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Summary. A warping |s & function that delorms images by mapping between image domains. The
chaoice of function is formulated statistically as maximum penalized likelihood, whare tha likalihood
measwras the simllanty batween images after warplng and the panalty is a measure of distortion of a
warping, The paper addrassss o [ssuss simultanecusly, of how to choose the warping fundction
amnd how to aazess the alignment. & new, Fourer—on Mises image model is entified, with phaze
differances betwean Fourler-transformmed images having von Mises distibutions. Also, new, null
sal distorien oriteria are proposed, with sach criterion uniquely minimized by 4 paricular set of
polynomial functions. A conjugate gradient algorithm is used to estimate the warping function, which
is numercally approximated by a placewisa bllinear function. The mathod s maotivated by, and usad
1o solve, three applled problems; to register & remoately sensed image with & map, to align micre-
scope images obtained by wsing different optics and to dizcriminate between species of fizh from
photographic images.
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1. Introduction

Image analysis, the extraction of information from pictures, 15 4 broad mterdisciplinary ficld
with many challenging problems to which statistical methods are applicable (for overviews,
see Mardia (1994) and Glasbey and Horgan (1995)). Ome such topic is image warping, a
function that deforms images by mapping between image domains. Warping is a fundamental
stage m many applications of image analysis, whether Lo register an image with 4 map or
template, or to align multiple images. It dates back over a century, to Galton {1378). who
used analogne methods to construct average faces of criminals and mental patdents from
photographs. Since then, the subject has had a large aond diverse literature. The images
to be aligned may be different specimens to be compared to characterize population vari-
ation, or the same specimen at different times to be interpolated betwesn ("morphed’) or
complementary sources of information to be fused. Altermatively, they may be either
successive two-dimensional sections or sterecscopic pairs, from which a three-dimensional
scene is to be reconstructed. In some applications, different types of deformation or even
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discontinuities may be permissible in parts of images. The transformation may be consirained
to be one o one, 1o bijective, or folding may be acceprable. Also, it may or may not be
appropriate for the boundaries of one image domain to map to the boundaries of the other
domain. The accuracy required of the alignment is another 1ssue: iF a radiolopist is to make a
visnal assessment of two medical images then a precise alignment may be uonecessary,
whereas in remote sensing, where quantitative use is to be made of images, subpixel
registration may be critical,

To illustrate, we consider three applied problems, the data for which are obtainable from

hetp: / fwww . blackwellpublishers. oo uk/rss/

{a) Fig. 1{a) shows a remotely senscd symthetic aperture radar (SAR) image of an arca
near Feltwell, England. SAR is an active remote sensing system: microwave radiation
15 beamed down to the earth’s surface from a plane or satellite, a sensor detects the
reflected signal and from this an image is constructed. Before any practical use can be
made of such an image, it needs to be registered with a map, such as the digitized map
of field boundanes in Fig. 1(b) (problem 1). Registration of remotely sensed images,
including SAR, is often performed manvally (see, for example, Vornberger and
Bindschadler (1992) and Dobson er af. (1998)). Li er af. (1995) reviewed automatic
methods, distingnishing between area- and feature-based methods. To locate features,
Caves et al. (1992) used limear filters, whereas Kher and Mitra (1993) used morpho-
logical methods. Registration of SAR can also simplify the task of segmenting the
images inte homogeneous regions (Glashey, 1997).

{b) Fig. 2 shows a sample of algae imaged using thres hight microscope modalities: bright-
field, differential interference contrast and phase contrast. Brightfield microscopy
reveals the optical atenuabion of the specimen, whereas differential interferenes
contrast microscopy responds to the refractive properties of the specimen and phase
contrast microscopy shows diffractive properties. By fusing the images, these sources
of complementary information can be combined (Modrusan ef ., 1994; Ried er af,
1952}, However, this requires a translation to be applied to the imapes to compensate
for changes in image alignment resulting from imperfect centring of the difterent lens

{a} by

Fig. 1. Area to the north of the village of Feltwell in East Anglia; {a} an aerial SAR image, 250 « 250 pixels in size
{3 lan = 3 kmy): (b} digital Iine drawing of fiald, read and other boundarlas for approximately the same region
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Fig. 2. Sample of algas Imaged using three light microscope modaliies: {a] brightfisld; &) differsntial
intatferance comeasl; (¢} phase contrast (the images are 512 788 phials in slzg)

{c}

systems {problem 2). Galbraith and Farkas (1993} described two methods for aligning
images, involving either the imaging of a rectangunlar grid or the manuval identification
of control points.

Fig. 3 shows photographic images, obtained under controlled conditions, of two species of
fish (haddock and whiting) that we wish to disciminate (problem 3). These are part of a
larger data set consisting of images of 10 haddocks and 10 whitings. Strachan ez af. {1990}
analysed irnages of seven species and found these two species to be the most difficult to
distinguish. One way of comparing images is by warping them to align with each other.
These images have already been aligned globally, and our congern is with local alignment.
The study of fish shape is a subject with a long history. Comparisons have typically been
restricted w the fish outlines and a few other features, but simple measures such as length-
to-width ratios are not sufficient in this application. Thompson (1917) used a mapping
which superimposed an outline of one fish on another as a way of comparing shapes.
Bookstein (1991) developed this further, whereas Strachan ef @l (1990) used summary
statistics derived from outlines to discriminate between seven species of fish and
Mokhtarian (1995) used curvature scale space to recognize marine animals.

Oar proposal is a statistical formulation of image warping, using a penalized like-
lihood approach. However, we first summarize u large number of alternative approaches,



488 O A Glasbey and K. V. Mardia

tal (b

(o) e

Fig. 3. Images of two species of fish, photographed on a light table: (&) haddock 1; (&) haddoack 2; (&) whiting 1,
(dl} whiting 2 {the Images ara 300 500 plxels in size)

predominantly in the computer vision and engineering literatures. There are recent reviews of
image warping in general {Glasbey and Mardia, 1998; Goshtasby and Le Moigne, 1999}, of
medical applications and computational anatomy (Grenander and Miller, 1998; Maintz and
Viergever, 1998; Singh ef af, 199%), and brain imaging specifically (Toga, 199%; Cao and
Worsley, 1999), of comparisons of faces (Hallinan er ., 1999) and of templates and shape
analysis {(MeInemney and Terzopoulos, 1996; Dryden and Mardia, 1998; Loncaric, 1998), For
the special case of one-dimensional curve registration, see Ramsay and Li (1998). Measures of
similanty to assess the quality of imape alignment have included mean-square differences and
cotrelation between pixels in images (see, for example, Rosenfeld and Kak (1982), section 9.4),
phase correlation (Kuglin and Hines, 1973), coincidence of landmark points (Cross and
Hancock, 1998, Hill er af., 2000} or edges in images {Bajesy and Kovame, 1989; Moshfeghi,
1991), muiual information (Mever ef of, 1996; Viola and Wells, 1997, Rangarajan et al,
1999: Studholme er af., 1999 and distance metrics {Baddeley and Molchanoy, 1998; Kaijser,
199%), Measures used to ensure that the warping is not too severe have been motivated by
thin plate splines (Bookstein, 1991}, clastic deformations {Burr, 1981; Younes, 1999}, optical
or fluid fow (Barron et af., 1994; Christensen ef al., 1996; Joshi and Miller, 20000, diffusion
{Amit et i, 1991), numerical regularizers {Thompson er af., 1991), Hopfield nevwral networks
{Cote and Tatnall, 1997) and Bayesian prior distributions (Carstensen, 1996; Gee, 1999},
Car proposal builds on much of this earlier work but is distinetive. It is also our intenton
to give mage warping more gxposure 1o a statistical andience, which we think i1t needs. In
Section 2 we formulate image warping as a penalized likelihood problem, incorporating
new classes of both similarity measures and distortion penalties. We restrict attention to



Image Warping 458

two-dimensional images, though the theory extends in a straightforward manner to three and
higher dimensions. Then, in Section 3 we apply the method to solve the three problems
above, Finally, in Section 4 we discuss the results,

2. Method

Suppose that we have a single image ¥ that we wish to align with another, given, image 4,
sometimes referred to in the computer vision literature as a grey scale template. We propose
to do so by estimating the warping function - "—R? 1o maximize a penafized likelihood
functional P consisting of two components:

P(Y| [ €€ A =L{¥p. £, O — AD{, C). (1)

Here, L is the log-likelihood for ¥, which depends on the warping function f and parameters
£. The log-likelihood operates as a measure of similarity between p and the warped version of
Y. The second component, 2, is & non-negative meeasure of distortion of [, chosen 1o be 0 if
and only if f e C, a mali set of functions, and A 1s 8 non-negative constant that determines the
relative weiphting belween L and D0 We use the term ‘distortion” in preforence to the
commonly used term ‘roughness’, because we sometimes wish to penalize warpings that
would not be considered rough in the general sense of that word. As fis infinite dimensional,
in the absence of a measure of distortion, the problem would be ill conditioned. Penalized
likelihoods have appeared in the statistical literatore in many other contexts and may he
justified in several ways, including a5 regulanzers and in Bayesian formulations (see, for
example, Green and Silverman (1994) and Green (19997). We could place a probabilistic
interpretalion on £, via D{f, O (see, Tor example, Grenander and Miller (1998)) but we prefer
to leave it ambiguous.

If we have two images, then it may be natural to use one as the grey scale template ». For
cxample, in problem 1 we take the SAR image to be ¥, which we align with the digital map,
taken to be u. However, if we have two Images that we wish to treat interchangeably, or £
(= Z)images, ¥, | ¥ then yx takes on the role of a consensus image that we also need
to estimate. We generalize equation (1} to

i 0SSO e L L R R T BT A e T )

where £ denotes the warping function from ¥¥ to p, and we maximize P’ also with
respact to pr, which is an array of location parameters. Note, however, that it is not abvays
possible to estimate g and £ simultaneously, a topic to which we shall return in Section 3.2,

We consider specific forms for L. in Section 2.1 and for D in Section 2.2; then we desenbe
an algorithm to estimate f'in Section 2.3. There are many ways to choose A (see, for example,
Thempson et af. (19915, W illustrale some specific stralegics in the applications, namely
cross-validation {Section 3.1}, prior knowledge (Section 3.2} and discriminatory power
{Section 3.3).

2 1. Fourier—von Mises image modef
We consider two log-likelihoods; the first is based on a Gaussian model for ¥ after warpiog.
but our main, novel proposal is for a Fourier—von Misex image model. First we need further
notation.

Image ju iz a real funetion, either on a diserete domaim, ¥ =141, .. == {1, ..., n} s0
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that p: X 1— %, or on a continuous domain, so that g (0, #,) » (0, 51— M, according 1o which
15 more convenient (although values of e are typically only known or cstimated on the
discrete domain). In this section the domain is taken to be discrete, We use 1, to denote the
paxel value at location x = (x), x3}. Image ¥ is similarly specified and has a possibly different
size, #' = {#], m). We define ¥} to be the warped version of ¥ under f. It is an array of size
n = {n, 1} specifled by

(Y)'}x = Y)’[JEJ Vxe X,

and s¢ its pixel value at x is defined to be the value of ¥ at location fix). Typically, (/]{x}

Sa(x)) are not integers, s0 ¥y, is oblained by inlerpolation, and, if f{x} lies outside the domain

of ¥, ¥, is defined to be a constant: either 0 or a mean pixel value, We use bilinear

interpolation, though it would be possible to use aliernatives such as splines or kernels,
Consider a simple Gaussian model for ¥, conditional on f, of the torm

}:I'{:} b hr{u”’.ﬂ U;) Yx & X, (3)

with ¥, for other values of x specified deterministically, by bilinear interpolation, for exam-
ple. We regard ¥ as a single entity rather than as an array of individual observations, as in
the philosophy in functional data analysis of Ramsay and Silverman (1997), pages 37-38.
The log-likelihood of ¥, to within additive and scaling consiants, is

LYy, [) = —g (Y — )’ (4)

where, throughout the paper, the x-summation is over X. This Gaussian model may be
regsonable for problem 3, the fish imapges in Section 1, but nol for all applications. For
example, in problem 2, algal cells appear dark in Fig. 2(a}, whereas in Fig. 2(b) one side of
each cell appears dark whereas the other side appears light, and in Fig. 2(c) cells look
different again. Therefore, it would be more appropnate to model the relationship between
the edges of cells in the two images, rather than the image intensities directly. By constructing
an imape model in the Fourier domain, we can be {lexible in allowing either intensities or
edges to be related, provided that the edges can be extracted by vsing linear filters, as we show
below.
The Fourier representation of ¥, Is

(Fa

v 40

1971

I:l,:-‘] {’H.d + ZWLL-'TI} Wx e X, {5}

W ':” ”2}
where A" and #" are respectively the arrays of amplitudes and phases of the Fourier
transform of ¥ Thrnughnut the paper, the w-summation is over 2, the set of frequencies
w={j fn, jg;"nzj for j,=—1in, (— st Do e 1000 b (g — 2, {(in,— 1} if n; is
ever ot j,=—1(m, — 1), .. | E{n — I} if w15 {'sdd 'Slmllarl}f, we df:ﬁne A% and #'™ to be the
arrays of a.mphtudes and phasea nfythe F-:runer t:rﬂnsfonn of p. Note that the arrays have a
totational symmetry, as 4o’ = — AT and gl . Also, any linear filter applied to u
can be interpreted and computed simply as a rcsLa]mg of each element in A" and the
addition of a constant to #*'. The arrays can be computed efficiently by using Fast Fourier
transforms, and we taper the image boundaries by using a cosine bell, to remove artificial
image discontinuities produced by wraparound of the image domain. For an introductory
backpround to Fourier analysis of images, see, for example, Glasbey and Horgan (1993,
chapter 3, pages 60-70,
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We now specify our Fourier—von Mises image medel for ¥, conditional on f. The Fourier
phases, "7, are independently von Mises distributed, conditional on A4, as follows:

O 1A ME, 6 (61} Y e . (6)
where the concentration « (> 0} is piven by
Kud€) = exp 16y + &1kl + Exlul® + & lop(4%) + &, Tog(4L™), N

Here, jw| denoies the modulus of w, a non-direction frequency, and « iz a log-linear function
of |, hel’, A% and A7 with parameters £. The Fourier amplitudes 477 are regurded as an
array of constants rather than random variables, and we use equation (3) to define ¥, for all
values of x, not just for f{x) € X Therefore, the log-lhikelihood for ¥, to within an additive
constant including terms in 4'"! for the Jacobian of the transformation, is

LY, £. € = T kuf6) cos@l” — ) — - toglhf s ©)1), ®)

where [, is the nornnulizing term for the von Mises distribution, a modified Bessel function of
the first kind and of order O {see, for example, Mardia and Jupp (1999)). We have the
following four theoretical and cmpirical motivations for choosing this modegl.

Firstly, for particular choices of £, the log-likelihood simplifies to commonly used measures
of simifarity between images. IT £=(&, 0, 0, 1, 1) then ko A4 and L can be re-
expressed as

LAYl £y (G0 0001, D} = 52 Yy = T log{ (a2 40™). )
R '

The first term 18 the cross-covariance or cross-product between poand ¥, which is closely
related to L*, given by equation (4), If £ = (£, 0, 0, 0, 0) then & is 4 constant and we olain
the phase correlation measure {Kuglin and Hines, 1975}, the cross-covariance between the
images after the application of a high pass filter which results in the Altcred images having Qai
spectra ((Glasbey and Horgan (1993}, Fig. 3.6b, page 63). In general, . can be re-expressed,
and imterpreted, as the cross-covariance between ¥y and a filtered version of u, which we
denote by u=", -

L(Y|t £ ) = 30 %7 Yy — 2 loglf{xAOL (10)

where

Em I Kol €)
< NS ? AE,,.:-,'-}
Array p™*7 is a filtered version of p, obtained by modifying the amplitudes in the Fourier
transform and then back-transforming. It is also a function of f but we suppress this
dependence for reasons discussed in the optimization algorithm in Section 2.3 Alternatively,
we could have applied the filter to ¥, or shared its effects between both 4 and ¥, but we shall
make use of eguation {10} in Section 2.3. Tvpically the effect of the filter will be to enhance
edges in images. Thus, we have combined intensity matching and edge matching in one
measure, unlike, for example, Halliman e af. {1999), who treated them separately. Note that
our approach is different from those of others, who have used local Fourier methods, such as
Gabor filters (Lades er af, 1993) and frequency varying chirp-like fillers {Bonmassar and
Schwartz, 1997, Tabernero ef al., 1999) to extract lJandmarks from images.

cos(8% + 2muTx) ¥x e X (11
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Secondly, we specify 4'% to be an array of constants because most information about the
warping fis contained in 87 rather than in 4'", and also because in geperal it is difficult
to comstruct a realistic stochastic model for 4", In particular, when f is simply a transla-
tion function, as i3 appropriate for problem 2, the microscopy images 1 Section 1, all the
information is in #%. This follows because thers is a simple relationship between the Fourier
transforms of ¥ and ¥, given by

AT = 40 gt — gV y s Ty Ve 2, wheref =o, +x modin),
=12, (12

for constants «, and o, provided that we allow modulo » wraparound in the translation.

Thirdly, & von Mises distribution is a natural choice for an angular variable such as g0 ag
it is, in many ways, the circular equivalent of the Gaussian distribution. It can also be derived
from the Gaussian model (3}, beeause then

AT cos(@ TNy~ N A cos(fh, '), AT Gin(§Ey ~ NYAY sin(0h), o7}, Ywe £,

These are all independently distributed terms, except for the symmetry consiraints already
mentioned, which we shall ignore as they simply introduce a scaling factor of { into the final
log-likelihood. The joint probability density over all frequencies w, including the Jacobian of
the transformation to (A7 §179) ig

plA, #0) o TL Al cxp[ - ﬁ LAY 4 AT 2490 450 cos(ell — 5&”}}] :

We see that the distribution for %, conditional on A", is independent von Mises with
concentration & = 4™ AT /o,

Fourthly, rather than restricting « to this form, we generalize to the log-linear model given
in equation (7). Fisher and Lee (1992} also modelled the concentration of circular data by
using log-linear models. This choice ensures positivity and is isotropic, and some experi-
mentation indicated that a guadratic function in |w] iz sofficiently flexible to model the
obsarved patterns of & in our examples. Terms in 4™ and 4'™" are included, both because we
would expect phases o be less susceptible to sampling vanahility when amplitudes are larpe
and because it leads to some standard models as special cases, as already discussed. In
applications where there is near collinearity in the explanatory variables there will be some
redundancy m this model and a lack of identifiability in £, but this should pot affect the
estimation of f. Cither forms of « have been considered, particularly in the one-dimensional
case of signal processing. Hamon and Hanoan (1974) showed that the optimal choice is
&, = /{1 — &), where ¢ is the coherence betwezn two series, which they estimated non-
parametrically. Sce alse Hanmap and Thomson (1988) and, on the subject to subpixel
alignment, Berman et af. (1994), 1o which we shall retarn in Section 3.2,

2.2 Nuff sel distortion criteria

We formulate distortion criteria £} that are uniquely minimized by particular null sets of
funetioms ¢. To motivate this approach, consider problem 3 introduced in Section 1, the
discrimmination of fish species. Fish are not rigid bodies, so shape comparisons should allow
for small distortions. Fig. 4 shows an absteacted version of this peoblem, with the object in
Fig. 4(b) having the same shape as the triangle in Fig. 4(a) except for a small non-lingar
deformation. Fips 4(c) and 4{d} show a second, different]y shaped triangle and a non-linearly
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ic) (]

Flg. 4. Test Images: () and () are ranghes of the same shape, axcap for a smeath deformation of (a) int (b,
and similarly for (c) and {d)

deformed version. (Gaussian white noise has been added to all four images, for reasons that
will become apparent in Section 3.3} We need a distortion coterion that penalizes warpings
that align Figs 4{a) and 4{c} more than those that align Figs 4a) and 4{b}. As far as we are
aware, no existing distortion criterion is tailored to this problem. For example, the thin plate
spline distortion criterion (see Dy, in equation (16) below} does not penalize affine {rans-
formations such as that which would warp Fig. 4{a} to align exactly with Fig. 4{c}. To
penalize such an affine transformation, we construct D{ £, 0}, taking for C the set of Euclid-
gan similarity transformations (see equation (20} below). By making A arbitranly large in
equation (1), the function that maximizes P will be a similarity transformation and, as A is
reduced, warpings are obtained which are nonparametric departures of increasing magnituds
from this transformation,
Let Dyl be a functional, called the base distortion criterion, such that

De(f1 =10,
el f} =0, (13)
D=1,
We define the mulf ser distortion criterion to be
D(fC)= r;igiﬂﬂ{f—g):-- {14)

Therefore, for fe O, LN f, £} =0, and by an appropriate choice of 1) ; we seek to ensure that
D=0 for ¢ C.

I, as will usually be the cage, D € C, then DCF, O} = Dy f), and a necessary condition for Dy
is that { 7: Dp( /) = 0) = C. Silverman (1982}, papes 116117, was the first to look for criteria
that were 0 if and only if £ was in a specified set of functions: for imaging applications, see
Arad ef al. (1994) and Hallinan et af, {1999, chapter 4. Qur idea is qualitatively similar, but
different in that we construct the functional which annihilates a specific set of functions.
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This enables us to construct many criteria, each appropriate to a specific set of imapging
apphcations.
For the null set C, we consider subsets of pth-order polynomial transformations:

2

gr=ot+ 3] %y Xy + 7 Fipp ¥ X T T E R A T fori=1,2. {15
Ni=l1 Sz Siooodp

Low order polynomials ccour repeatedly in image warping applications, including third

and higher orders in registration of remotely sensed images (see Glasbey and Mardia {1998)

for specific references). For the base distortion crilerion D, we uge functionals of partial

derivatives, such a3 the following first and second partial derivabives:

D=5 %] (%)2 dx,

(16)

Dy (f) = i - ¥, L (afzgx& )2 dx,

imtegrated over domain [ = {0, n} x {0, #), where dx denotes dx| dx,. (In this section it is
convenient to treat image domaing ay continuous ) Both these lunclionals satisfy condition
(13} and have been proposed many times: D3p is referred to as the Gaussian prior {Hallinan er
al. (1999}, pape 93) and Dy is the bending energy of a pair of thin plate splines in a finile
window {see Green and Silverman {19%4), pages 130-155). If the domains of integration wers
%, both functionals would be translationally and rotationally invariant, particular cases of
the fupctionals considered by Wahba (1990). By specilying distortion using first partial
derivatives, warpings are produced which are similar to the deformations of elastic mem-
branes and can have discontinuous second derivatives. For a detailed treatment of such
penalties lrom & peneral viewpoinl sée Blake and Zisserman (1987} As with snakes, which are
linear templates that deform smoothly to align with features in images {Kass et af., 1988),
firat-order derivatives can be regarded ag tension constraints and second-order derjvatives as
rigidity constraints.

By combining equations {14416), many null set distortion eriteria are produced, most of
which are new, and add to the range of first- and second-derivative functionals used by
others. For example, if we choose for O the set of bilinear transformations

B=lggi=otagx +op6 +opnx, =12}

and use g, then

Dif, B)= min {EL( o7, —um)?dx},

LR R 31;. 6x,¢

where o, = a5 = 0. L can be seen that O{f, 8 =01if and only if f € 5. The minimizing
values of v are

| [ Ff; =12,

Bz = —— 3
1 hns Jo 2, dag
producing

D(f, BY= Dy (f) — 2l + dipa). (17
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If instead we were to choose the set of affine transformations
A={gg =o,+ayx +oax, i=1,2] {18}
then, as is well known, {7 Dy (f) =0} = A, und therefore
Dif, Ay = min{ Dy (f — )t = Da (). (19}

If, for the null set O, we wish to comsider a subset of 4, such 4% a (ranslation, a translation in
combination with either 4 rotation or scaling, or the Euclidean similarity transformation

S={gg =0 tax +op¥, L= —opX) + a0 {200

then we cannol use Dg, alone as the base distortion criterion, because [f: Dp ({1 =01 ¢ 5.
Instead we use Dy . Set & is important since shapes are defined to be invariant under these
transformations (see, for example, Dryden and Mardia {1998)). We have

i {5 ], (- o)}

where ay; = —o; and oy, = ). Again, I f, §) =0 if and only if fe &, s0 we have an
appropriate distortion criterion, The mimimizng valoes of a;, and o7 are

o= (L)

IH|H-3 ] 3.'-':| ﬂxz
S b gh  df
et 2mn, L (ii"x; x| L2
producing
D(f, 8} = Dy, () — Zmmy(&) + &1). (21)

To illustrate, if g € A, given by equation (1%), then
Dﬁ, (r= ”1”3'[03%1 + ﬂffz + 0«'51 + "3";1}1
dyy = 4lery + ap),

&= %{Cﬂll = ¥y}

and

. HH
D(g. 8) == o — oz +{on + o2Vl

which is § if and only if oy = o and o ; = —owy, the constraints for g £ 5, given by
equation (20).

For other subsets of A, we can similarly derive D(f, C) based on equation (14} using Dy,
We could also add a term involving Dy, or higher order derivatives to D{ £, C), to constrain f
to have a continuouns first derivative, while still retaining the property that £(f, '} iz 0 if and
only if £ & . Therefore, it is important to note that, although our null set distortion criterion
I} f, C is uniquely minimized by £ € O, (£, C) iz not itzelf unique: there are many alternative
distortion criteria with the same property.
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2.3. Optimization algotithm

We first consider maximizing P, given by equation (1}, and then the multi-image problem

of maximizing P'*’, given by equation (2). The maximization of P, with respect to f and

parameters £, bas, in peneral, no known analytic solution for the functionals which we have

considered in Section 2.1 and 2.2. Therefore, we must resort to numerical methods,
Numerically, we approximate f by specifyving its values at a (g, + 1) » (g2 + 1) lattice of

points

k k
f(q—" %):ﬁk Ve Ry, (22)
1 x

involving an array of parameters, 3, and interpolate f1x) elsewhere by using the piecewise
bilinear transformation

=5+ 8 ('—‘“—k) 2! (xz":*—kg)+a;'(%—k)(x;""*—f@). 23)

m L) 1
Here
k—lnt[ :f‘] i=1,2,
with int[z] vsed to denote the integer part of z, and
ﬁ:ﬂ = .'ﬁ.'r—[l,lJ} = B,
& =80 = Be

3 ' = Beron,n — Beaonn — Serin, 1y + G

Alternatively we could have mterpolated using B-splines (Rueckert et al, 1999). Fig. 5
illustrates the case when ¢, = g, = 3.

For a piecewise bilinear transformation, it iz straightforward to evaluate first-derivative
terms in our nwll set distortion criteria. For example,

& b L7 S n
| o= St i,

F1 & =0 k=i
a

[ (Z) ar=2% ey +ats+ee)
O L3 ‘i’z -

> il ing in, ) —-—ri?-z. -
I -
E:q |
L S

B -rl-[“‘.l‘

Fig. 5. ustradion of & piecewise bilinear approximation to f for 8 3 = 3 grid
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and other terms in IN f. S5), given by equation (21), can be similarly computed. If D) involves
derivatives of higher order, these can only be approximated. For exasnple, £ f, A) given by
equation {19, can be approximated as

(1.0 L =t Yooy :
DAy B8 R0 gl e LB g IR i
g £=1,01 M k=i i1l k=01

using an abbreviated summation notation. Iocidentally, this particular distortion criterion
can be interpreted as a negative log-density of a Gauvssian Markov random field on the
(g1 ++ 1) % {g: + 1) lattice. In all cases, D{f. C) i3 a positive definite quadratic form in 5,

We use a conjugate gradient method to maximize P (see, for example, Press {(1994)). This
18 a prneral optimization algorithim which requires only first partial derivatives. At cach
iterntion, the search direction is that of steepest ascent, modified by the previous search
direction, in such a way thal, if the function were an z-dimensional quadratic, il would be
optimized in # steps. This algorithun is well suited to our problem, as first partial derivatives
can be obtained relauvely simply, as

aP,_ o £ L1 “E > an{,ﬂ ap{f C}'
= 5 (S Yo - T ogfhim 1) - A DU 0)) & E st S0 - A 22LD,

x (24)

using the formulation of the Fourier—von Mises log-likelihood L, given by equation (10}, and

‘;‘; i, (E 5, {£) cos(BL — ghdy — 2 log [quﬁh{ﬂ}])
% ﬁu(‘ﬂ cos(8 — gy — 3 Hlog[L{r (£IH]) (25

" " '3 ’

using the formulation of L piven by equation (8). Derivatives are computed by using
difference methods, taking advantage of changes in 3, only affecting a subset of terms in ¥,
and D, and we achieve substantial gains in speed by ignoring the second-order dependence of
157 and k(£ on 3. Various strategies can be adopted to guard against becoming trapped in
local suboptima. These include a multiresolution approach, where ¢ is increased as iterations
proceed, and permitting greater distortion by decreagsing A as iterations proceed. For the
examples in Section 3, the algonthun typically took 30 mup of central processor unit time on
a single processor of a SUN Enterprise 430 computer using Fortran 77. However, parallel-
1zation would considerably reduce this tme.

In applications where it is important, bijectivity can be ensured. Necessary and sufficient
conditions for the piecewise bihnear transformation to be jective are that the transformed
boundary does not self-intersect, and that each quadrilateral, specified by the orderad set of
four vertices Sy, Beyqr o Tirr,1y A0 Fi 0,19, 18 convex, with the vertices ordered anticlockwise.
Convexity ensures that the bilinear interpolant is bijective within quadrilaterals {a result that
15 best seen geometrcally by plotting the deformations of lines parallel to the axes), and the
anticlockwise constraint prevents the mapping from folding at the divisions between quad-
tilaterals. Computationally, converity can be ensured by checking that the two diagonals
intersect inside the quadrilateral.

To maximize %, given by equation (2), we alternatz between estimating the consensus
image x4 and aligning cach mdividual image with it, in a way analogous to generalized
Procrustes analysis. Fluete and Lavallée {1998) nsed a similar method to align shape outlines
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and Ramsay and Li (1998) to align curves. IF we use the log-likelihood L* piven by cquation
{4}, then

K i
P {E( v g P DR, CJ} (26)

=1

is maximized with respect to p simply by averaping at each pixel:
i 1
fix = ¢ 3 Vi (27)

Alternatively, if we use the Fourier—von Mises log-likelihood L given by equation (8), then we
can only estimate the phases of the Founer transform of e, denoted ¢, by

¢ = tan™ {% (60 sin(ef_.”?:']) / 2 % (€M) cos (af}*}])}. (28)

In gither case, given ji, each warping % and £* can be estimated by maximizing the com-
ponent functional P*', using the conjugate gradients algorithm already discussed. Because
P& increases at each iteration and is bounded above, the algorithm is guaranteed to con-
verge. However, #* need not have a unique maximum, and the solution can depend on the
initial choice of an average image. In general, it will not be adequate to start by averaging all
the ynwarped mages, We consider one solution for problem 3, in Section 3.3.

3. Applications

We now apply the methodelogy developed in Section 2 to the three practical problems
introduced in Section 1.

3.1. Froblem 1: synihefic aperture radar regisiralion
For problem 1, we wish to align the SAR image, Fig. 1{a), with the digital map, Fig. 1{b),
which it is natural to take as p. The appropriate transformation is a projection,

fi = ay +ylx {—cos{g ) sin{s,) sin{gh) + cos(ds ) cos(s))
+ xa{—cos{g ) cos{s) sinfd;) — sin{g.) cos(ea}} + Alx) sinfe ) sinis;}],
Tz = +y[x {cos(d } sinfd:) cos(dh) + cos(g; ) sin(é.))
+ xzleos(e ) cos{@o) cos{@a) — sinip,) sin{ga)} — Aix} sinfe,) cos{¢)], (29}

as shown in Fig. 6. In addition to the elevation function A: $it5—M, there are six unknown
parameters, the translation apd scale parameters (e, ) and the Buvler angles ¢, The first Euler
angle, ¢, is shown in Fig. 6, and the other two relate to the orientations of the two sets of
axes, IF the ground were planar the ransformation would be affing, as given by equation (1¥),
but with a different parameterization. We penalize non-linear functions &, vsing the thin plate
spline distortion criterion Dk, 4), a one-dimensional version of that in equation (19).

We use the Fourer—von Mises image model {6). However, for ¥, we use an edpe-Gltered
version of the SAR image, as shown in Fig. T(a). Details are given in Glasbey {1997}, It is not
possible to subsume this filier in the Fourer—von Mises imape model, because linear filigrs
are incapable of transtorming Fig. 1{a) to an unage that looks like Fig. 1{b). However, our
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Fhy. 6.

Fig. 7. Filtered SAR image and map, with larper values displayed as darker shades of grey: (8} edge-filtersd
SAR image; (b} filtered map, given by u=* "

madel does allow the fine-tuning, by linecar fliers, of this empitically chosen edge filter, to
optimize its performance for the warping task.

The algorithmn of Section 2.3 was used to maximize P with respect to f, miven by equation
(29), and parameters £. For simplicitv, in this application we set £, = £,. Experimentation
with different values of ¢ showed ¢ = ¢, = 16 to be sufficiently large to approximate /° The
warping transformation was constrained to be ijective, although this need not be the case in
this tvpe of application: the presence of hills could lead 1o occlusions which would need to be
taken into account also in the image model. A range of values of A was used, as is common
practice (see, for example, Silverman (1986)). Table 1| summarizes the resulis. Tt can be seen
that, as A decreases, P, L and A D(h, A) all increase, except for some tailing off in A DA, A)
for the smallest values of A. We used a cross-validatory approach to choose A, by estimating
with a 50 = 50 block of pixels in the 250 x 250 array ¥ set to a constant mean value, then
evaluating the covariance between the complete images. This was repeated For each of the
nine blocks with pixel locations x; and x, in the range 51-100, 101-150 or 151200, We
choze this size of block, rather than individual pixels, because adjacent pixels are likely o
be correlated, and to reduce the computational effort. The final column of Table | gives
the results, from which it can be zeen from the value in bold that A = 100 appears to be
best.
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Table 1. Effact of varying » on critera for aligning the SAR image with the map

A P L ADvh A) Crogs-vilidated
avariance
1CKI0CHT 283 ] 1 4.3
30000 290 233 4 349
190M 302 312 [ [#] 356
Him 32 133 14 6.2
100 343 163 20 74
k1LY) 387 4 38 372
(114} 415 513 a7 40.4
30 513 aRd 171} 340
19 94 El7 216 3l.6
3 BeY 1054 a5 219
1 10086 1244 158 3Ll
5
‘»5. L
|
[
g |
A
L5 k4
::;._.K* LY
! f‘sfixr*ju_x.mu, L
[ 02 a1t Tme Ty
E]

Flg. 8. 'Mean resultant length’ for tha 3AR edge-filtered image and map, averaged owar all orlentations, plottad
agalnst |wj: =, sample valuas, obtalned by ueing sguallen (30); , speclad valuas fram the IUll mode,
obtained by using equation (31} - --- - , axpectad values when £ = (£, 0,0, 1, 1}

For A= 100, we obtained £ =(—2.9, 15. —61, 0.45, 0.45). The sample ‘mean resultant
length' was calculated for a range of values of the non-directional frequency |w],

1 -l 2
N(AL) P2 cos(6, "'~ 9", where A, = (v |[v] = k|| < 0.05] (30)

and N{A,.) denotes the number of elements in set A, ;. According to the von Mises model,
the mean resullant length has expectation

1 fiix,)
NAL} vE R SN

{31)

where T, and 7| are Bessel functions, Fig. 8 shows these sample and expected values plotted
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Flg. 9. Superposition of the aligned SAR Image with the map

against w|, from which we see that the agreement is excellent, For comparison, the expected
values for the best-fitting model of the form £ = (£, 0,0, 1, 1), with .ﬂ] = —&.8, is also shown.
The value of & = £, = (.45 in the full model sugpests thai the best choice of model leads
to 4 measwre of similarity which is a hali-way compromise between covariance and phase
correlation, 1.e. a band pass filter, In contrast, Koch and Snowdon (1994) advocated the use of
a low pass Olier in an application involving the alignment of X-ray images. The fillered map,
denoted 1***, as defined in equation (11}, is displaved in Fig. 7(b).

Fig. % shows the SAR image registered with the digital map, obtained by applying the
estimated warping to the original SAR image. The alignment can be seen to be very good
and aulomatically yiclds an almosl complete segmentation of the image inle homogeneous
regions.

3.2 Problem 2: multimodal microscopy
For problem 2, we know a priorf that a translation

f=a+x {30

15 sulficient Lo align any pair of microscope images. Therelore, formally, we choose the null sel
distortion criterion D to be uniquely minimized by translations, using the method of Section
2.2, but we also take A — o¢. In practice, we simply use the parametric transformation.

By combining equations (12} and (8), the Fourier—von Mises lop-likelihood can be re-
expressed as

LY £ &) = 5w & cos(BN — 8% 4+ 2mwt o) — 57 log[fyd xu{€)}], {31
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provided that we allow module # wraparound in the translation. £ can be evaluated simul-
taneously for all integer values of n by a single fast Fourier transform. For problem 2, an
alignment to the nearest pixel is sufficiently accurate and is probably all that is achievable,
The model is a two-dimensional variant of the ‘barber’s pole’ proposed by Gould (1969). In
some applications it is possible to estimate o to subpixel accuracy, especially if adjustments Lo
take account of aliasing, proposed by Berman ef of. (1994), are also included.

We wish Lo align all three migroscopy mages under translation simultancously. However,
it turns out that we cannot maximize P*' with respect to parameters in both the con-
centration function and the consensus image. This iz similar to the Neyman—Seott problem
(see, for example, Stwart ef af. (1999}, puges B0-81). So, instead we propose to maxkimize a
pseudo-log-likelihood:

PY — E: L(}(H}l Y[H, Jr-r_k.f}1 é-lﬁc,-']}‘_ {34}

L34

(&4

with tespect to o', which speeifics £ as given in cquation (32), and £%") subject 1o

constraints
j.iklm') =f{£‘>|':|ﬂj-[|'._nl] 1 ", Eas}

where o denotes a composite of functions. This construction eliminates the consensus image
g In general, these constraints are difficult o enforce, but [or parametric transformations
they take simple torms. In particular, for translations

¥

(e mod(z,}, i=1,2 {36)

1.3
:

Also, when f s a translation, ¥ and p are interchangeable in L, given by equation {33), s0 we
need only to consider all unordered pairs in M*

We use the conjugate gradient method described in Scction 2.3, to maximize P* with
tespect to £ (2 {‘”'3] and flz'”._, but for each value of £ we conduct a grid search to estimate .
An cxhaustive scarch would have wo consider ans possibilitics, Therefore, we approximate by
a local optimum, by only searching values around arp maxﬁn.n(L“'m} and arg max,.x ALl
Similarly, we consider values around each of the other two pairs of maxima. Table 2 gives the
results, which agree with those reported in Glasbey and Martin (1996), using an ad Ao
sionilarily erilerion. So, for cxample, we estimate that Fig, 2(b) nceds Lo be shifted down by
three rows and shifted right by sia columns to align with Fig. 2(a). Fig. 10 shows a single algal
cell, after alisnment, in the three microscope modalities. A cross-wire has been superimposed
to aid the comparison io alignments, which can be seen to be very good, The individual pixcly
can be discerned at this magnification, and it can be appreciated that even a shift as small as
three rows and six columns has a marked effact,

We compare our method of alignment with two alternatives: the covariance and phase
correlation criteria, Each of 70 subimages of Fig. 2(a)} (128 x 192 piaels in size) was aligned

Tatle 2. Parameter eslimates to align the micmscops images

& ' &i».__-,. 5-';*"" EI;J...', Fin 2ot e £
1 2 3 f —h 33 —113 1.1 .28
| 1 28 il —20 6l ~— 14000 0.T2 1.53
2 1 23 164 —17 k11 — 1140H] .65 1.33
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{a) L] (e}

Fig. 10. Single algal cell, after alignment of three microscope imagaes, and wih & cross-wire supaimposed: (a)
brightfisld; (b} differantial iImerfarence conrast; (C} phass contrast

Table 1. Summary of results for eslimating translation parameters to align 70 different
123 » 192 subimages of Fig. 2{a)} with subimages of Fig. 2(b} shifted by 20 rows and 20
clumns, using 1hrea similarity criberla

Stmilariiy criterfon Memn Standard deviation
] i, o] = H
Covariance 17.5 27 5.0 4.3
Phase correlation 21.2 230 114 234
Fouricr—von Mises lop-likelihood L 22.8 258 0.7 0.7

with a subimage of Fig. 2{b) skifted by 20 rows and 20 columns. For the new criterion and
covariance and phase correlation critetia, the tneans and slandard devialions of the 70
estimates of & were evaluated, as given in Table 3. We see that L produces by far the most
consistent results, with standard deviations of less than one pixel. Also, although the
subimapes contain far less information than the full images, the eslimated translation agrees
well with the earlier results, which with the additional translation of (20, 20) should now be
{23, 26).

3.3 Problemn 3: fish species discrimination

For problem 3, it is natural to use the null set distortion criterion based on the Euclidean
similarity transformation I¥ f, &}, given by equation (21), since this is then shape invanant,
To assess our procedure, we first apply the method to the synthetic example of (Hanpgles in
Fig. 4.

We propose to use the Gaussian image model with log-likelihood L* given by equation
(4). The algorithm of Section 2.3 was used to align each image in Fig. 4 with every other
image, 12 grdered pairs in total, for cach of a range of values of A, Experimentation with
different values of 4 showed g, = g, = 64 to be sufficiently large to approximate fand, agaio,
the bijective constraint was used. The results are summarized in Table 4, by the average
values of the criterion P for within- and between-shape comparsons. Within-shape com-
parisons are defined to be those between Figs 4{a) and 4(b), and between Figs 4(c) and 4(d),
of which there are four. The remaining eight ordered pairs are regarded as between-shape
comparisens. In both cases, P increases with A, because the warping is progressively less
constrained to be simooth and can therefore achieve a greater agreement in pixel values
between images. The criterion is smaller when two images of different shape are aligned than
with two of the same shape, for all valoes of A Standard deviations of values of # are also
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Table 4. Effact of varylng b on discrimination between the twoe shapes of

Irlangle In Fig, 4
A Faftas of = L¥ — A U[F &}
Meart Srudeneized diffevence
R RS
Hitkin shape Belween shupe

1 =M1 {15.8) — 2662 (150.00 16
3 14971 (5.7] —1MT {5d5) 6.0
1l — 1863 (¥.1) —2142 {55.4) 4.9
0.03 —17431 (B.5) - 126% {lo.4) 4.5
.01 = 1633 (B.5) —la94 {10.8) 4.4
{1003 —1546 (3.2) —1567 (7.1 27
0.001 —149% (3.2} — 1510 (3w 23

thtandard deviations are given in parentheses,

Table 5. Maximized valuss of panaized likslihood for pairwise comparisons ol images in Fig. 4,
using bwa distortion criteria

Iringe Fafues of F = L* — 0.3 IF, 5) for the Vatues of P=L* — I0f Dy, for the
Jollewing images: Sollowing images:
et ik ei fe} iur) b i) fdi
fa) —1975 2309 — 2350 — —1¥6e —1854  —1908
b —197 — =23 — 2357 — 1903 — —1%12  —-1%0
(] —2473 =470 — — 1947 - 1853 — 1384 — 1593
(d} =408 2458 —1968 1911  —1911  — 1350 —

glven in Table 4, from which the Studentized difference between the means of the two groups
can be computed, as the difference in the means divided by the square root of the sumn of the
two varances, However, note that it is inappropriate to perform f~tests as samples are not
independently distributed. The distances show that the two shapes are well discrinmmated,
with the best choice shown in bold for A = 0.3, Thus we conclude that our method provides
satisfactory answers for this simplified problem.

Table 5 compares the resulls that we obtamed wsmg I, §) with what we would have
obtained if we had instead used the thin plate spline distortion criterion Dp,, having selected
an appropriate value of A = 10°. In both cases, the largest values are shown in bold. We see
that, using s, Figs 4{a) and 4(c) are assessed as beng most similar, which is as we would
expect, as an affine transformation is sufficient to transform one tnangle to the other and this
15 not penalized by Dp,. It is clear that thus distortion criterion will not enable us to dis-
crimminate between the two shapes of triangle. Similar madequate resolts will be produced by
using any distortion criterion other than D{f, 8).

The same alporithm was then used to align all pairs of images of fish in Fig. 3 for each of a
range of values of A Optimized values of P are given in Table 6, summarized as before. The
two species are well discriminated, with marginally the best choice of A being 0.01. Fig. 11
Ulustrates the warping for this optimal choice of A, for the alignment of a haddock with
another haddock, and with a whiting. Figs 11{a) and 11(b) show prids of the two estimated
warps. The deformations in Fig. 11{a) are less severe than in Fig. 11{b), and the distortion is
less when the two haddocks are aligned than when a haddock and a whiting are aligned.
Fig. 11{c}) shows how haddock 1 (Fig. 3(a)) Is warped to look like haddock 2 (Fig. 3(b)), and
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Table 6. Effect of vanying A on discrimination between haddock and whiling,

uging the four Images in Fig. 3

485

A Fafues of F = L* « A DM 5]
Meant Stiwdentized difference
I HLEATR
Within specier Befwean SRecics

1 — 43 (152} — 1664 (173} L&
03 — 538 (1683} —952 (114) xl
(N ] — 383 (138} —TRd (49} 27
LAIE] —235 {00 —5RR {22} 35
0oL — 182 {1 —433 {13) 11
003 — 13 a0 —298 (15) 19
0.0m -9 29 —218 {14} 36

fStandard deviations arc given in parenihesos.

Fig. 11{e) shows the pixel-by-pixel difference between the two images after ahgnment. In
comparison, Fig. L1{d) shows how haddeck | is warped to look like whiting 1 (Fig, 3(c)), and
Fig. 11{f) shows the pixel-by-pixel difference between the two images. The sum of squared
differences 15 greater than for the within-species comparison,

We now consider the analysis of the larger data set, consisting of images of 10 haddocks and
1 whitings. For cach species, we used cight images to characterize the population averapge and
variation, by maximizing P'*’, given by equation (26). Two images of each species, chosen at
tandom, were then avallable to vahdate the method.

An ad hor procedure 1o overcome some of the numencal problems in estimating the
template ji for each species is as follows. To obtain an initial estimate of i, we warped image
2 to image 1 and formed a composite image:

}(tl_l-+ Y[E]
~{1.2} A ;
fET s Tﬂ” ¥xe X {37)

Here, we have Luken the averase of the pixel al location x in image 1 and the pixel at location
Sfix)in image 2, and assigned it to the pixel at location {x + f{x)}/2 in the composite image.
Unassigned pixels in /i'"* were given the same value as their nearest neighbour, We similurly
formed the average of images 3 and 4 and then averaged image {1, 2) with image (3, 4} to
obtain image {(1, 2), (3, 4)), and 50 on until Gnally
ji = ﬁmi.2.1.{3,4]].&5.6:-.(?.8:]‘."

We then warped the gight original images to /& to maximize P!, re-estimated p using equation
(27} and repeated until convergence. This procedure treats all eight images equivalently and
could be modified to handle other sizes of tramimg set. For both haddock and whiting, values
stabilized within a couple of iterations. Fig. 12 shows the two average fish.

Finally, each of the 20 imapes in turn was warped to the average haddock, by maximizing
P. Fig. 13 shows the maximized values of P plotted apainst the corresponding values when
the images were instead warped to the average whiting. The maximized values of the
penalized likelihoods are measures of similarity of individual images from the two species.
We can see two clusters of points, and the two specics are clearly distinguishable, The 10
haddocks, including the two not used previously, are far more similar to the average haddock
than to the averapge whiting, and a similar pattern oceurs with the whiting. However, we see
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(a) it

(d

{s} {f

Fig. 11. Rasult of warping haddock 1, with i = 0.04: grid of deformetions far alignment with () haddock 2 and
{b) whitlng 1: warpad image of haddock 1, to align with (¢} haddock 2 and {d] whiling 1; pixel-bry-pieel diffarence
{zero values are displayed as mid-grey) between a warped Image of haddock 1 and {g} haddock 2 and {f} whiting 1

that the circled points lie on the extremes of the two clusters, nearer Lo the other cluster,
indicating some slight ovetfitting In the model.

By making full use of the prey level information (including texture) in the photographic
images of fish, we have improved on the discriminating power of Strachan et of. (1990) and
Glasbey er al. (1995). We could develop the madel further, and apply principal components
analysis, both to the gnds of warpings 3, given by equation (22}, and to the differences
between pixel values in the aligned images, as Lanitis et of. (1995) did with images of faces.
These could be used to replace L¥ by differences between principal component scores,
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18} 1)
Fig. 12. Averags Images of two spacies of fish, obtained by averaging eight images: (8] heddock; () whiting

-

P, lor lish ond averoge whiling
E B

-ma

0 W w0 M am -m o W 3
P, Tor ligh gnil greinge hadgock

Fig. 13. Pol of P batween individual Images and the average haddock and the averags whitihg: H, haddock; W,
whilingg, 3, images not used in oblaining the averages

thereby weighting pixcl values according to how variable they are in ditferent parts ol an
itnape (Cootes ¢f af,, 1998). Further, Moghaddam e af. (1996) modelled variation in Facial
expression, both within and between individuals, and Duta er af. (1999) formed clusters of
similar shapes and modelled intracluster variation. Rac (2000}, pages SB0-583, has discussed
an unbiased and & comsistent estimator of the template under certain conditions when the
errors are coloured and the warps are elements of a similarity group.

4. Dlscussion

The subject of warping has been reviewed comprehensively in Glashey and Mardia (1998)
and elsewhere, as cited in Section 1. Therefore, here we shall focus on the techniques devel-
oped m this paper. We have shown that image warping can be formulated statistically, as
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maximum penalized likelihood, and this has allowed vs to understand and generalize exist-
ing methods. Gur approach has produced good tesolis for the three applied problems. We
do not claim that ours are the only methods that are capable of producing such results,
but there would seem to be little opportunity for alternative methods to improve on them.
Also, it is clear from Table 3 that the Fourier voo Mises log-likelihood cutperforms simpler
measures of image similarity, and from Table 5 that the thin plate spline distortion criterion
15 inappropoate for making similarity shape comparisons, though also sce point (1) below,
Also, although we have focused on point estimation, as we bave formulated image warping
it a statistical framework we could also obtain measures of precizsion of estimators. For
example, we could base inferences on multiple samples drawn from the Fourier—von Mises
image model.

We now deal with the three main ingredients of the paper: the Founer—von Mises image
model, the null set distortion criterion and the alporithm.

(3) The Fourier—von Mises image model offers a flexible approach to modelling the
relationship between images, which will work for peneral lighting conditions because of
its Fourier basis. We showed the model to be plausible and used it in both problem 1
and problem 2. However, the general form is inappropriate to solving problem 3, where
we are concerned with discrimination between fish specics, and a simple Gaussian
model is what is required. Other grey level metrics, such as the Kantorovich distance
(Kaijser, 1998) are more computationally expensive, Our image mode] is elegant in that
it cornbines intensity matching and edge matching in one measure. In the machine
vision literature, the two terms for intensity matching and edge maiching are treated
separately (see, for example, Hallinan e af, (1999), page T9). We believe that our
procedure bas some advantages since it removes the necessity of estimating the weights
required to combine the two terms,

(b) The null set distortion criteria furnmish us with a rich class. In problem 1 we have taken
the roughness penalty from thin plate splines as our distortion criterion, whereas in
problem 2 the distortion eriterion is used only implicitly to constrain the warp to be in
the oull set of translations {A — o). In problem 3 the distortion criterion is a shape
mvarant criterion. Thus, our formulation allows us to seleet a eritenon that is appro-
priate to the application within our general null class. Our shape invariant criterion
uses only first derivatives, so there can be degenerate solotions if only a limnited number
of points such as landmarks are used (e.z. Green and Silverman (1994), page 159}
However, in our case there is always a unique solation for finite 4 since £ is quadratic
in . Mote that, for landmark-based methods, there is an explicit expression for knging
warps including thin plate splines (see, for example, Mardia and Hainsworth (1993}
and Kent and Mardia (1994)). However, we need to add an extra penalty term to the
thin plate spline criterion if we want to penalize affine transformations that are not
shape preserving.

{c) Our alporithm has some similarities with finite difference methods, though our use
of a piecewise bilinear transformation eliminates numerical integration in calculating
distortion criteria only involving first derivatives, The conditions that we have imposed
on the piecewise bilinear transformation lead to local as well as global bijectivity.
Bijectivity is important if we wish to warp a standard co-ordinate system to the image.
However, in the SAR example, the projective transformation may not be bijective or
continuous owing to occlusion. The method extends in a straightforward manner to
three and higher dimensions, although the computational cost will be high, Also,
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stochastic methods such as simulated apnnealing and Markov chain Monte Carle
methods conld be implemented, which would also pive more information on the
posterior distributions of £ ele., bul again the method may prove expensive. The issue
of global repistration has not arisen because, for example, in problem 3, the fish were
placed in a prespecified orientation with a fixed camera position, IT this were not so, we
could resort to any of a pumber of plobal registeation methods, such as the matching of
low order moments {(Wong and Hall, 1978; Yang and Cohen, 1999), Alternatively, an
additional penalty term could be added to P (see, for example, Mardia er af, (1997}
We have taken different g for problems 1-3. Its selection depends on the size of the
images, and the overall accuracy required. A wavelet-based distortion criterion in tum
i5 another approach (see, for example, Downis e af. {1996)). Also, whether one should
use compositional warps at different resolutions or additive warps is another issue.

There remain many challenging problems in image analysis, to which statistical methods
are applicable, both in general and in particular in image warping. This paper follows earlier
ground breaking papers on image analysis by Besag {1986) and Grenander and Miller (1994),
We hope thal our paper similarly stimulates lfurther wotk 1o this ares,
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Discussion on the paper by Glashey and Mardia

tiva Molchanov | Usiversity of Crlasgaw)

The authers conzider an important problem that has many applications in image analysis and
encompasses several approaches that have already been developed in this and related areas, | would like
to revisit several issues related to this paper, sotmetimes rephrasing tham in a more abstract language.

A general formulation of warping probicms
Warping ideas appear in probability theory and statistics under many different names. A general
Tormulation of such problems invelves the minimization of a lunctional

mix, y) = fm{l{.ﬂ(x- AV + DA

over A family A of transformations defined on a space X, where x, y £ X and p is 4 symmetry on X,
e @(x, 1) = plp, x}and pix, y) = 0 implies that x = ». One of the first examples of such functionals
appears in the definition of the Skorohod topolopy (Skorchod, 1936) that is widely used to formulate
limit theorems for stochastic processes. Then x and y are cadlag functions on [0, 1] (i.e. continuous
from the rght and having himits from the elt), o 15 the unifom metrc and A determines the chanpe of
variable using a monotonic bijective transformation of [0, 11 The smallest value of #lx, ) is then called
the Skorohod distance between x and p. Its counterpart in statistics concerns the alipnment of curves
and dynamic lime warping, see Wang and Gasser (19990 In studies of shapes and figures, D(A) van-
ishes if A e A and is infinite otherwise, so six, ») is obtained by minimizing Mx, A over A e A
Furthermerc, »(x, p) with g(x, 1) intcrpreted as the likelihood and £4A) as the penalization or prior is
one of the key ideas in smoothing and Bavesian statistics, [T also 15 widely used as a regularization
technigue in numerical methods for ill-posed problems. In image analysis some effort has been put into
construcling geodesies (or interpolation) that provide the *sheriest’ warping transformation between
binacy images {Serra, 199%) and smoothing of mags sequences (Frigl, 19991,

fmage dissimifarity weqsures

The likelihood term in the penalized likelibood functional provides an example of a dissimilarity
measure [or grey scale images. In fact this paper is not concemned with modelling mages and the main
application of the Fourier—von Mises model advocated by the authers is not for modelling but for
defining a loss fanction that may also be called an |rnage digsimilarity measure o1 image metreic. It is
gencrally rﬁl.ogmz:d that conventional dislances (o.g. LY or rool mean sguare) do not perlorm well for
grey scale images. For binary images, a family of useful image metrics was praposad by Baddeley
{1992). Howevet, his idea cannot be easily extended to grey scale imapes at a reasonable computational
cost; see Wilson ef all (1997), Foel and Molchancy (1998) and Kaiser (1992) for further discussions
of grev scale imags metrics, The Fourier—von Mises image model ollers a sufficiently flexible and
computationally efficient approach to defining grev scale imape metrics, It would be interesting to
investigate its performance for typical examples that involve assessing distances hetween grey scale
images from the above-mentioned refcrences.

Warping as preprocessing fov averaging

While calculating averages of fish images, the authors used warping to align the images before
averaging. In this case the target image ¢ that s used to warp individual images is unknown and tha
approach is to warp images “close together’. The averaging is performed for the post-warped images
and therefore must match warpiog. In other words, the average of several warped images ¥, .. ., ¥,
should be defined as an itmage  that minimizes T ol p), where p is the same loss functional that
was used to determine the optimal warpings, i.e the Fourier von Mises loss Fungtion in the context of
the current paper. In application to binary images, this idea was pursued by Stoyan and Molchanov
{1997},
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Consistency of estimators

The warping functions are estimated as minimuzers of the loss fonctional. In meost apphications the
warped images may be subject to misregistration. This calls for an application of stochastic
oplimizalion methods o deduce that the cstimutors suggested by the authors are consistent. Guite
similar ideas were developed by Wang and Gasser (1999} whose techrugues may be applied 1o asscss the
order of bias when the warping transforms are being obtained wsing & sample of images produced by
kernel mmoothing from observed data. It is also esscotial to ensurne that the gradient algorithms that are
usedt by the anthors do not become trapped at one of the Iocal tunima.

Digfortion medinrey

The null set distortion criterion that is used by the authers can be eguivalently formulated as the
‘distance’ betwesn the transformation (warping) A and the set A that consists of ‘newtral’ (or null)
transformations.

In my opinion, the approach pursued by the authors looks peomising and worthy of forther
exploration. The examples presented are convincing and the algorithms look computationally efficient. I
congratulate the suthors on a stimulating paper and have great plessare in proposing the vote of thanks.

C. Jemnison {niveryity of Bath)
Dr Gilasbey and Professor Mardia have offered us a stimulating paper. They have combined models
for imapge ddats, a general method of contrelling the warping function which can allow certain
transformations without penally, and an impressive computational algorithm, The three illustrative
examples are well motivated and each introduces its own special complaxities,

The techmique of penalized likelihood that is emploved by the authors has a curious status, Its
connection with Bayesian methods is well known (c.g. Green and Silverman (1994), page 51). The
penalized likelihood of the observed image T oblained from the penalized log-lkelihood in egquation {1} s

H ¥, £ £) expl—2 D(f, O3

where [ ¥F|u, £ £ is the likelihood of ¥ given g, Fand £ In a Baycsian interprelation this formuly is a
multiple of the posterior density of fand £, given the observed ¥, for the case where fhas prior density
properticnal to exp{—2A O(f, &) and £ an improper flat prior. The posterior distribution of f provides
a basis for inference; ome could also place a prior on A and cstimate this from the data along
with everything else, Despite the current popularity of Bavesian methods in statistical image analysis,
the authors do not advocate such an interpretation of their work: perhaps they do not regard
exp]{—A DU O as 4 reasonable prior for £ However, il the penally term is viewed simply 45 an ad hoc
way of regularizing maximum likelibood estimation in an otherwise {ll-conditionad problem, one is laft
with a rather ad hoc method for obtaining a point estimate of  and no simple way of quantifying
uncertainty in this estimate.

In their first sxample, the authors choose an edge-liliered version of the odginal synthetic aperture
radar data as their 'image’ ¥ and assume that ¥y follows the Fourier—von-Mises distribution. Thiz is a
pragmatic and, evidently, very effective choice. Diespite the high noise level, direct processing of such
syothetic aperture mdar data s possible: Humn aod Jenmison (1995) presented 8 multiresohition
algarithm for fitting a Markoy random field image model of the type proposed by Geman and Reynolds
(1992} which encourages sharp edges in the image, I wonder whether stochastic image models might also
be incorporated in the authors’ metheds; for example, in the third examiple, one could consider 4
Markov random feld model under which grey levels vary slowly with oscasional sharp discontinties
tor specify spatial properties of p, the average haddock or whiting, What do the authors think about

{a} the feasibility of incorporating this extra ingredient in their algorithms and
(b) when this might lead to signilicant improvements in rosuls?

1 have two tachnical points. The first concerns the summation in the data log-likelihood (4} which is
over points x in the u,-lattice. Corresponding values ¥, are formed as weighted combinations of
values ohserved al the lalice points of the mmage ¥ bul no account appears (o be taken of the
correlations between the variables that are thus created. In any case, since the ¥ are the observed data it
would be natural to define the data log-likelihood as a sum over observations 1" at lattice points of the
ohzcrved image and then to use bilinear interpolation of ', the inverse of the warping lunction, to give
g pvalue for each ¥,
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My second point of detail pertains to the calculation of O(f, ) in the optimization algorithm of
Section 2.3, The function 15 specilied through 15 values al 4 set of god points with rermaming values of
Fobtained by interpolation. Piecing together the interpolating functions on each square of the grid gives
a lunction § with discontinuities in high order derivatives at the boundaries of these squares. Either this
form of mlerpolation 15 190 crude when lhe ponalty 1em involves such high order dedvatives, or
contributions are nesded from the behaviour ar the edges of grid squares as well as from integrals within
each square. Sibson and Thomson {1981) used piecewise guadratic functions with derivatives matched
at the “seams’ to tackle a related problem.

Turning to a mare general perspective, the anthores are a prime example of statisticians participating
in a field where others, including in this case electronic engineers and computer scientists, have already
created o batlery of effective techniques, We may ask whal a statistician brings (0 such a (eld, and the
methods presented by the authors without a Bayesian setting are of particular interest as one cannot, just
[all back on the abiity of statistical methods to provide a measure of confidence in their results. I believe
that we do bong 8 new perspective, drawing on a dillerent and often complementary heritage. The
detailed study of the philosophy and methodology of statistical nlerence helps in judging what is
achievable in new application areas—and the pitfalls that may await. We should certaindy not be timid:
there are plenty of researchers from other disciplines exploring fields one might have regarded as the
tightful domain of statislivians!

The authars have tackled difficult problems with a substantive statistical component. They have been
imventive in pursuing these problems to real, effective solutions, demonstrating the value of their
slatistical approach. 15 4 pleasure to congralulate them on thedr achievements and Lo second Lhe yole
of thanks.

The vote of thanks was passed by acclamation.

Bjarne K. Ersboll (Techuical Cniversity af Denmark, Lynghy)
1 congrutulate the authors on their extremely neat unification of image warping techniques. Apart from
Carstansen (1996) which—as mentioned—presents a Bayesian type of approach to image warping, we
have at my departroent experience from both correlation-based (matching two-dimensional electro-
phoretic gels; Conradsen and Pedersen {19923}, landmark-based {matching human mandibles;
Andresen ez al (20007 and local phase-hased warping fmatching stereo imape pairs, following
Granlund and Knutsson {1995)). A further implication of matching and warping is the field of optical
floww, Larsen ef af. (1998) adopted an approach with some resemblance 1o the methodology mentioned
in the paper in ordet (o interpolate and extrapolate image sequences. Yowr paper ingeniously seems to
have combined Al these techniques, Furthermore, the Fouricr—von Miscs idea has a nice appeal to it

Chitig these conceptually different techmiques on real applications we found that it 15 usually
necessary W operate on multiple resolutions with a stepwise coarse to fine refinement of the warping
to obtain reliable results. The aspect of 2 multiresohation approach is only briefly mentioned in the
paper, however, so I wonld be extremely interested in the opinion and experiences of the authors on
the matler,

Below are thrze examples which raise some guestions abont and might challenge your technique,

{a} When matching fundus images from the same patienl over time an importint problem is the
oeenreenee or disappearance of features, This could probably be modelled as an occlusion o
falding as it {5 termed in the paper. Furthermore, the structures to be matched—here blood
vessels—change over time. Occlusion necurs for many types of imapes; how does the meth-
odology proposed perform here? Which assumptions are necessary?

(b) A spol mnage and an orthophoto have extremely different resolutions (20m = 20m  versm
62.5cm = 62, 5cm pixels), making the matching problem Far from trivial. The questions are the
same as before.

(¢} Finally, many image data are in colour or even multispeetral, Consider matching two Landsat
imapes, one taken during the summer where the altitude of the sun is higher and the vegetation is
drier (han on (he one Laken during the winter, Does the methodology generalize to include image
cues such as colour or multispectral information, or do we have to make do with a suitable
projection onto grey scales?

Edwin Hancock and Richard Wilson (Eniversity of York)
Mardia and Glasbey have presented an impertant paper which we believe contains ideas which will also
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prove influential on researchers in the fields of compuler vision and image analysis. They address the
pervasive problem of image alignment, They offer o way of gavging data closeness in the Fourder
domain by using the von Mises distribution and for regularizing the alignment parameters by using the
null set distertion cniteron,

For the past decade, we and our co-workers have been studving the problems ol image alignment and
covrespondance matching. Our conributions have been threefold. First, we have shown how to nse the
expectation—maximization (EM) algorithm fer spatial domain alignment under similarity, affine and
perspeclive transformations (Cross and Hancock, 1998); the resulting algorithms have been applied
both to synthetic aperture radar images and to the more complicated images delivered by millimetre
radars {Moss and Huncock, 1997, Our second contribution has been to develop probabilistic methods
for graph malching, which can be used to (nd correspondences belween point of line featees in
different images {Wilscn and Hancock, 1997, Myers o afl, 2000). When working with peint or line
features, a8 is [requenty the case in high level vision, then the alignment and comespondence problerns
have a chicken-and-ege relationship Lo one another, Our third contribution has been to develop a dual
step EM alporithm in which the recovery of alipnment parameters is constrained by the pattern of
correspondence matches residing on a relational graph which ropresents the arrangement of image
features (Cross and Hancoclk, 1998)

We can see lhe soope [or imporlanl syoergics between our work and Lhat of Mardia and
Cilashey. From our experiences, we have three supgestions for the authors. First, and as alluded to
by Professor Molchanoy, the Founier domain alignment process could be usefully integrated into an
EM algorithm which iterales belween estimaling distortion paramelers in the M-step and conpu-
ting a posteriori matching peobabilities in the E-step. Second, it might prove Ffruitful to develop a
localized feature representation along the lines ol the Von der Maalsburg bunch graph and o or-
ganize (hese lealures by using relational graphs, Thirdly, we would be inlerested in whether thete
might he advantages in using allernatives to the thin plate spling 1o generate the null set distortion
criterion.

Graham Horgan { Biosathematicy amed Staitviics Scotland, Aberdeen)
The importance of the work presented by Glasbey and Mardia derives from the generality with which it

Fig. 14. {a} Longitudingl slices of four parsnips and {b) the parsnips warped to a common cutiine by a piecewise
afllne transiormation
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may be applied to many diverse applications. In two of the examples used (synthetic aperture radar and
miceoscopyh, the irterest 18 the warpdng itsell. The effestivensss of the method 15 demonstrated in Figs 9
and 10. In the former we can see precise fitting over much of the image, where it is possible, combined
with the rgidity of the warping at the bottom night-hand side,

The third application (fish] 15 of particalar interest, in that warping fish images to match each other 15
not the central motivation, which is rather the discrimination of different species. This gives the work in
the paper a great potential breadth of application. Much research effort has been cxpended on the
recogrition of individuals from images of Taces, for example (Craw e o, 1999} Intermediate between
the recognition of species and of individvals is the horticultural application of cultivar disctimination
(Horgan ¢ af., 2001}, Imphcit in much work on these topics is the idea that differences between images
are split imlo 1wo lypes—dilferences in cutline shape and differences 1n grey levels within the outline,
After the former have been described, warping is carried out to remove outline shape differences and to
make a separate study of the lawer {Fig, 14). The authors’ methed would handle both these aspeots of
appearance simultaneously.

One significant advantage of splitting the discrimination into two stages is that the background, and
any vanation in it, within or between images, becomes irrelevant. This may be important in some
applications. It can alse be useful to study the components of variation of both types separately. The
gueslion which naturally arises, then, 15 whether the authors’ methods can be adapled to preserve Lthese
hensfits, perhaps by sowe preprocessing of the images, or in some other way.

John T. Kent {Lniversity of Leeds)

The paper contains several fascinatling statistical proposals for image warping. 1 would like Lo draw
attention to some related work by two of my recent doctoral students. The first result is by Debbie
{iodwin, Let Ry and K| denote two sn‘np]\r connected compact regions in B with smooth boundaries
paramelerized by functions g 8 — B =12 where 5, denofes the unil cirele. Ceonsider the
interpolation problem of finding the ‘smoothest’ possible deformation f° Ry — Ry, such that £ is
required to match the parameterized boundaries, = 5, = 2, and where smoothness is defined in terms
of minimizing a penalty. Two possible penaltics are given by equations (16} and (21) in the paper, which
in the currenit context Lake the form

Diif) = j z (8,105 ) dx

Hy 1=l
=0 for { constant,
D = D) F) — correction terms
= for f a similarity transformation.

Grodwin (20000 proved the surprizing resolt that the optimal deformations under the penalties
D Fyand Dy ) ate the same, ie. the introduction of correction lerms 15 irrelevant to the optimal b,
though of course the value of the oplimal penalty 1s different in the bwo cases, As a consequence of 1his
tesult, one can ask whether the introduction of correction terms makes much difference to the fitted
deformations in the examples of this paper.

A contrasting conclusion was reached by Gary Walker, who was jointly supervised by me, Tan
Dreyden and Chris Glashey. Tna one-dimensional ‘stoothing spline’ version of the problem, again
hased on first derivatives, Walker {2000) found that the introduction of a correction term made a
substantial and useful difference. In his setting the desired deformution is closc to linsar, But, withoul
the mnlroduction of the ¢orrection lerm, the filted deformation tends 1o Aatlen out beyond the range
of the data since only the constant function lies in the null space of the penalry. With the introduction
of the correction term, linear functions also have 2 zero penalty, and the fitted deformation is much
closer Lo a hnear function,

Jolin Ashhwener (fnstitwie of Newrology, Lewdon)

A feature of this paper that I like ix that it cnsures consistency by using consensus images. Tolermal
consistency s an often overlooked factor in image warping. For example, warping one image to
match another does not necessarily produce the inverse of the deformation obtained by warping the
images the other way around. This is partly because derivatives of the log-likclihood funclion with
respect to the warping function's parameters often depend on the gradient of only one of the images,
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Another rcason moay be “asymmetries’ in the measure of distortion that is used to penalize improbable
warps, These atise when 8 particular delormmation is ool deemed as probalile as 105 imverse, Simalarly,
individually warping together many pairs of images may not produce deformations that are consistent
with each other. The use of a consensus image maintaing consistency between all the warps, as the
mapping belween any pair of registered inages can be oblained by combining a forward and an
inverse {bijective) warp,

The paper describes linearly regularizing distortions in addition to those that can be represented by a
ngid body transformation and 1sotropic zoom, By including these transformations within the null set of
functions, the estimated shapes should not be influenced by object size and pose. One complication that
may occur is if one {very supple) fish is bent in the middle by 20°. This fish only has a different shape in
the maddle, whersas 1ls head and tail are both nommal shapes, There may be cnough evidenes in the
images to bend the outline of another fish to match it. However, the term that penalizes distortions may
still have unwanted cffects, as the oull set distortion crterion does not model the different rigid body
transfermation between the head and tail,

My own (houghts are thal measures of distortion should be used thatl are completely rotationally
invariant. This can be achieved by using singular value decompesitions of the Jacobian matrices at each
point of the deformation, which effectively decompose each matrix into a rotation, a set of orthogonal
zooms and another redation (Ashburmer er @, 1999, A rotationally invananl meoasure of distorbon can
then be derived from the zooms. A penalty Panction that iz idenwical for both a forward transform and
its inverse can then be constructed by assuming that the logarithms of the zooms are normally
distributed. This also means that logarnthms of argas and volumes would both also b nommally
distributed.

Fan L. Dreyden {Dafversify of Nettinghiam)
My comments centre on the new methods of this interesting paper,

Tndependence
The independence model (3) is given as motivation for the von Mises model, leading to £=
{—Ing{a‘i]l, 0, 0, 1, 1} The authors actually use a much more general model with « () given by cquation
(7). How do these von Mises distributions relate to possible joint distributions for the orey levels ¥y,
and their joint correlation structure?

Consider an ny « ry image 10 have toreidal boundanes and let ¥gy be d Gaussian random Held on the
discrete image with mean g, and covariance matrix E which is block circulant with circulant blocks. If
I, iz the usual 7 « » discrete Fourder transform matrix,

(W, @ W, PT(W, ® W, )= diagla" /3 ),
say. Hence, under this model the displayed equation alter equation {12) has o replaced by o /4, and
then equation (6] is replaced by

i

k(£) = expl—log(e®) + log(A,) + log{4"") + log(du ")}

There is somme overlap with the model derived from this Family of (Gaussian random fields and the class
considercd by the authors, A simple practical model {not in the anthors’ class) is 4 homogencous
Gaussian Markov random field for Y, — o, where

Ao=1=T A, cos{2mh"e),
neEXN
where & is a finite symmettic neighbowrhood of the origin and &, = &5_;. Tt would be interesting to see
how these models compare with, for example, Fig. 8.

Mufl set criterion
How should one chooss the null sel criterion in practical apphications? Typically there are (wo types of
matching sifuations:

(a} different views and/or modalities of the same geometrical object {e.g. applications 1 and 2}
(k) imuges of diffcrent objects (e.g. application 3}

In {a) the geometrical varability of the object itself is zero 50 one ought to aim to match exactly. In (b)
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there are geometrical differences in the ohjects as well as possibly differsnces in the modalities or views.
Parttiomng this vanabihity 15 not so straghtforward 10 general,

The authors do have a method for choosing A based on discrimination in application 3, but how do
we interpret the value? Are the fish populations significantly different in shape and size or i3 it just
lexture information that is helping with discriminalion?

Variahilivy of estimeators

No method for oblaming slandard errors or credible regions is given, The probabilistic interpretation
on fvia D(f, C)would be helpful, and posterior credibility intervals could be obtained by Markov chain
Monte Carlo methods of coutse.

Higher dimensions
Although in principle warping s ‘straightforward” in higher dimensions, thers 15 moch grealer com-
plexity when considering certain aspects, eg. shape theory (see Kendall of o (1999)).

Homoegeneity and robusmess

Different weightings W parts of the imags are often vsefil (see the end of Scetion 3) bul may make a
suhstantial difference to the sohution. Thus, a robust solation may be called for (for example see Deyden
and Walker {1999} for a matching exaraple using S-estimators).

M. Petrou [ Uriversity of Swrvey, Guildford)
This 15 an inpressive piese of work that brings together two major lopes: imags registrabon and
invaviant feature construction.

An interesting problem is the ideotification of functionals which annul the effect of the functions of a
particular group ol transformalions (Kadyrov and Petrow, 2000).

We have developed what we call the ‘trace transform’ which computes funcuonals along tracing Lines
of the image, to map the image onto the line parameter space. Further functionals are chosen applied 1o
the parametric representation of the Image so that they yield a single number that is invariant to the
grovp of transforms that we have chosen.

The philosophy behind such an approach is that the first functional is computed along the curves that
are left unchanged by the group of ranstormations. For linear and alfine distortions these curves arc
just straight lines. For more complicated transformations, however, the unaffected curves are much
more complicated and it is difficult to apply the theory in such cases, This is the point where we may
have to abandon the approach based on the group of transformalions and use an approach based on a
set of locally applied operators that canse deformations.

We have developed an image registration algorithm for the elastic registration of three-dimensional
images based on this idea.

In the epumizaton approach we invoke al random operators that are applied lecally and deform one
image to makch the reference image. This way we do not resteict ourselves (o a particular group of
distortions, but to a particular set of deformaations appropriate for the images of the application that we
arc interested in, and which may be different in different places ol the mage. Such is, for example, the
case of & medical image where a tumout is growing locally,

The following contributions were received in writing after the mecting.

Jose M. Angulo (University af Cranadd)
I would like first to thank the Besearch Section for this opportunity to contribute to the discussion of this
interesting paper, 45 well as to congratulate the authors [or their sigmibicant contribulion with this work.
Cine of the most challenging problemns in image warping consists of the proper definition of the concept of
distortion and its formal treatment in applications. In this regard, the authors propose a methodological
approach based on penalizing the likelihood associated with the warping in terms of distortion.

From my perspective, the innovative contributions in the paper, regarding both the methodological
approach and the techmical solutions given Lo its implementation, provide a significant basis for future
research, such as a consideration of possible altetnatives. Tn this respect, | shall focus my comments on
certdin aspocts related to scefes on the basis of the methodelogy proposed.

First, Dy as defined in eriterion {13) and then vsed in the detimton of 24 f, C) in cqualion {14) can be
viewed as an ‘absolute displacement-hased® distortion criterion. Forrnally and also pactly concepiuably,
an alternative would be to formulate, say 2% F, {*) as the minimum of D% o k), for b € 0%, with D%()
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now being a non-negative functional nuli at the identity. This would also require a slightly different
consideration [or ¢lass CF instead of £, In the case of bijective defommations, the simple relationship
f=g=(fog = idfl o g supgests that, whereas in I f, &) the function fis compared with sach function
£ on the (absclute) scale of the domain of f| in D%(f, C*) the comparisan of f with each function i = g']
would be perfommed on the {relative) scale of the domain of g ', Le, ‘removing' g from fin a
compositional sense tather than by subtraction, For Sin the null set of functions, we have a distorlion of
0 in both cases. For othet £, we would measure distortion as the ‘departure’ in terms of diffarent scales.
Such a difference can be related to the pomary question of defining a concept for distortion,

Secomd, equation (1) involves & mixture of quantities, the log-likelihood L and the measure of
distortion &, which ate defined, in principle, by scales of a different nature. Under the same idea of
penaiizing the fikelifood @ terms of distortion, we might then think of considenng different algebraic
alternatives from this copstruction of the ohjective functional, and the problem remains to study the
properties and a proper justification for each specific formulation, as well as comparative per-
tormances.

Mark Berman (Commonwenlth Scientific and Industria! Research Orpganisalion, Sydrey)

1 congratulate the authors on their interesting paper, which neatly combines aspects of Fourier theory,
circular statistics and regularization to address the general problem of image warping. The paper
generalizes 4 numnber of simpler image malching procedures and clegantly combines intensity matching
and edge matching in one measure. In addition, the methodology provides perfiormance measures for
assessing the quality of 2 warp.

However, the methoedology 1s muathematically complex and computationally intensive, and 15 only
hikely o be taken up by the computer vision community {and oplimized by them, especially for speed
purposes) iF the value of the methodology can be demonstrated in an application of wide interest to that
community and their commercial partners, One possible area is in face recognition, to which the authors
brefly allude in their discussion of the fish discrimination problem. However, in the fsh images the
hackgrounds appear reasonably homopgeneous. This is unlikely to be the case in many practigal facs
recognition problerns. How would the authors® methodology work with variable backgrounds, or would
the {ish or faces necd to be segmented oul mst?

My main technical comment is about the use of cross-validation in the synthetic aperture radar
cxample and in image analysis problems gencrally, Replacing a block of pixcls by a constant {rather
than omitting them altogether) does not seem a very natural approach. The authors appatently nesd to
do this because the discrete Fourier transform does not normally eope with "‘missing values', although
this can be dealt with in some linear problems (Berman, 1994), In image analyss problems where more
classical cross-validation can be petformed, iCis not necessarily the best thing (o do, For instance, in the
image segmentation context, Lee (2000)) demonstrated the supetiority of 2 minisium description length-
based approach over a cross-validation procedure suggested by Bose and O°'Sullivan (1997).

Finally, I have a query about the cheice of g, and ¢, in the optimization algeorithm. Are these
parameters chosen by eve’ or in some more objective way? This would be an issue for those interestad in
a fuily automated sohation.

Rodney Coleman (fmperial College of Science, Technalogy and Medicine, London)
Thers is soach to admirs in the methodology described in this papet, and 1 wish o offer suggestions for
areas in which it might be further developed.

In particular, the Fourier-von Mises image model hints at the pessibility of fashicning functionals
that muight be used as image signatures that can be compared for similarities, bul which are not
dependenl on the viewer's ‘expert knowledge’ being applied directly to the actual images, With this in
mind, the haddock versus whiting example (Fig. 3} appears 10 be a poor illustration, since expert
knowledge is a natural starting-point for discriminating between the two spoeics and roguircs no
techinology. Thus, & chicken sexer can identify by eve the sex of day old chicks ar a rate of one every
second.

On a second point, T feel that attention might alse be turned to the potential of new technological
advances that could make warping for image registration unnecessary. By way of illustration, with
conventional radiography, the wide variation in object thickness means that, even with automatic
exposure devices, oplimal exposure over he enlire ficld is impossible. In the mid-1980s scanning
equalization deviges which rely on a sophisticated feed-back svslem to modulate the exposure of the X-ray
beam were developed and are in use, though not yet in everyday clinical operation {Hansell er af., 1991).
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. Duta and A. K. Jain {Michigan State University, East Lansing)

We wolild hke (o congratulate Dr Olasbey and Professor Mardia for proposing an mteresting solubion
to the practical and difficult problem of warping bidimensional signals. Warping-based approaches to
object recognition and identity verification in digital images have been successfully applied in several
domains. However, most of the applicalions have besn Iimiled o one-dimensional signals, We belisve
that the methods introduced in this paper will increase the applicability and effectiveness of warping-
hased pattern recognition systems.

We have recently been investigating the object identification and localization problem based on
twodimensional shape and one-dimensional grey kvel pattern warping. The biometrics (hand-shape-
based) security system {Jain and Duta, 1999} and the medical diagnosis {cardiac ventricle localization—
segmenlation) sysiom (Dula er e, 1999) which we outline in Fig. 15 complement the applications
repotted in the paper. We followed the same methodology as the authors propose for object
identification. Two object patterns (c.g. the hand shapes in Fig. 15(a)) are warped onto cach other
{Fig. 15{b)). Subsequently, 4 warping distance measuring the noo-linear distorion (alter the similarity
transformations have been factored out) between the two pallerns is computed, A threshold is applied
tr this distance for deciding whether the two patterns belong to the same class of objects. The
distributions of the distances between objects belonging to the same (left-hand curve)} and different
{right-hand curve) classes arc shown in Fig. !5(c). The method's potential in separaling objoct classes iy
quite high: a 93% correct acceptance rate corresponds to 1% lalse acceptance tate. A diffecent type of
image warping application is feature or object localization based on registration to a template (atlas or
mup simular to the ficst application described in the paper), Multipke detections produced by a classificr
on the cardiac image in Fig. 13(d} must be combined to obtain one agcurate position of the ventricle (the
white circle in Fig. 15{g)}. The intersection points between the medial axis of the ventricle and the fowr
main dircetions can be eslimated by warping the corrcsponding sipnal profiles (the thin curves in Figs
15(e) and 1500 to an average profile {the thick curve). In this way, the position of some salient points
along the ventricle (marked by asterisks in Fig. 15(e)) can be estimated after aliphment of each profile to
the template (Fig. 15(D)}

I K. Ghosh and C. A, Mucthy {freligr Staifstfoad faseitute, Caleatia)
This i 4 very interesting paper with many novel ideas and three similar but not identical problems. We
Focus on one of them w motivate 2 Bayesian approach, which s applicable te all three sxamples, We
also sketch a computing strategy. Much fine tuning would be needed to make it work.

Let ¥Y be the ith imuge from the jth species, i, sorae average for the jth species and f{"*'-' the
resloring functions, The log-likelihood

LM 4 =1, 2 /™ 5 =1, D)

is assumed Gaussian and the log-prioe for ps and /& is of the form
o) - ] £0(%9,0)} ~logic)

where (A} iv a4 normmahiane constantl, Teo reducs lhe cakulalions, we drop p and replace ¢ by an
empitical Bayes estimate pr; along the lines of equation (37) of the paper and using the {posterior} mode
of f= (/0 1j=1,2.

For any fixed A, the evaluation of C{A) is sensitive to a precise specification of the function class being
scarched, Using Lhe notien of a weak version of Laplace integration and data-dependent priors, we
swggest using the class of functions actually searched in the course of maximization with respect to M or
fixed A. Interpreting

P=L- /‘{ 2 Dif, C}} — log{CiA)} {38}

a5 the Joganthm of hkelihood and pror for fi, we can caleulate the postenior of the fs, the posterior
mode of fand a measure of deviation

So = LAY - P eIV s) (3%

IR
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(f) (g)

Fig. 15. Practical applications of warping-based object identification: (a)—{(c) ldentification of identity based on
hard shapes; {d}-g} localization of & cardiac ventricla
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where i depends on f as indicated earlier. To choose A we may maximize a Studentized mean as in
Glasbey and Mardia's paper but & natural criterion 15 Sy /Sy, where

Sy = Eﬁh_r = jlhjz-

A more natural method is to maximize expression (38) with respect to A The presence of O[3}
prevents cquation (38) from being monotone.

Finally, we have a couple of questions. If' lwo images are different becausc the object has moved a
hand or face in space, what would be the two-dimensional Function class for the images? An answer
would throw light on deformable template matching. Indeed, a discussion of this problem from the
point of view of this paper would be very interesting. Secondly, how sensitive are the final images to
variations in AT Also, would the inclusion of a variance term in the Gaussian likelihood make the
problem ill poscd?

A. Gray {University of Sirathelvde, Flasgow)
Thiz paper offers a sophisticated statistical selution to the image warping problem, and the penalized
likelihood framework that is used is neat and familiar.

An appealing fealure of the method is that it is not necessary to supply control points, manually o
atherwise, and the proposed Fourder—von Mises image match criterion can wse edge information as well
as intensity information. Howewer, it is still necessary to specify a suitable set of transformations, in the
form of the null set O, rather than these beng sugpesied by the data {as would be ideal} and also to
specify an appropriaie base distortion criterion to find the distortion penalty function IN £, C). Although
the likelihood is given a recommendad form, this also involves unknown parameters to be estimated at
the same time 45 the warping function, and the optimization appears very time consuming.

The results shown are impressive compared with those of more standard approaches. Nevertheless
the method is complex (o implement and to compute, and an appropriate value of A still raguires to
be chosen or else 2 range of different values used, as well as needing to experiment with the fineness of
the grid om which the warping funclion f i$ approomated, Given the time that 15 nesded [or the
aptimization, achieving good results will therefore be slow.

As it 1§ described the approach appears very fexible and powerful; however, in all threc cxamples
some gd foe method or approximation appears to be necessary to make the approach work, Therelore
the methodology is not neccessarily guite as usable as its presentation suggests. Despite the superior
results, its extra complexty may mean that m practice simpler, quicker, methods will be preferred Lo this
new approach.

John Gostafsson and Mats Rodemo (Chalrrers University of Technology, Gothenburg)

We would like to discuss another application of the approach that is presented in the paper; mutching of
lwi-dimensional eleclrephoresis gel images. Two-dimensional gel eleclrophoresis is 8 method For the
simultanzous separation of thousands of progeins from a complax protein solution on the basis of their
iscelectric point and molecular weight. Tt is currently one of the major methods in preteomiec research,
Omne crucial step in two-dimensional gel analysis is o mateh spots in different gel images that
corregpond to the same protein. This reatching step seems to be a bottle-neck in the gel analysis. Tt still
Tequires extensive and time-consuming manual interfercoce, although several semi-aotomatic tech-
nigues cxist {Woss and Haberd, 20003,

The statistical formulation in the paper by Glashey and Mardia provides a general framawork for the
formaulation of an automatic warping method to find an image alignment that can aid the matching of
spot patterns. We are currently investigating a combination of two warping methods. First, we have
formulated a simple physicochemical model of what might be one muin cavsc of spatial dislortion of the
spot pallech: current leakage, Basically the model is a sel of coupled partial differential 2guations
including Laplace's equation for the electric potential. We apply the model te a global warping of cach
gl image to correet Tor the slfect of current leakage, Thereafter, we use the penalized likelihood
approach to align the images locally with piecewise hilinear transformations to handle distortions that
cannot be explained by current leakage. In this application the simple Gauossian image model 15 4
nalural cheice, and for the noll g2t in the distortion eriterion we use the set of affine transformations.

Criven an undistorted reference gel it might be possible to unify these two steps by choosing as the null
set the functions that satisfy the partial differential equations in the physicochemical model. One might
alzo add a probabilisbc interpretation of the transformation by mtroducng a stochastic Porsson
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cquation for the electric potential. Further, in this application we wish to conserve the spot contents
during the warping process, Compated with the papet it is therefore nataral bo use a slightly different
definition of the warped version of ¥ under £
|¢"_f
dx

(¥, = ¥You ¥Yx e X,

where the area scale introduced is the Jacobian determinant of the warping transformation.

David Hopg { Eniversitny af Leeds)
I would hke (o start by congratulating the authors on this stimulating paper.

On reading the papert, | found myself looking for ways in which the intripuing method proposed by
Glasbey and Mardia could be adapted (o improve a different kind of approach to certain kinds of
warping problem.

For situations in which the aim iz o Iocate a familiar object within a two-cimensional image (as
for the fish example), a powerful approach has been to medel the vardation of shape found in a
representative data set, using for example a Gaussian density or mixture of such densities. This
contrasts with generic medels based on smoothness criteria ot likelihood functions, even theugh the
parameters of such medels could in principle be estimated from a data set, Blake extended such am
approach to permit simple transformations such as an affine mapping, In his recent book, he
demonstrates Lhal such an extension can also be mads lor class-speclic models of the vamation in
ghape. [t is interesting o speculate whether the null set distortion criterion could be similarly chosen,
thereby integrating learnt models of vanation with a set of distortions that arise from the physics of the
imaging situation—spesilically, & projectivity for roughly planar objscls or an atline approzimation to
this.

In addition to class-specific models of deformation, the varations in intensity within a deformed
image (1.c. the intonsity arcay after alipnment) can dalse be medelled in a similar way, A problem here has
been to deal with lighting variation under different imaging conditions. The Fourier—von Mises image
model and the way in which it is used by Glashey and Mardia may provide a way for factoring out these
spurces of vanation before medelling, Related approaches bassd on wavelets have been used 1o these
situnations with some succass.

Inpe Koch (Liniversizy of Neweastle, Callughan)

The paper makes an imporiani contribution to the development of regisiraiion metheds and represents
a seriols allempl at making registration and imaging methods acceptable o the stavistics lieerature.
Registration methods evolved from the statistical concept of cross-correlation in the early [970s and
have becn applied in science and compuling arcas since then, bat they have not enjoyed the same
populanty in the statistical communily,

The idea of the warping fonction extends many of the classical registration methods that are
currently in use in engineering and imaging applications which are restricted to translation and rotation
between the images. The warping function, and its estimation by penalized lkeliheod, 5 one of the
strong points of this paper, 25 it allows—al least in theery—a large class of functions Lo be treated
simultanecusly. IF the relationship between the images is singple, such as a translation, then the new
gpproach may not lead to an improvement, sinec Fouricr-based ropisiralion methods in particular
perlorm extremely well and can be implemented very elfficienty. For more complex transformations
betwean images the new method shows its strength through its flexible definition of the warping
function and the penalty term.

The examples are clear and indicate the scope of the new approach. However, by being very gensral,
the method also shows 3 cerlaim weakness, 25 1018 ool clear how Lo apply it m eases which do not it inte
the Framework given in the three examples. There is no stratepy of how to choose the parameters £ for
the comcentration s of the phase factors or which distortion criteria should be applied, Indesd, the
metivation for the choics of the paramster £ {5 rod very convinging, apart from the fact that it includes
gpecial cases such as cross-correlation and simple Gaussian models. Tt is not even clear why particular
values of £ would lead to wselul or good measures of similadty. To becomes of more general inlerest, the
choices for the parameter £, the concentration «, the distertion and the class of functions Fused in the
maximization of the likelihood will need to be further addressed.

In some scnse, the likelihood approach based on warping works too well: as shown in example 3, it i5
possilile to specily the parameters and the warping to such an extent that haddock and whiting can
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easily be distinguished. This is good, but how do we know when a haddoeck is no longer 2 haddock? This
question 1x of mtsrsst m registration problems where we nesd (o momitor Whethsr changs has occlirmed
over time, for example. By choosing the parameters and the warping function well, the change is not
likcly to be detectable, since the warping functicn will attempt to obtain the best transformation
betwzen Lhe onginal image and the new image or obpect

AN Linney (Lniversity College London)

In work which involves understanding changes in the human body brought about by such factors as
growth, surgery, injuey. illness and treatment or diet it is often necessary Lo compare sequential images,
or to compare images to a reference or to calculate averages to understand group and individual
patterns of chanpe. For many vears ad froe methods bave been devised, which although conveying some
appreciation of changes in shape and size have not been statistically eobust and have not been basad on
any methodology which would allow the derivation of probability distributions.

This paper provides a statistically robust method which meets the requirements lor twe-dimensicnal
medical image comparisons for clinical monitorng and avdit. and provides methods of warping which
may be used as a preprocess to averaging or as a basis for comparizsons both within a class or with a st
of independent standards. The penalties generated in accordance with the rules associated with the
degree of warp established here allow for probabilistic classification which should prove useful both in
the dilferential diagnosis of individuals and in understanding the strength of relationships between
group averages. The latter is likely to find application in the understanding of the genstically determined
inheritance of bady and facial shapes.,

The fact that the algorithms developed in this paper may optimize the maich of both edges and
intensities within an image makes them particularlv useful for dealing with images produced by
gomputerized tomegraphy scanoners and magnetic resonance imaging systems, which are two ol the
mest nsed imaging modalities in cureent madical imaging. This ditectly arises from the facl that the grey
level intensities in thess imapes relate directly to the physical properties of the body macter and
reproducible scanmer settings, unlike the case of photographic images where illumination is often less
controlled,

At laat it does appear that a robust statistical method has been developed For warping medical images,
and I ook Forward very much to sce the resabts of its application in the numerous areas in which it has
sighificant relevance,

J. 0. Ramsay (McGiff University, Montreal) and T. O. Ramsay (Sraristics Carada, Ottawa)

D Glasbey and Professor Mardia have wsed the two-dimensional Fourier transform (FT), with 165 clean
separation of phase and amplitude parameters, to define a registration routine which parmits the choice
of a remarkably large and useful class of optimization criteria. Their idea of defining null sets within
transtormation spaces scems to us to be fundamentlal. W hope that the general avaidability of the FT
will result & wide cange of registralion applications taking advantage ol their work.

Almost all images contain landmarks, osually in the form of points, open and closed curves; and a
useful registration might want to make use of thizs extra information. A closed boundary outside
which there is no informatien of interesl is an especially important landmark; and, indesd, much of
the interesting information in the intarior may occur close to that boundary. In registering a func-
tional magnetic resonance image (typically 1.5 = 10* voxels), for cxample, it is often koown in advanee
that the inleresiing evenl is resiricted o a small ares wilhin 4 mm of the surface of the cerebral
LOrtex,

The need for a hybrid of spatial landmark- and intensity-based registration within a complicated
boundary such as that of a fish or the coastline of the British Isles raizes the guestion of what basis to
use im the representaton of an image and s deformation. Tensor product bases such as the Lwo-
dimensional FT o the commonly used spline basas have trouble dealing accurately with boundaries,
both regular and irregular, and are net tied to landmarks. Also, too many basis functions may be
allocated to regions where little or no Ltting power 15 neadad.

We are betting, instead, on finite element metheds. Both of us have stodied two-dimensional
smoothing and rogistration problems (Ramsay, T., 2000; Ramsay, J., 2000; Malfait e @f., 2000;
Ramsay, 1999 reprasented by triangular meshes readily constrocted by available software tools such as
MATLAR (MathWorks, 1995}, Basiz systems defined on these meshes, soch as the Lagrange
polynomial bases, permit any level of lovalized accuracy in rcpreseoting cither intensity or spalial
strocture, Smoothing and regstration problems cat be répresented by systems of partial differential
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equations, and these systems can be solved in only a few minutes on personal computers using standard
sparse mattix algorithms, For example, the registration of 20 [aces to a template by Ramsay (19949),
using 3481 basis functions, took 51 5 on a 280 MHz processor,

The basis system that one chooses to represent a problem imposes severe limitaticns on all that
lotlews, and getling that cheice righl, cven in one-dimensional problems, scems essential, A good choice
should separate those parameters carrying amplimde or intensity information from those carrying
phase or spatial information. The FT perhaps does not go sufficiently far, at least for some applications,
and the co-ordinate-free Anite element approdch seems to offer a wider range of two-dimensicnal and
three-dimensional image analysis options.

M. M. Rao (University of Californin, Riverside)
D Cilasbey and Professor Mardia highlighted several important quastions of practical interest in this
puper on image and shape analysis. A typical problem berc is one ef nonparametric estimation of
am image or an Unkoown function desenbing the (usuwally deformed) shape based on some (several)
non-indepencdent observations. An analegous question on lemplate estimation, in computational
anatomy, was raised by Professor UIF Grenander a couple of years ago (a5 noted in Rao (2000)), The
observations there come from a carefully constructed mapping, resulting in deformed images which are
dilfeomorphisms of g (hrec-dimensional compact objecl (c.g. 4 brain), and il & desired to esUmate it
consistently by using 2 large set of ohservations, similar to the problems discussed here. One can
consider a modification of the method of Kampé de Fériet and Frenkiel (1962} that depends on a certain
averaging provess. The diffeomorphism group I here 1s oo barge (it i not locally compact) and for this
procedure we nead the availability of an invariant integral, In Rao {2000), example IX.4.7, [ cutlined a
method involving locally compact subgroups of £ with the idea of extending it for a larger class using a
propective limil process. The details of the latter have not yet been completely worked oul. Another
related problem based on the researches of Grenander and bis associates has also been sketched in
complement IX. 64 of Rao (2000), giving a lower bound of the risk function of estimaters. Some
technical problems remain for a successful implementation of these ideas. It is noted that, generally, in
shape analysis the problems o be sobved are non-clemenlary as amply iHlustrated by Eendall ef o,
{19007

Thus the requircd techmical results lag far behind the applications. The authors have outllined
some methods that illominate the undedying theoretical set-up, They should be commended for
bringing out the importance and practicality of the problems and for suggesting certain procedures
that may be used now untl the necessary theoretical basis has been developed, possibly in the near
future.

Giovamnmi Sebastiand (fstirute per e Applicazioni del Calcelo “M. Picone’'. Rome)
1 shall present here some gensral considerations aboul the null sel distortion criteria adopted in this
work. Ciiven a non-negative regitlarization fenctional 2 with kernel ker{&¥) and such that {0} =10, a
new non-negative functional £, is built by minimizing the action of £ on the difference between the
fun¢tional argument and any clement of the set O Any set © 2 ker(53) closed with respect (o addition
can be chosen, The new functional is strongly related o £ oand will exploit its main features.
Furthermore, since ker{I;) = C the new functional is minimized by the elements of C. A suitable chodce
of ¢ which iz meaningful for the problem under study may allow us o lake advantage of Lhis property.
The precedure is also applicable o the sum of functionals 2; satisfving O, ker(2)) © . Tha resulting
funcrinnal will be minimized by the elements of £

In the paper it is shown for a particular 12 that £, = £ when C = ker(f3}. From the text it seems that
this always happens if we choose O = ken(f), For the particular functional £ chosen

D =Y DD,

1h=]
where () = [ wdx and Dy = & /i dx, the result follows because A = ker(D} = W x W, where
i
W= (] ker(Dy)

ik

In fact, we have
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DSy = minio - =nin| £ 0D - Dxet| =mip] T LB = 00

I A= Tkl

because g, € ¥, The resull 15 net irue in general Tor any [unctional 2 when we choose O = ker{D). In

fact, if we choose
D/} = fzj (gi.) (%)zdx

and we evaluate its action on the point f= (X, + x3, X, + x) we have D{f}: 2wy, The point
= 1{x/2, x2/2) belongs o A = ker(D), Since we have D7) < D7 — g) = nma /2 < DOF), we cannot
have £, =85,

Az also stated in the paper, given 0 and £ 2 ker{ £}, different functionals can be built that exploit the
main Features of £ and are minimized by the clements of ©, As an alternative te the I3, proposed, we can
comsider fas parametenzed by f = g+ d with g € C and dehine DA F) = Dd), I € ke D) we have that
o € ker{ D). Since ker() = C it follows that o £ C. Now, £= g+ Jwill belong to C becawse g, o €  and
C is chosed with respect to addition. Therefore, ker{D) © C. Let us assume now that C is also closed with
rospoet (o subtraction, as s the case for the set & of the paper. Given f=C, we ¢an chooss any
o £ ker{ ) and write /= {{ — ) + . Wow, dwill balong to £ since o € ker() and ker{0) C . Since we
assumed C to be closed with respect to subtraction, /' — 4 also belongs to O We have therefore written f
a5 the sum of an element of & and an clement of keo(D), so that fe ker(}.), This means that
kee{3-) 2 O, Combindng the two results we have that ker(D:) = C. | have no reason 1o prefer one of
these two choices for 1 to the other apart from the larger computational complexity of the I3,
propesed in the paper (which is given as the sum of I} plus other terms). Further considerations can be
taken inte account, like the slability of the minimizers of D-.

Kerin de Souza {University of Leeds)

1 wish o congratulale the authors on an enjoyahls and stimulating paper. [ would alse like o draw
attention to some unpublished joint work with J. T. Kent and K. V. Mardia. In the current paper
deformations arc parametenized at 4 single scale by speoifying locations for a set of vertices on a fine
tectangular geid. Further, a penalized likelihood objective functicn is maximized through an iterative
algarithem in which the vertices of a fitted deformation are suceessively updated. In our work we found
it fruitful to represent a deformation in terms of 4 composition of deformations on 8 hisrarchical
arrangemenl of triangular grids. Such a comstruchion needs Lo be done carsiully, bul il allows a simple
specification of large scale changes in the deformation through the adjustiment of vertices art the coarsar
scales of the goid.

As in the carrent paper, this representation of 2 deformation can be incorperated inbe & penalized
likelihood framework in which an objective function is iteratively improved. We used stochastic updates
hased on the Markov chain Monte Carlo algorithm rathet than deterministic updates to avoid
becoming trapped in local optima, The advantage of the hierarchical approach is that it allows Faster
raovement through the space of possible delormations, thus allewing faster and more reliable
optimization. Some limited experimentation has demonstrated the value of this approach, but further
work is needed to understand its properties mere fully.

Changmiag Sun and Michael Buckley {Commonwealth Scieneific and nduserial Research Organisation,
Hydren)

We congratulate the authors on an interesting and significant piece of work. We have one suggestion for
potential apphication, ax well as some specific comments,

A common aim, partcolarly in industrial guality assessment, is the measurement of sample
characteristics in digital images. Two of many examples are the measarement of the distance betwesn
two features—e g, hetween the rear of a gill and the start of the tail in fish—and the measurement of
average (or ‘typical’y colour within a particular region—e_g. the body of a fish, excloding the head, tail
and finx,

This is a difficult problem, especiatly if the fegumes or regions concerned are difficult te characterize
ahjectively  e.p. the “starct of the tail’, Timaps warping provides an interesting solution 1o such problems
via a standard or ‘average’ object—in the examplas above, an *average fish". After such a standard fish
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has been obtained, points or regions of interest can be manually specified once and for all on the

standard fish. Theeeafter, when other fish of the same species are warped (o match the standard, the

feature points or regions in the new fish are immediately available, and measurements can be taken.
Some further speific points and questions are as follows,

(a) What would happem with thase algonthms if, for exampls, one of the fish had its mouth open? Is
this treated as local or global distortion?

{b} In Secticn 2.1, the authers claim that most of the information about the warping is contained in
the phase ruther than in the amphitude, This 35 cortainly troe in the casc of trunstation. However,
what evidence iz thete that this is o2 in more general warping?

{£) The authors mention that a multiresclution approach can be adopted to guard against becoming
trapped in local suboptima. To make the multirssolution appreach work, 1t has been found that
image smoothing is requiced—more smoothing at lower resolutions (Moulin, 20003,

(d} The amthors assert that parallelization would considerably reduce the computational cost of their
algorilthm, but it is not clear al which stage of the algorithm parallel processing could be applied.

{&) We believe thal the tansformaton (2% wsed m the synthetic aperlure radar example is not
corvectly called a ‘projection’. Projection transformations contain a denominator term; see, lor
example, section 14.1 of Haralick and Shapito (1993).

([} These days colour images are very commen. It would be interesting if the authors conld comment
ot how the Founsr—von Mises criterion could be modilied (o apply elleclively o solour image
data.

Dx. M. Titterington {Cfuiversity of Clasgow)

The paper has preseoted sn innovative approach o the oft-visited problem of image registration, the
ey new ideas being the Foucier-von Mises image model and the null set distortion erilenion, which
together create the quantity whose minimizer provides the solotion to the problam. The results are
impressive and the method seems to have considerable flexibility, although maybe the penalized
likelihood interpretation is more difficult o justify than in other implementations of (hat paradigm; [
mean here that the log-likalihocod term in previous applications uspally comes from a noiss modal that is
arguably more plavsible as a physical model than is the model underlying, say, cxpression (107, This is
usnally the case in the so-called Pavesian approaches w image analysis described famously in this
journal by Besag (1986}, but in that scenario one can in turn be sceptical about the contextual realism of
the prior that underlics the corresponding penally function, Maybe therefore the importance ol the
method is 1o be judged on a purely empirical basis, in which case the illustrations in the paper speak well
for the approach. Of course, it will be important to make sure that the method competes effectively with
the many existing metheds for image mgistration, and 1 apologize for my luzinecss in noet contributing to
such empirical compansens in this discussion. IT the new approach were o hold sway, then 1 wonder
whether githar or both of the two new ideas can be teansferred to other eepularization contexts; I would
be glad to hear the authors’ thoughts about this. Secondary issues of impertance in the method include
the ubiguilous problem ef choosing the reguldrization constant and the themy preblem of possible
mubtiple local optima. Again, 1 Feel that the foomer issue 15 less requiring of theoretical investigation here
than it is in contexts such as spline smoothing ot density estimation, but T de have concerns about the
quecstion of multiple optima, and I would be grateful for any further reassurance from the authors in the
light of their prastical experiences,

A Trobull (Fastitnd National de fa Recherche Agronomigue, Jouy-en-Josas)

Dr Glashey and Professor Mardia have given us an interesting and most useful paper. Te collects for us
many references on image warping and presents in a new and elegant way an effective approach to the
nen-rigid mulimodal registration problem. Considerng Fourer decomposiion of Lhe images, they
build the likelihood on the phase variables. This has some drawbacks bat also many advantages as
ciplained in the paper. In bricf, they use at most five parameters for the likelihood model and ook for a
non-rigid deformation in 2 space whose dimension can be chosen by the usar. They can also control the
deformation to forbid folds.

I we consider medical mage regsiralion of Lhres-dimensional ultrasound images with magnetic
resonance images, thete i3 often an imbalance berween parameters devoted te the likelihood and
parameters devoted o deformation: with many parameters for the likelibhood term and only few
parameters for the deformation (e.2. rigid registration). Hence Roche et af. (2000) propose comparing
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grey levels obtained from ultrasound with estimated values from a function of the vector of gray level
and gradient of the magnetic resonancs, This leads me to a queston: could medical imags multmodal
registration benefit from the parsimony of parameters associated with the phase model proposed by the
authors and estimate non-rigid deformation?

[ncidentally, normalization wsing the vaoance of grey levels insids the temoplaile domain is a techoigue
wsed in correlation oriteria te avold a match between only a few voxels of the test domain and the
template domain. How is such a spuricus sehtion eliminated using the criteria proposed by the
authors?

A technique considered wsefu]l in medical imapge registration is the so-called partial volume
interpolation {Maes ot &l, 1997, which consists in interpolating between voxels at the criteria level.
Henee, if x,, denotes a vescl in the test image domain and fi{x) the position in the template domain,
instead of considzring intensity intarpolation

I

where Sy are the intensities of voxels in the neighbourhood of e ) and wy, are weights dependent an
the location of f{x,} with respect to voxels of this neighbourhood, we consider

Z wilfix,) — ‘I'{JU'I}HI-

1L muy be inleresting to think about thas lechoigue also for the phasc-related crileria,

With regard to applications, the appeoach presented by the authors is very interesting and could be
considered in medical image registration and three-dimensicnal microscopy, unless cornputation time is
a hmitation,

K., ). Worsley (MoGill University, Monreal)

There has been considerable interest in image warping in the brain mapping literature in recent vears.
The preblem here is to ahgn or register three-dimensional magnetic resenance images of the human
hrain to an atlas standard. The main reason for doing this is (o compare regions of the brain “activated’
by a task such as a visual or cognitive stimulus measured by three-dimensional functional magnetic
resonance imaging (FMEI} across dilferenl subjects { Lange and Zager, 1997). Once the MEL images ars
registered to an atlas standard, the FMBI images can be deformed in the same way and then averaped
te imerease the signal-to-neise ratio, Furthermere, rogions of high signal can be identificd on the brain
atlas (Collins ¢f af., 1995), The problem is made difficall by the fact that brain anatomy is never quile
the same: sometimes the auditoey cortex conzists of two ‘folds’ or gyeil instead of one, 20 Do teason-
able warping can ever achieve a perfect match. On top of this, three-dimensional data are much
more difficult to warp than two-dimensional data; typical data sels consist of g million voxcls {throe-
dimensicnal pixels).

There have been two main approaches to this problem, The first is 2 "brute force’ approach in which
blurred images are registered by penalized intensity matching; then the amount of blurning is grad-
ually reduced until the desired resolution is achieved {(Colling ef «f, 1995). The second method is to
parameterize the warping by a set of basis functions, usually cosine transform bases {(Ashburner and
Friston, 1999}, Expanding the matching criterion as 4 linear function of the unknown coefficients results
1 a hinear model that can be Gted by ndge regression. The maximurm feasible number of basis [unclions
is B per dimension, which, together with theie products, gives #'x3 = 1536 nnknown coefficients to be
estimated, requiring the inversion of a 13361336 matrix. Thus the resolution is lower than that of the
first method, but it is much Faster, taking minutes rather than hours.

Finalty, the warpings themsclves can be used for the statistical analysis of shapua They are modelled
as a trivariate Craussian random field, and a three-dimensional field of Uotelling’s T -statistics is used to
detect localized shape ditferences between say groups of subjects (Cao and Wersley, 1999), Recent
advances in the geometey of random fislds have enabled us o set a threshold for Hetelling's 7 -fiekd
that can control the probability of detecting false positive shape changes in regions where no change has
taleen place Lo say 0,05,

Keming Yu (Lrwiversity of Plimeouth)
The paper does a fine job in explaining the important topic of image warping to a larger statistical
audience., The whels model can be éapressed by means of eguation (1) of the paper. 1 would hke to
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mention fwe alternative approaches, both of which may be applied to the Fourier van Mises mage
model adopted by the authors.

Full Bayesfan approcch

As the paper mentions, the penalized log-likelihood approach may be justfied by a Bayesian
formulation. Moreover, the penalized log-likelihood approach corresponds to the mode of 2 posterioe
density defined by means of a partiafly improper prior related to a Browniin metion or Wiener process.
Estimating parameler A is very important in 1his approach. However, 11 we adopt a {ull Bayesian
dapprioach with prior related to the distortion criteria to estimate the warping function by the postecior
mean, we can cifcetively inlcgrate out A No matter how complicated the likelibood function, an
advanced Markov chain Monte Carle method or CGibbs sampling can be used to do the full Bayesian
approach in spite of possibly heavy computation.

Eernel sntoothing

The cheiee of warp is a compromise belween s two-dimensional smooth distortion and one which
achieves a good malch, This paper reminds me aboul 4 challenging problem: hew to introduce kernel
smoothing technigues for image warping or how to smooth the noise out of image data with kernels
while achieving a good match at the same time. Why would the authors prefer their penalized log-
likclihood approach ever such an approach? Clearly, the local average with image warping is important
in the presencs of loval distortions, s0 that a kernel smoothing method has 2 potential application here,
Although standard kernel smoothing techniques such as Nadaraya-Watson-type estimation may blur
some unsmooth features such as edges, spikes and jumps, the kermelweighted log-fikelihood should be
applicable in image warping. For this, the proposed Fourier—vor Mises sredel in the paper is just
equivalent to identifying a new log-likelihood function which is switable for some imape warping
problems such as problem 2 in the paper, whereas a simple Gaussian likelihood is reasenable for
problem 3 o Lhe paper.

The authors replied later, in writing, as follows.

We are pleased by the number and diversity of the contributions to the discussion, which come from
both statistical and computer vision communitics and cover a specttum from theoreticsl issucs to
additional applications. We address the topics raised in the order in which they appear in the papet,

Peraltzed likelithood approach

Several discussants suppest a Bayesian formnulation (Jennison, Dryden, Ghosh and Murthy, and Yu).
This would facilitate a guantification of uncertainty in the estimators and possibly simplify the choice of
A, though at the price of greater computational elTort, In the paper we focused on poitl estimation and
were concernad about computing time, so we did no moree than o point out the oppornities for a
Bayesian approach. However, we are not opposed to it in our applications exp{—X D £, O} locks to be
4 reasonable measure of prior beliel in £, and it would be relatively straighiforwvard to coibed our ideas
wilhin current Bayssian methodology, In reply lo Prolessor Jennison™s question, it should alse be
possible to incorporate a stochastic mode] for . which would be beneficial in the fish application if
there were fewer or noisier images,

Both Professor Molchanov and Professor Rao raise issues regarding the theoretical underpinning of
image warping and imape averaging, and Professor Hancock provides useful links to work in computer
vision. We hope that our paper cocourages our more theoretical colleagucy (o study those important
problems Turther. We also thank Prolessor Angulo for hiz suggestion o combing Loand £ non-
acdditively, and Dr Yu for the idea of using kernel smoothing.

With regard to the choice of X, we agree with Dr Berman that crozs-validation is not ideal, though it
seemis to give reasonable results in the synthetic aperture radar applicution. His suggested alternative,
minimum Jdescription length coding, would be considerably more complicated 1o implemeant, we think,
In response to Professor Ghosh and Professor Murthy, our results are insensitive to the choice of A to
within an order of magmitude, according Lo Tables 1, 4 and 6.

Fourier—von Mises image model

We thank Professor Dryden for genaralizing our result on the distribution of 8% conditional on 47,
when ¥, is a Gaussian random field. As regards the reverse problem, of derving the distribution of Yr
from that of 8%, this is unlikely to have 4 tractable form. Also, it would be necessary to specify a Jmnt
distribution for #™ and 4™ in order for ¥, 1o have full degrees of freedom,
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Dr Ersbell asks how our method copes with images at very different resolutions. In principle there is
na problem, as either one image 15 interpolated or the other is subsampled. In prachice, this is probably
hest done in the Fouriet domain. In reply to ¢ Sun and 12r Buckley, our experience is that phases carry
most information about images because sinusoids at different lrequencies need to combine (o produce
edges, Fmpircal cvidence 15 given in Glasbey and Horgan (1995, Figs 3.6(c} and 3.6(d); when the
phases of one image arg combined with the amplitodes of another image, the result Iooks mach more
similar to the first one. Dr Koch questions the choice of £, Although the functional form of < in
equation {7) 14 semewhat arbitrary, we would expect the maximem hkelihood cstimator Em @ave the
best matching criterion. as borne out in Table 3. We agree with Dt Trubuil, that the Fouriar—von Mises
model could provide a parsimonious representation of differences between medical images.

In ceply to Professor Jeonison's poinl, we sum over x rather than fx) in equalions (4} and (109,
because we can then phtain analytic expressions for the average images, given by equations (27) and
(28}, and because some aspects of the algonithm are simplified. We note that Ramsay and Li (1998} did
likewise, and we have a similar philosophy (o them, of regarding ¥ as a single entity rather than as an
array of individual observations, Such a strategy 15 natural for functional data analysis, and the choice
of summand is then somewhat arbitrary.

We are interested in Professor Molchanov's suggestion to explore the use of the Fourier—von Mises
hkclihood as the basis for 4 grey scale immage metoc, We agres wilh Profossor Hancock and Professor
Ramszay and Dr Ramsay that the inclusion of local features in the likelihood criterion will be effecrive in
sothe applications. However, we do not wholly share Dr Coleman's view on expert knowledege, Humans
are almost always better (han compulers at imaze analysis, bul that cxpertise can be excecdingly
difficult to encode in computer algorithims in genaral and it can be better to develop automatic methods
independently.

Nulf zer distortion criteria

We thank Professor Hancock and Dr Sehastiani for the suggestion (o use other base distortion critena
than Dy and Dy, 1o derive alternative (7 O with the same null sel property bul with other [eatures
inherited from D5 Further, Professor Angulo and Dy Sebastiani propose alternatives to equation (14)
lor constoacting IV f, O) trom £, Also, we agree with Dr Schastiani’s point and had not meant to imply
that 2, = D2y whenever £ = ked(D5). Dr Ashburner and Professor Petron propose yet other oulh set
distortion criteria. Tn particular, criterion

1+ |7

g flogis,)° + logls: ¥},

where S is the Jacobian of an affine transformation and & and &, are its singular values {Ashburner
ef af., 1999, is minimized per unit area by the family of translations and rotations

R =g 5 = +x cos(f 4 x8inld), g, =0 — 2 sinld) + x; cos(#).
In comparison, our method yields
DU, R) = Da, () + Imm; — dmym/(G1) + &1y

using the =ame notation as in equation (21), and is alsc rotatiopally invardant. If g = A, an affine
transformation given by equation (18],

Dlg, R)=nmled) + o0a + ofy +ods + 2 — 2o +au) + (o — a1,
which can be re-expressed as
Dig, R) = muglsi 455+ 2 = 2050 +.5 + 2|1}

Thus our criterion also depends on |J] and a symmetric finction of 5, and 5, and has the benelit of
having heen derived under a unified approach.

We arc impressed by Mr Gustafsson and Professor Eudemo’s work with electrophoresiy gels, and we
welcome the combining of ouwr methods with realistic physicocherical models in specific applications,
We only partly sepport 12r Gray's wish that £ he obtainable empirically from data. In particular, in
our three applications we have prior knowledge which, in our opinion, should be given overriding
consideration. However, this could be an interesting area for further work, developing om Professor
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Fig. 16. Mustration of nonparametric regression: o, data; , [ obtainsd by minimizing expression (40}
~~~~~ , F obtalned by minimizlng exprassion (41) (in both cases for 3 range of values of 3 — 0, 0.1, 1, 19, oa, from
g to bottorn)

Hogg's ideas for using training data and addressing also Dr Koch's concerns regarding how to choose
an appropriate distortion criterion in new applications.

It would seem that the contrast in resnlts between the two students in wsing £1; and f}f, 5. to
which Profcssor Kent refers, s that onc case involves interpolation and the other smoothing and
extrapolation. Our approach also imvolves smoothing, and we find that the two distortion criterda
give different results. Consider a simplified one-dimensional case, where we estimate f by cither
MINIMmIZing

] 1 L l&f Z
gnl F, —fix)F + A L (5) dx, (4m

using the one-dimensional version of Dy, o

g[n—ﬂx}]l+k{£(%)zdx—i—i( us—";dx)z}, {41)

using the one-dimenzional version of £ f, ). In particular, expression (40 is the formulation of a lincar
spline. In both cases, the optimal fis plecewdse linear, with fx) obtained by standard methods. Fig 16
illustrates the two sets of cesults for ¥° = (1), 3, 1) for a range of values of A, We see that, except when
A~ (rand f{xj - ¥, the two sets of results are distinct. As X — oo, /'~ ¥ in case {40} and the best-
fitting straight line in case (41). We thank Professor Kent for raising this interesting point.

We apologize Lo Prolessor Jennizon, [or not making il ¢lear that oor numerical approsimation {or
B Ay includes contributions from the edges of grid squares, so that, for example

Iﬂﬂd‘ﬁ = qinz T_ﬁm (51_0 = ﬁi-"nu.nj}z-

r 1™
dxy 4 =i

Optimization algorithm

Professor Hancook advocates the nse of EM-type optimization algorithms, At an eariec stage in the
work we used a form of alternating algorvithm (Gilashey and Mardia, 199%), switching between
cstimating # and £, before opting for the more elegant conjugate gradient algorithm. In fact, the former
algonithm was computationally faster, a tope of concern to some discwssants (Berman and Gray),
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whereas others suggest Markoy chain Monte Carlo and other stochastic methods which would be even
mare computationally intensive, We ans interested 10 Professor Ramsay and Dr Bamsay's use of linite
element methods and T de Souza’s use of a composition of functions, In reply to Dr Berman’s
question, we used a stopping e to choose ¢, halving the grid size until it made no difference to the
estimated warp, Pathological solulions, wheTe an image maps Lo 4 single poinl on f, A0 47iss in cerlain
formulations, as D Trabuil points out, bat we did not encownter them.

13r Sun and D Buckley raise several computational peints. We agree that it makes sense to apply a
smoothing filter to images when worldng at 4 coarser resolution, to reduce the sk of being trapped in a
local optimum, a concern also expressed by Professor Titterington. This we did, and we were remiss in
not mentioning it in Section 2.3. As regards the potential for parallelization: because effects on F of
changes in & are locally compuiable, lerms in 8P/#F can be computed simullancowsly,

Applications

Several discussants question how the algorithm will perform i there are differences between imagess,
such as mavement, occlusion, growth or physiological differences (Ashburner, Hrsball, Ghosh and
Murthy, Sun and Buckley, and Worsley). The term AL is set by the user to constrain the warp so that a
distinction is made between minor differences, which are accommodated by the warp, and major ones,
which are not. In particular cases, whete certain differences are t0 be expected, tilor-made methods
may perform better. For example, there are specific alporithms for interpreting sterecscopic pairs {e.g.
Weng et al. (1993}), where occlusions oceur frequently and can be a source of additional information.
We agree with Dr Coleman that it is desirable, whersver possible, to captiee images in & way that avoeids
warping, but objects will always differ inherently in spite of imapging technology, such as fish even of the
same species, Professor Dryden malkes an interesting distinction between different images of the sanoe
object and images of different objects. However, we think that the same warping methodology is
appropriate in both cases, though the interpretation may be different.

Another question raised is how to handle applications where only subsets of images are informative
such as where backgrounds vary (Berman) or all intormation s within a boundary (Horgan and
Ramsay and Ramsay). If differences in the background are other than minimal, then image warping,
which treats the whole image as equally informative, is not the appropriate methodology. Instead, it
would he more appropriate to isolate (he regions ol interest, perhaps by matching templates to certain
features. In answer to Dr Horgan's and Professor Diyden's questions, we have not heen concerned with
the relative contributions of differences in boundancs and textures 1o fish discnmination, as we see il as
a strength of our approach that all differences are synthesized into a single critecion.

Dr Ersbell and Dr Sun and D Buckley ask about extensions to the methodology to colour and
multispectral images. This should be possible, the main complication we cxpect being the necessily (o
nse 3 multivariate von Mises distobution, as it would probably be vnrealistic to assume that phase
differences from different variates at a commeon frequency were independent. Tmage warping in three
dimensions is commeon practice {see, for example, the contributions of Professer Petrou and Professor
Worsley), amd we sce this as technically straightforward though computationally inteosive, However, it
is possible that extra complexities may arse in applications involving shape.

We thank D Sun and Dr Buckley for pointing out that equation (29) is not a perspective projection.
Rather, 1t 15 a paralfef prowction, which 15 an asymptotc approximation reguinng those [ewer
parameters, In response to Professor Titterington, we are not aware of extensions of our tdeas 1o other
regularization problems, though it may be possible to include null set distortion criteria in image
deconvohtion.

Finally, we thank (he discussants for bringing to our atlenlion a diverse range of other applications:
radar (Hancock), fundus images of the retina {Ersball}, pacsoips (Horgan), hend outlines and X-ray
computer tomography cardiag images (Tata and Jain), electrophoretograms (Gustafason and Rudemao)
and magnetic resonance imaging (Worsley and Linoey), Much remains to be done, both theoretically
and in applications, i this challenging area.
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