boundaries or contours. These contours are essen-
tially binary in nature. The compression of contours in
segmentation based coding plays a significant role and
needs, therefore, an extensive investigation. Some of the
works, in this area, can be found in [1-6]. The proposed
method reconstructs a contour approximately with good
fidelity. Methods reported in [1.5] also approximately
reconstruct a contour, while others cited above recon-
struct a contour exactly. Recently, Ghorbel et al. [ 7] has
described a contour coding scheme in the context of
motion estimation. The coding is based on the computa-
tion of invariant shape features. The invanant descriptors
corresponding to shape features are used for reconstruc-
tion at the receiving end. Some related works can also be

found in [#]. In this paper, we have checked the possibili-
ty of using discrete circular arcs under affine transforma-
tion to approximate and encode binary contour data.
The developed approximation scheme uses affine trans-
formations iteratively to judiciously approximate a con-
tour segment. Since the approximation uses discrete
circular arcs, we have also developed a discrete circle
{d.c.) generation scheme and studied their properties con-
cisely in a discrete army space of pels or points. The
subject called digital or discrete geometry, is relatively
new and the reported result in 1- and 2-dimensional
digital geometry concern mainly straight line and circle.
Of them, the conditions of digital straight line (d.sl) are
given by Freeman [9] and Rosenfeld [10] Wu [11]
presents algorithms to recognize a string as that of a d.s.l.
Generation of a ds.1. given its slope is also reported [12].
Some interesting applications of d.s.L in image processing
problems are given in [3,13].

Similarly, the genemtion of a digital circle {d.c.) using
Freeman's raster intersection digitization scheme has
been reported [14]. The properties of the d.c., generated
by this scheme have been studied [15,16]. It has been
shown that the rngs and discs formed by successive
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generation of circles under this scheme contain holes or
gaps, which are to be filled subsequently. The genemtion
of d.c. using incremental steps along fixed coordinate
axes is also eported [17]).

The de. generation scheme that we have developed is
different in nature because here the problem of holes in
rings and discs are avoided. The error in the present d.c.
approximation is comparable to one of the reported
schemes [16] and the implementation algorithm is
simple and straightforward. The dc. generation scheme
is of great use in binary contour coding. The coding
method is found to be efficient. A comparison between
the proposed technique and that in [1] shows that the
proposed technigue is superior. Comparnison between the
proposed method and exact methods in [2,3] shows how
far the proposed approximate method is away from these
two exact methods.

2. Discrete circle, ring, disc and their properties

Consider a 2-dimensional discrete array space of mx n
points or pixels or pels so that any point or pel {x,y),
Ofxsm—-1,0gy<sn— 1 x,ymnel (set of inte-
gers) can be mapped to the continuous real plane by a
unit square about the center point (x + 3, v + 31 Also, for
simplicity and convenience, let the radii of the discrete
circle, ing and disc be integer valued with center of the
unit squares as stated above.

Diserete circle d.e)

A d.c is a discrete space approximation to the circle
defined in Euclidean geometry. In the present scheme of
generation, a d.c. is defined as follows.

Definition 1. A d.c. with radius r and center (z, [7) is a set
5, of 8-connected pels so that each pel (x, y) satisfies the
inequality [18]

r=d<|ix—a+y—M=<r+i (1

Part of a de. with r =4 is shown in Fig. 1 where each
square with a dot inside is a member of 5,. The members
are depicted as A, B, C, D, E, F, G, H and I for conveni-

ence.

Uniqueness of a d.c. under the above definition may be
established by the following proposition.

Proposition 1. For concentric 8, and §,

5.5 =0 r#t. 2]

Proof. Let there exist a pel Qfx,.y,) 5o that Q=8, and
e85, r #t Then, from Definition 1,

r=t<|fxi—aP +0n - <r+3
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Fig. 1. One quadrant of a discrete circle for radius = 4.
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Fig. 2. A set of discrete circlesi= and + represent circles of odd
and even integer radii, respectivelyh

and

t—3< | /ixy —af +(n —fP|<t+3
since r and t are integers and r # ¢, both inequalities
cannot be satisfied simultaneously by (x,.y,). Hence all

pels belonging to a d.c. are unigue.

A set of d.c. generated by Definition 1 and the algo-
rithms given in Section 3 is shown in Fig. 2. Tt should be
noted that the d.c. generated by Definition 1 is the same
as the d.c. generated by the scheme given in [14] for
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some values of r. For r = 50 these values are 2, 3, 5, 7, 10,
12, 15 and 2.

20, Ervor in de. approximation

The important parameters of a discrete circle are its
area and perimeter which infer how close a dc. is to a
circle in the Euclidean geometry. For perimeter measure-
ment a subset §; of 5, which denotes B-connected outer
border of the dc. is only considered. The pels belonging
to §, — &, are interior pels. Forexample in Fig. LA, B, C,
E. G, H and [ are 8-connected outer border pels and D,
F am interior pels. The area and perimeter were mea-
sured with Kulpa's method [167] and their expressions
are given below,

Let hand 4 represent the number of non-diagonal and
diagonal links in 5], respectively. Then the length of the
border (perimeter) is given by
P ml+ ./ 2h + \.f'd]. )

8
The percentage error in contour length over the ideal
one is

L =1
nr,=‘|l = 100 4

where { = 2mr. Similarly, the area of the d.c. is given by

’ L
)L=."‘q—(§+]) (5

where N is the number of pels in a disc of radius r and
L=h+d. Egs (3) and (5) do not represent the actual
length and area. In Eq. (3). a comection factor of
ml + N.f'rll.-'ﬂ and in Eq.{5) a correction term of (L/2 + 1)
are used to compute the respective parameters with good
accuracy [16,19]. The percentage error in d.c. area over
the ideal one is given by

A, — A

o — w100 (6]
A

where A = m*. Egs. (4) and (6) are plotted against r in
Fig. 3 for the present method of d.c. generation as well as
for the method given in [14]. It is seen that the error is
comparable in the two methods.

Rings and Discs

Since a pel covers a square area in real space, a d.c. has
some width in real space. A ring or a disc can therefore
be generated by the union of circles of mdi r,
r+1,.., ....r +m However it is interesting to observe
the following properties in connection with the genera-
tion of a ring and a disc by the present method.

Proposition 2. There cannol exist any gap or kole between
any two concentric doos of radii F and r+ 1.

Proof. According to Definition 1, the Euclidean distance
d between any pel of 5, and the center of the d.c. satisfies
the inequality

r—f=d=r+4% (7

and for a concentric de. of radius r + 1, this distance, say
o, satisfies

r+l—=4=d, =r+1+4% (%)
e,

I 3
F+3s<d <r+3

Now let a pel Hix,, v, ) exist between the two d.cs sothat
H does not satisfy either Eq. (7) or Eqg. (8) and hence it is
a hole or a gap. Then the distance 4, between H and the
center of the d.c.s should not belong toeither of the open
interval {r —i.r + %) and (r + L. r +3).

The only possibility then is d, =r+1 Now
a2 =(x; —a)* + (v, —M* where (/1) is the center
of the d.cs. The right-hand side is an integer since
all its entries are integers. On the other hand, the left-
hand side is not an integer since d, = r+ % The
possibility d, = r + § is therefore rejected and H cannot
exist.

Definition 2. A discrete nng (dr.) with integer radius
ry and ry,ry >y and integer center (/1) is given by

Riry.ran = U S, 9)

F=n

if ry =0 a discrete disc (dd.) is generated. Here 8, is
assumed to be the center pel itself. From Proposition 2 it
is easy to show that there exist no hole or gap in the dur.
or dd. generated according to Definition 2.

Let us now compare the error of the discs generated
according to Definition 2 and the disc formed by the
successive generation of circles defined in [14] with the
holes left unfilled. Here area is the measurement para-
meter and it was measured by the method given in
Section 2.1, For r= 6, it is seen that the gaps constitute
10% of the disc area in the discs generated through
method in [14], and the subsequent error is nearly 10
times larger than that in the present method This is
shown in Fig. 4.

3. Generation algorithm

Cirele. For the center {x,, y.) and radius r, all belonging
to the set of positive integer the top-level of the algorithm
for circle follows a Pascal-like language (we assume with-
out loss of generality min[ x., v.] = r]i:
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Fig. 4 Comparison of errors in disc area due to successive generation of circles.

var
Xe, Ve, 2 iHEEGEr;
hegin

dsQr =(x, —x)=(x, — %)+ (. — ¥ ={p. — ¥}
if (ds) < uplimit) then

begin
readix,, y..rk if (ds) = lolimit) then begin
upperfirsthalf {x,, y..r); plot{x, v
upper2ndhalf (x,, ., rk y=y+1
lowerfirsthalf (=, p.. rl; end
lower2ndfirsthalf {x,. y.. rl else
end. r=y+1
end
. . . ekse
Four different procedures plot the points belonging to .
the d.c. successively in the four different quadrants in the be%"‘: —
counter-clockwise direction. :.- _ :.- B ]'.
end
Procedure upperfirsthalf (x., y., r : integer) ; until x = x. — 1
var end.
X, ¥ ! integer;
dsC), uplimit, lolinit : real; The upperfirsthalf plots the points in the first quadrant.
hegin

uplimit: =r+r +r + 0.25%
lolimit: =r+r + r + 0.25;

X=X, + I
Yi= Yol
repeat

For the other quadrants the plotting algorithm is essen-
tially the same except for some changes that take care of
different conditions for x and y.

Rirg. For the generation of rings, the same algorithm

can be used. The representation of the algorithm is given
bel ow.
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var
Koy Veo Ty Py, Fp @ integer ;
hegin
read (x,, y..Fy.r2k

for . =r, tor, do
circle (x,, y..r);
end.

The procedure for a circle is:
Procedure circle (x,. y.. r : integer);
hegin
upperfirsthalf {x,, y..
upper2ndhalf {x,, y.. 1)
lowerfirsthalf {x,, y. r}
lower2ndhalf (x,. y.. r);
end.

Dise. The algorithm for a disc essentially follows from the
generation of a ring with r; = 0.

The generation of points in the algorithm is successive
but it can be modified to generate points in the next three
quadrants from the information of points in one quad-
rant only using the symmetry property of the d.c.

4. Binary contour coding

In order to code binary contours, they are, first of all,
decomposed into line and convex/concave arc segments.
Each contour arc, so obtained, we view as an appro-
priately stretched dc. arc through affine transformation.
In other words, we make a good approximation of each
contour arc applying affine transformations on a discrete
circular arc. To get line and arc segments from the input
contour image, key pixels [5,6] are initially extracted.
Key pixels on a contour are basically points of high
curvature in the image plane and can be viewed as knots.
The inflexion points on a contour segment between two
key pixels are detected using the concept of Gaussian
circle discussed in the following subsection. Any arc
between two key pixels or between a key pixel and an
inflexion point or vice versa is coded using the approxi-
mation information of the contour arc.

4.1, Detection of inflexion points

It is rather difficult to detect the points of inflection on
a digital or discrete contour {a string of pixels). Due to
discretization of an analog curve or contour, many inflec-
tion points may be present, although all of them may not
be propery justified from the standpoint of discrete ge-
ometry in relation to discrete straight line [10-12]. We
attempt to find inflexion points between two key pixels
in a way somewhat similar to that in the analytic plane.
This helps in maintaining the curvature of the contour
during reconstruction and, as a result, the reconstruction
quality is improved.
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Fig. 5. Gaussian circle and its image in detecting points of
inflexion.

400 Gaussian cirele

Consider a unit circle in the plane of a curve and draw
radii in the direction of tangents at points Py, P; and P,
thus providing points P}, Py and P, as shown in Fig. 5
The process which assigns P; to P; is known as the
Gaussian map and the points on the circle is the Gaus-
sian image of the curve. Therefore, if G is the Gaussian
map then

GiP;) — P

G maps every single point P; on the curve to a unique
point P on the circle, though G~ '{F}) may stand for two
or more points on the curve depending on the directions
of tangents at these points. Two points P; and P appear
as same under G if tangents at them have same directions.
In other words, it is quite likely that G~ ' F}) equals
F; and P; both.

Mote that as we move from F; to P, and from
Piyy to Py, it is not necessary that the same sequential
order is maintained by their G-images. With this fact, the
following classification is made.

# The sequential order of the Gaussian image points

Fi is the same as that of the points P; of the curve
- we get regular points.

# The sequential order of P| reverses whereas that of P's
remains the same — we get point of inflection.

# The order of P;'s meverses, ie., the direction of the
tangents reverses whereas that of motion of P{s re-
mains the same — we get Cusp of the First Kind.

& The order of P{s as well as that of P{s gets reversed
— we get Cusp of the Second Kind.

Fig. & shows all these four classifications. In discrete
domain, the tangents to the discrete curve at a point is
not defined in the existing literature. Therefore, it is very
difficult to get the Gaussian image of the discrete curve.
To detect the approximate position of a point of inflec-
tion on a discrete contour segment between two key
pixels, we first approximate the contour segment between
key pixels by lines to obtain the Gaussian image. If a
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Fig. 6. Classification of different of G-images: {a) regular point,
(b} inflexion point, (c) cusp of st kind, (d) cusp of second kind.

reversal of order in the Gaussian image is detected for
any line segment then a point of inflection is marked at
the midpoint of the previous line segment.

The process is repeated for all pixels between other key
pixels. Thus all the key pixels and points of inflection can
be extracted from the entire contour. Between any two
key pixels or between a key pixel and a point of inflection
or vice versa, the set of pixels can be viewed either as a
line or a convex/concave arc segment. The set of pixels
representing such an arc can be approximated by appro-
priate stretching of a d.c. arc through one or more than
one affine transformations.

In order to understand stretching process, we briefly
discuss affine tramsformation and some of their useful
properties.

4.1.2 Affine transformation
The general form of affine transform is

X ay @3 5
=T + :
¥ i R P 52
The coefficients ay,, 4y 2. 82y, 822.5 and s, depend on

translations, rotations and scalings of the object under
transformation. In general,

ayy = iy cos i, @y = — d;sin g,

sy = iy sinf, 32 = i3 COS b,

where d , is the scaling factor on x, d, is the scaling factor
on ¥, @ is the angle of rotation on x and ¢ is the angle of
rotation on y. 5, and s, are, respectively, the translations
on x and y.

To find the affine transformation that takes an object
from one of its configurations to another configuration,
we consider three points on the object in its initial config-
uration and their corresponding positions on the object
in its final configuration. Let (2, [, ), (22, f2) and {22, f2)
are the three points in the initial configumtion of the
object and (), ) L (25, #3) and (2%, [73) are the respective
three points after application of the transformation.
Then, we can write the following three equations:

ayiyy + fyay: + 5 =a). (10
daityy + 2ty + 5, =, {11)
gaityy + faays +5, =ah. (12
Similary,

ay iy + frag + 52 =, (13)
a2y + fraz: + 52 =, (14)
a3y + fiaz + 52 =fii. (15)

4.1.3 Some properties of affine transformation

1. Affine transformation preserves lines: As the affine
transformation preserves collinearity, the image of a
straight line is another straight line. We, therefore, need
only compute the image of the two end points of the
straight line and then draw a straight line between them.

Preservation of collinearity guarantees that polygons
will transform into polygons in practice, triangles will
transform into triangles. A 2D affine transformation is
completely determined when its effect on a triangle is
specified and any triangle can be transformed into any
other by choosing the proper affine transformation. An
affine transformation involves six constants and there-
fore has six degrees of freedom which is enough to specify
how each of the three vertices of a triangle is to be
ma pped.

2. Parallelism of lines is preserved: If the two lines are
parallel, their images under affine transformation are also
parallel. An important consequence of their property is
that pamllelograms map into other parallelograms.

3. Proportional distances are preserved: Affine trans-
formation has another useful property. If a point U is
fraction ¢ of the way between two given points 4 and
B before transformation TV ) is applied, then the trans-
formed point T{ L") will be the same fraction t of the way
between the images T{A) and T{B). A special case of the
preservation of proportional distance is that mid points
of lines, map into midpoints.

4.2, Approximation of binary contours

The various properties of affine transformation lends
its support to successfully approximate digital contours
in the image plane to any desired degree of accuracy.
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Fig. 7. First-order approximation of a tvpical test arc by de-are stretching with tangent configuration (a) known (b unknown. {c)

Second-order approximation of a typical contour are.

In the first-order approximation of a contour arc,
passing through two consecutive key pixels P and (, we
consider the affine image of one quadrant discrete circu-
lar arc whose center is at the origin O, defined by the
point of intersection of horizontal and vertical lines
through the key pixels P and Q. The axes of reference so
obtained are, therefore, local to the contour arc. The lines
PM and QN as shown in Figs. 7 {a) and (b) are slowly
rotated through P and @ respectively towards the con-
tour arc as long as all the pixels on the arc are on
the same side of these lines. The lines PR and QR that the
point of intersection R makes with P and @, and the base
of the arc P defines a triangle APQR that completely
encloses the contour arc PLQ. We call this triangle the
characteristic triangle of the contour arc. Lines PR and
QR of characteristic triangle of the contour arc are the
approximate tangent lines to the arc at their end points.
Between OF and OQ, either the larger or smaller line is
chosen as radius of the discrete circle (d.c.) so that its one
gquadrant arc can be easily generated (we have chosen the
smaller line OQ as the mdius). The one quadrant d.c. arc
F'L'Q enclosed within a triangle of tangent lines PV and
QF of the arc at its ends, and its base P'Q provides
a triangle for the d.c. arc. We call this triangle the charac-
teristic triangle of one quadrant discrete circular arc. This
chamcteristic triangle AP VQ is then mapped to the
charcteristic triangle APQR of the contour arc through
the affine transformation

TP =P Q=0 V=R

To check the quality of approximation, we compute an
emror in approximation based on the difference of area
bounded by the respective arc on its base. The details of
emror calculation is given in the next section. If the emror
E;y, in the first order approximation is greater than a
desired value, say &, then we seek the next higher-order
approximation.

To carry out the second-order approximation, we de-
tect the point X', as shown in Fig. Tic), on the first-order
approximation arc PS5, having the maximum perpen-
dicular distance on the base PQ. Similady, the point of
maximum displacement on the original arc PLQ is detec-
ted. Let this point be X. The lines passing through X and
X and each parallel to the common base P intersect the
approximate tangent lines to arcs at their end points, at
R\, R, and ¥y, ¥, respectively. This provides two sets of
triangles. In the first set we have APX'R) and APXR,
while the second set consists of AX'V @ and A XV, 0.
The triangle APX'R) and A X'V Q enclose respectively
the sub-arcs 81" and §'" of the first-order approximation
curve. Second-order a pproximation considers the follow-
ing affine transformations.

PLURCSR FSK DA
T,V =V, X=X 0-=0,

to pull up or pull down the fist-order affine arc. This
provides a new affine image T, (51" w T2 (84" which is
closer to the contour arc than the first-order affine image.
For the approximation of an analytic curve, this situation
does not arise.

MNote that the affine arc so obtained in the first- or
second-order approximation, of a contour arc may not
remain connected when the larger line between OF and
00 is taken as radius of the d.c. arc. We, therefore, need
to connect them by straight line segments. This can be
done wing Bresenham algorithm [20]. On the other
hand, if the smaller line between OF and 00 is chosen as
radius of the dc. arc, we may get sometimes a few excess
points. These points are the interor points and should be
removed (if they appear) to clean the image. Proceeding
exactly in the same way as described above we can write
for the approximation of a function gix) by f{x), where
ol x) represents either a convex or concave arc on its base
and fix) is the dc. defined in one quadrant, different



& Biswas | Pattern Recognition 34 (2004 ) 63- 77 71

following expressions for two different orders of approxi-
mation,

1st-order approximation of gix) T fix));
*nd-order approximation of glx) T THY %)
w T

Camrying out of the first-order approximation is
straightforward. For second-order approximation we de-
tect the point of maximum displacement of gix) and
TN f{x)) from their respective bases. Necessary affine
transformations are then found out considering their
charcteristic triangles. Similar procedure follows hier-
archically for higher-order approximation.

4.3, Ervor of approximation

In order to carry out the approximation properly, we
compute an error of approximation. The error in approx-
imation, we define as the difference in areas bounded by
the original contour arc and the approximating affine arc
respectively on their bases.

Let &, be the area bounded by a discrete circular arc
in one quadrant, e, it is the area enclosed by intercepts
00 and OF on two axes of x and y respectively, and the
d.c. arcitself A, is the area of the triangle defined by the
base P of the d.c arc together with OQ and OF as
the two other sides. This provides the area bounded by
the discrete circular arc on its base P'Q as

&, = ﬂpl — Ay
= Ay, —10Q0P" (16)

Similardy, the area bounded by the contour arc between
the key pixels P and Q on its base PQ is given by

A= ﬂpz — By
= A,, — 10Q.0P, (17)

where A; is the area bounded by the intercepts OF. 0Q
and the contour arc. It is clear geometrically that neither
translation nor rotation have any effect on the area of
a polygon in the analytic plane but scaling certainly does
and shearing might do. In the discrete plane, however,
rotation might also change the area of a polygon. As for
example, a unit square when undergoes a rotation of 457,
each side of the square increases by N"_’_ and hence the
area increases by 2. When the affine transformation with
the matrix A is applied to an object, its area is multiplied
by the magnitude of the determinant det A of A. There-
fore,

Area after rr:ms;,!'brmarr:.m o et (18)
Area before transformation

The determinant of A is |ay, ad2: — ay2a2, ] Let & the
area after transformation of the discrete circular arc
confined within its base P'Q. Since the discrete circular

arc after transformation approximates the contour arc,
the first-order error in approximation bet ween two pieces
of arcs can be written as,

quu e {ﬂ - &r]:
= (& — Ay lay parn — agaaa )’ 19)

Since the area of a discrete circle is not exactly the same
as that of a circle in the analytic plane, we compute £ and
2, with the help of Eg. (5).

44, Coding

The coding of binary contour images uses all those
points which are the key and inflection points on con-
tours. The pixels between two such points are approxi-
mated either by a line or by an arc segment. The line
segment is coded in a straightforward way by coding its
end point, while each arc is coded using the information
of approximation. We have seen that in the characteristic
triangle of contour arc, its two sides are so chosen that
they are approximately tangents to the arc at end points.
When these approximate tangent vectors are directed
along the horzontal or vertical lines we say the tangent
configuration is known and because of known tangent
configuration we can easily find their point of intersec-
tion provided the end points are known. In case, they are
different from horizontal or vertical lines, ie.. when the
tangent configuration is unknown, the information about
their point of intersection need to be stored for recon-
struction of the arc. Also, on the horizontal-vertical grid,
the centre of a d.c. arc comesponding to a contour arc can
be easily detected. Thus, given the starting point, only
one point is required to encode a straight line segment.
For an arc, also one point is required when the tangent
vectors have known configuration in the first-order affine
approximation of a contour arc. This point is the end
point of the arc. For unknown tangent configumtion we
need two points for reconstruction of the arc: end point of
the arc and the point of intersection of the tangent lines
to arc. We also require two points in the second-order
approximation of the arc for known tangent configura-
tion: end point of the arc and its point of maximum
displacement measured from its base. But three points
are needed to represent an arc when the tangent config-
uration is unknown.

For the bit allocation of points, we use the absolute
co-ordinates for the starting point and relative co-ordi-
nates for others (eg., the end points of line and arc
segments). The encoding of a segment, therefore, is based
on the difference of co-ordinates of the end point {x,, v,)
from its previous point (x,. y,) along with their respective
algebraic signs. Given the previous point for a segment,
we first encode the larger absolute differences between
fxl = x, — x,) and AW = y, — y,)and then the smaller
one. A single bit, we take, to indicate which one greater.
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For this, the largest absolute difference of fox and Ay for
all segments are first computed and this value is encoded
by log, M bits (assuming the size of the image is M = M),
Le, log, M bits convey the information of max
fAx, Ayl where | runs over all segments. Let
k = max{ Ao, Ay ). Then we can always encode the lar-
ger difference of Ax and My for a segment by log, & bits
and the smaller one by log;(4x + 1) bitsor log, (Ay + 1)
depending on Ax = Ay or Ax < Ay respectively. The
sign of Ax and Ay requires 1 bit each. For an arc, the
order of approximation and configuration of tangents
{known or unknown) requires 1 bit each while the point
X V) Of maximum displacement from the base of arc
requires log,{Ax + 1) and log . Ay + 1) bits because this
point can always be represented with respect to the origin
of the discrete circular arc. Note that 1 has been added in
the bit requirement to include the possibility of &x =0
or &y = (. Thus we get the bit requirements for an arcin
the first-order approximation with known tangent con-
figuration as

Identity of segment: 1 bit;
Oder of approximation: 1 bit;
Tangent configuration: 1 bit;
Ao {forend point of the arc):  log,k bits or loga (A + 1)
bits depending on
(Lx = Ay or Ax < Ay);
Ay (forend pointofthe arc):  log,{Ax + 1) bitsor log, &
bits depending on
(Ax = Ay or Ay = Ax);
To indicate larger/smaller value: 1 bit(between Sx and
g
Sign information: 2 bits (for Ax and Ay
Point of maximum displacement {x,,, V..):
loga( & + 1) + logal Ay + 1) bits;
Therefore, for fist order approximation the number of
bits equals for known tangent configuration: 6 + N,
bits
Unknown tangent configuration: 6 + N, + log;
(Ax + 1) + loga( Ly + 1)

where
Nyp=logs k + logz(fx + 1) when fx = Ay
= log,(&y + 1) + log; & when Ax < Ay,

For second-order approximation the number of bits

for known tangent configuration is 6 + N, +
loga(fx + 1) + loga(dy + 1),

for unknown tangent configuration is: 6 + N, +
Nog(Lx + 1)+ 2log.( Ay + 1). If the d.c. stretching en-
coding scheme does not require second-order approxi-
mation for any application, then the identity bit required
for approximation can be dropped out. Similaris the case
for the configuration of tangents. The identity bit for this
can also be dropped out if only ope configuration is
present throughout the approximation of all segments.

For a line segment, we require only
Identity of segment: 1 bit;
Ao (for end point of the line):  log, & bits or
loga(Ay + 1)
bits depending
on (Ax = Ay or Ax < Ay,
Ay (for end point of the line) log.{Ax + 1) bits or
log.k bits depending
on {Ax < Ay or Ay = Ax),
To indicate larger/smaller value: 1 bit;
Sign information: 2 bits;
Thus, for a line segment the number of bits required is
4+ Ny
For the starting pixel we require 2log, M bits and to
denote the maximum of all Ax and Ay, we require
log, M bits. The number of bits in an application is,
therefore, dynamically selected. This sometimes provides
an advantage over coding techniques where fixed num-
ber of bits is always required for all segments.

5. Performance efficiency of the algorithm

In order to study the performance of d.c. arc stretching
method in encoding binary contour images we consider
the following subsection.

. Comparisenof the proposed do. are sireteling method

To examine the performance of coding technique by
the d.c. arc stretching process a comparison has been
made with the method suggested by McClure [1]
McClure suggested a technique for compressed repres-
entation of planar curves wsing the variable position
cubic spline knots. He considered continuous, parametric
representation of the curve on an interval [a, b] and
determined some knots on the curve for its discrete
representation. In reconstructing the curve, McClure
used Reinsch interpolating spline algorthm [217] which
uses the information of knots and the information of
weights associated with them. McClure used unity for
each of the weights for stationary noise on the curve
while for non-stationary noise these weights are different
from unity. In order to select the knots, he [1] derived
a criterion in the continuous domain. According to this
criterion, knots are selected in such a way that for each
i = 1,23, ... ¢ the position k{j) for which the function
Fikd i satisfies the relation

i+ 1
i i

is noted, where nis the desired number of knots. McClure
sets the knot point at p} =py . ie. x} = xy,; and
= yun
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The signed curvature kt) in terms of pammetnc ep-
resentation is given by

Kt = 'y =yl + PP

and [k)V? dsidt = &'y — "M at t=j where
j= L2313 ....N. The function F is given by

Fir) = J;Hcml‘ & %‘L.

Fit) is basically the normalized affine-arc length between
two positions because

a . ds
i g =2
J;“ﬂl Il R

in the above expression is the total affine arc length of the
curve. In the discrete domain, replacing the integral sign
by the summation sign, we get

N—1

L=} |Ax Aty — Ay AR
I=1
and
N—1
Flhf) = Y |Ax; A%y — Ay Alxg|'R/L
i=1

McClure [1] defined an empirical distribution F,(t) of
the discrete parameter values associated with the points
iptit=y, iLe, for each t; there cormsponds a point
pit = (xli), W), This distribution, he wrote as

F,n=im gt =1)

and he proved lim,., F,t)= Fir). The asymptotic
equivalence of F, and F means that the ith point p{’ of the
n-point discretization will be identified with a parametr-
ization t§* at which F = i/n. Since

., ds
I I3
[t )| 4@

is strictly positive F has a unique inverse F~'. Thus
tf = F~ Yi/m). This parametrization is helpful in Reinsch
interpolating  spline  algorithm  because 1}  with
i= 1,23, .. ..n satsfies

P} <R MY Y e B

The number of knots n was selected considering

&
¥ lx = xelD)Pwe = 5
=1

:
¥ = e <5,
=1

where {x;, y;) and {x,{i), y,(i)) are respectively the observed
data points and the generated points by Reinsch [21]
algorithm. McClure considered s, = 5, =5 and {w, ey
=1 for stationary noise.

It is, therefore, clear that in general one needs 2n points
or 2 bits for a M x M contour (binary) image with sta-
tionary noise and = + [ bits for a non-stationary binary
contour image, where x and [T denote the number of bits
for the co-ordinates of a point and its weight respectively.
Due to quantization, different errors may be incurred due
to different spline parameter values. Post processing or
cleaning of the image may be required due to small
parameter values.

6. Results and discuossion

Figs. 8a), Na) and 10{a) are three different figures.
They are the contours of a butterfly, chromosome and
numeral *8". These contour images are taken as inputs to
our coding algorithm. The key pixels and the points of
inflexion, first of all, are extracted from these contours
and they are marked by 3 and [ respectively.

Fig. 8b) is the butterfly image regenerated by the d.c.
stretching method while Fig. 9b) is the regenerated
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Table 1
Bit requirements

Figure Bit requirement Bit requirement Compression efficiency
in de.-stretching MoeClure's method Fri——

Butterfly 406 288 7093

Chromosome 340 396 11445

MNumeral <8 398 806 202,51

Table 2

Computation of error in area and compactness

Input contour Percentage error in area

Percentage error in compactness

i e

de. Stretching MeClure d.e. Stretching MeClure
Butterfly 04219 1.2658 1. 058 24685
Chromosome 50144 67435 21440 17.1352
Numeral “8* 1217 01217 Jon48 49186

version of the chromosome image. To examine the prox-
imity between the input and output, we have superim-
posed the regenerated image on its input. In order to
show this proximity, the letters 0, 2, 3, 1. 4, 5, 6, 7 and
+ have been used to represent both the input and output
images. o, 3, [ are the pixels in the input image; 3 and
I being the key pixels and pixels representing points of
inflexion. Since, approximation is always camied out
between two key pisels, or between a key pixel and
a pixel of inflexion or vice-versa, 3 and | are always
present in both the input and output images. 2 and = are
the pixels generated by the first- and second-order ap-
proximations respectively. Hence, these pixels are basi-
cally the output pixels. 5 indicates pixel positions where
the pixels denoted by 2 coincide with o. 6 denotes pixel
position where the input pixel is identical toits first-order
approximation pixel 2 while 7 denotes the pixel position
where the input pixel is identical to its second-order
approximation pixel = Letter 4 is the pixel on input
contour segment where the corresponding first-order ap-
proximation pixel with maximum displacement is map-
ped during its second-order approximation. Thus, 4
subdivides the first-order approximated segment into
two other segments for second-order approximation.
Note that some of the pixels in the output image gener-
ated through approximations are interior pixels and need
to be cleaned. Fig. c) is the clean version of Fig. %b).
The regenerated images for other two images are shown
in Figs. 8(b) and 10{b), respectively. Figs. 8c), ¥d) and
10ic) are the images obtained through McClure's method
[1]

The number of bits for different contour images has
been computed in each case and is shown in Table 1. The

Table 1 provides a comparison between McClure's
method [1] and ours. Also to examine the quality of
regenerated binary images we have computed the area
difference and compactness of both the input and output
images. Table 2 shows the percentage error in area and
compactness.

The relative comparison shows that the proposed
method is either superior or is comparable to McClure's
method. For the butterfly image, the number of bits was
found to be less in McClure's method and the error in
area is also comparable to that of our method but the
compactness value shows a high percentage of emor
which indicates the quality of the regenerated butterfly
image is seriously affected. This is prominent from
Fig. 9{c). Fig. Wd) also shows the quality of the chromo-
some image regenerated by d.c stretching method is
better than that of McClure's method, while for numeral
“#" both the methods produce almost same quality (qual-
ity is slightly better by the dc. stretching method) the
developed method requires half the number of bits com-
pared to that required by McClure's method. Also, it is
seen that cleaning is required in all images regenerted by
McClures method.

In order to examine how far the proposed approximate
coding technique is away from the exact one, we have
also compared the results of the d.c. stretching method
with that of CRLC [2], DLSC [3], and Eden and
Kocher's [4] methods. CRLC scheme views an input
contour as a chain of links and com presses the number of
such links while DLSC scheme considers straight line
segments of a fixed class to represent an input contour.
Eden and Kocher's method considers a 4-connected
contour for an input and it requires 1.2 bits per node.
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Table 3
Bit requirements

Figures Mumber of bits Compression elficiency

CRLC DLSC Eden d.c-Siretch By g Appse B e
Butterfly M 331 247 406 196.79 13078 H0E3
Chromosome 1175 (k] 355 346 33459 17427 102 60
Numeral “8* 2085 1169 624 308 5236 2937 15804

Table 3 sows a comparison of bit requirements for the
three different Figs. #a), 9(a) and 10{a) and their relative
compression  efficiency computed by the proposed
method relative to CRLC, DLSC and Eden and Kocher's
methods. It shows a good amount of storage efficiency
provided one accepts the quality compromise.

References

[17 DE MoClure, Copmutation of approximately optimal
compressed representations of discrete plane curves, in:
Proceedings of the IEEE Computer Society Conference
on Pattern Recognition and Imape Processing, 1977,
pp. 175-182.

[2] T.H. Morrin, Chain link com pression of arbitrary black
and white images, Comput. Graphics Image Process.
5(1976) 172-189.

[3] M.K. Kundu, BB. Chaudhuri, D Dutta Majumder,
A peneralized digital contour coding scheme, Compul.
Vision Graphics and Image Process. 30 (1985)
269-278

[4] M. Eden, M. Kocher, On the performance of a contour
coding  algorithm in the context of image coding
part I: contour segment coding, Signal Process. 8 (1985)
3B1-3BA

[5] S.N. Biswas, S K. Pal, D.D. Majumder, Binary contour
coding using Berier approximation, Patern Recognition
Lett. B {1988) 237-249.

[6] 5. Biswas, 5.K. Pal, Approximate coding of digital con-
tours, IEEE Trans. System, Man Cybernet. 18 (I1988)
1056-1066.

[7] F.Ghorbel, M. Dacudi, A. Mokadem, O. Avare, H. San-
son, Global planar rigid motion estimation applied to
ohject-oriented coding, Prowedings of the ICPR, Vol. 2,
19696, 64 1-645.

[8] F. Ghorbel, V. Burdin, Invariant approximation ol star
shaped form for medical application, in: PJ. Laurent, AL
Mehaute, LL. Schumaker (Eds. ), Curves and Surlaces 11,
Academic Press, New York, 1994,

[¥] H. Freeman, Boundary encoding and processing, in:
BS5. Lipkin, A. Rosenfeld (Eds.), Picture Processing and
Psvchopictories, Academic Press, New York, 1970

[10] A. Rosenfeld, Digil straight line segment, IEEE Trans.
Comput. 23 (1974) 1264- 1269,

[117 LD Wu, On the chain code of a line, IEEE Trans. Patlern
Anal. Mach. Intell. 3 (1982) 347-353.

[12] R. Brons, Linguistic methods for description of a straight
line on a grid, Comput. Graphics Image Process. 2 (1974)
48-62

[13] L. Hodes, Discrete approximation of continuous convex
blobs, SIAM I Appl. Math. 19 {1970) 477-485.

[14] M. Doros, Algorithms for peneration ol discrete circle
rings and disks, Comput. Graphics Image Process. 10
(1979 3on-371.

[15] Z. Kulpa, M. Doros, Freeman digitization of integer circles
minimizes the radial ercor, Compul. Graphics lmage Pro-
cess. 17 (1981) 181-184.

[16] Z. Kulpa, On the properties of discrete circle rings and
disks, Comput. Graphics Image Process. 10 (1979)
348-3n5

[17] B.W. Jordan, WJ. Lennon, B.D. Holm, Animproved algo-
rithm for the peneration of nonparametric curves, |EEE
Trans. Comput. 22 (1973 1052-1062.

[18] S.M. Biswas, B.B. Chaudhuri, On the generation of discrete
circular objects and their properties, Comput. Vision,
Graphics Image Process, 32 (19835) 158-170.

[19] Z. Kulpa, Area and perimeter measurement of blobs in
discrete binary pictures, Com put. Graphics Image Process.
6 (19774344510

[207 LE Bresenham, Algorithm for computer control of
a digital plotter, IBM System 1 4 (1965) 25-30,

[217 C.H. Reinsch, Smoothing by spline lunctions, Numer.
Math. 10 {1967) 177-18%

About the Author—SAMBHUNATH BISWAS obmined the MSc. degree in Physics from University of Caleutin in 1973, He was in
electrical indusiries in the beginning as a Graduate Engineering Traines and then as a Design and Development Engineer. He was
a UNDP Fellow at MIT, USA, tostudy Machine Vision in 1988, He visited the Australian National University at Canberra in 1995, He is
now a programmer at the Machine Intelligence Unit in Indian Statistical Institute, Calouna His research interests include imapge
prowssing, machine vision, computer graphics, and pattern recognition.



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg

