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This paper describes a way of designing a hvbrid
svstem for detecting the different stages of cervical
Hybridisation  includes  the  evolution of
knowledge-based  subnetwork  modules with GAs
wusing rough set theory and the 1D3 algorithm. Crude

CUancer.

subnetworks for each module are initially obiained
via rough set theory and the 1D3 algorithm. These
subnetworks are then combined, and the final net-
work is evolved wsing genetic algorithms. The evol-
whion uses a restricted mutation  operator  wihich
wtilises the knowledge of the modular structure,
already generated, for faster convergence. The GA
funes the network weights and structure  simul-
taneously. The aforesaid integration enhances the
pedomance in terms of classification score, network
size and fraining time, as compared to the conven-
tional  MLP.  This  methodology  also helps  in
imposing a structure on the weights, which resulis
in a network more suitable for rule extraction.
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1. Introduction

The worldwide occurrence of cancer of the cervix
cases shows [1] that only 20% of these cases occur
in developed nations, while 80% are found in
developing countries, including India [2]. In India,
cancer of the utenne cervix is the most frequent
malignancy observed in females, as per the reports
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of the different cancer registries published in the
LCM.R annual report [3].

The medical records of the Chittaranjan National
Cancer Institute (CNCI), Caleutta, for the last five
years, show that the commonest malignancy
observed in females is cancer of the cervix, which
comprises about 40% of the total female cases diag-
nosed. Cervical cancer has a more or less well
defined treatment modality. Treatments available for
this particular type of malignancy are surgery, radio-
therapy and chemotherapy, or a combination of all
of these, depending on the stage of the disease at
the time of diagnosis, and also on the physical
condition of the patient during treatment.

Staging is a process that uses information leamt
about cancer through diagnostic processes, such as
the size of the tumor, how deeply the tumor has
invaded tissues at the site of origin, the extent of
any invasion into surrounding organs, and the extent
of metastasis (spread) to lymph nodes or distant
organs. This is a very imporant process, because
proper staging is the most imporant factor in sel-
ecting the right treatment plan. Cervical cancer is
most frequently staged using the FIGO (Intemational
Federation of Gynaecology and Obstetrics) system
of staging. This system classifies the disease in
Stages [ through V.

With the advent of various new modalities of
treatment in the field of cancer, the decision making
towarnds a particular treatment regime to be adopted
for each individual patient has become a complex
process, and should keep pace with advancements
in medical science. More often, there is a large
amount of information to be processed, much of
which is quantifiable. Intuitive thought processes
involve rapid unconscious data processing, and com-
bine the available information by the law of aver-
ages, and consequently, have a low intra- and inter-



6l

person consistency. So from the point of intuitive
decision making, the clinician of today should move
towards analytic decision making which, though
typically slow, is conscious and consistent, and
clearly spells out the basis of the decisions.

In the field of oncology, decision making is not
only restricted to finding out the correct diagnosis
and planning of the proper treatment modality, but
also to take cognizance of factors like the patient’s
socio-economic background, his or her ability to
pusue a prolonged and expensive treatment pro-
cram, and also whether the ill-effects of the treat-
ment modalities will outweigh its efficacy. Unlike
other diseases, comprehensive cancer treatment
involves not only the above-mentioned treatment
interventions at the onset of the disease, but a
life-time follow-up information on each patient is
essential to prevent recurrence, and to calculate the
disease-free survival necessary to evaluate any treat-
ment efficacy. If a computerised program could be
developed taking all these factors into consideration,
that would help in the analytical decision making
towards treatment and other related parameters; it
would go a long way to make the task of a practic-
ing oncologist much easier.

The objective of this paper is to design a medical
decision support system for cancer management,
using a knowledge-based network in combination
with rough set theory and Genetic Algonthms (GA)
in soft computing paradigm. The proposed system
is able tw exploit the parallelism, self-learning and
fault tolerance characteristics of Artificial Neural
Network (ANN) models, knowledge encoding capa-
bilities of rough set theory, and the adaptive, parallel
and robust searching characterstics of GAs. The
model is built on data of cancer of the uterine
cervix for detecting its various stages.

Artificial Neural Networks (ANNs) generally con-
sider a fixed topology of neurons connected by links
in a pre-defined manner. These connection weights
are usually initialised by small random wvalues.
Recently, there have been some attempts at improving
the efficiency of neural computation by using knowl-
edge-based nets. This helps in reducing the searching
space and time while the network traces the optimal
solution. Knowledee-based networks [4-6] constitute
a special class of ANNs that consider crude domain
knowledge to generate the initial network architec-
ture, which is later refined in the presence of training
data. Such a model has the capability of outper-
forming a standard multilayer perceptron (MLP), as
well as other related algorithms, including those
based on symbolic and numercal ones [4,3].
Recently, the theory of rough sets has been used to
zenerate knowledge-based networks.
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The theory of rough sets [7,8] has emerged as a
major mathematical tool for managing uncertainty
that arises from granularity in the domain of dis-
course, i.e. from the indiscernibility between objects
in a set. The primary role of mough sets here is in
managing uncertainty and extracting domain knowl-
edge [9].

The ID3 approach [10,11] to pattern recognition
and classification  consists of a  procedure  for
synthesizing an efficient discrimination tree for
classifying pattems that have non-numeric attributes
or feature values. The discrimination tree can also
be expressed in the form of a body of rules and,
because of this, ID3 is also often thought of as an
inductive inference procedure for machine learning
or rule acquisition. These rules can also be encoded
to generate a knowledge-based network.

A recent trend in neural network design for large
scale problems is to split the onginal task into
simpler subtasks, and use a subnetwork module for
each of the subtasks [12]. The popular methods
available for decomposition include the Local Model
Network (LMN) [13] and the CALM (Categorising
And Leaming Module) model [12]. It has been
shown that by combining the output of several
subnetworks in an ensemble, one can improve the
eeneralisation ability over that of a single large
network [14].

Genetic Algorithms (GAs) are randomised search
and optimisation techniques guided by the principles
of evolution and natural genetics [15]. They are
efficient, adaptive and robust search processes, pro-
ducing near-optimal solutions and having a large
amount of implicit parallelism. Therefore, the appli-
cation of genetic algorithms for solving certain prob-
lems of pattem recognition (which need optimisation
of computation requirements, and a robust, fast and
close approximate solution) appears to be appropr-
ate and natural [16]. Many researchers have com-
bined genetic algorithms with neural networks for
building more powerful adaptive systems. Here one
simultaneously evolves the optimal set of weight
values and thresholds along with the network top-
ology and learning parameters [17,18].

The connection weights of these evolved modular
knowledge-based networks can be wused for
extracting refined rules for the problem domain [19].
Such models help in minimising human interaction
and associated inherent bias durng the phase of
knowledge-base formation, and also reduce the
possibility of generating contradictory rules. The
extracted rules help in alleviating the knowledge
acquistion borileneck, refining the initial domain
knowledge, and providing reasoning and explanation
facilities. One realises that, especially in the medical
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domain, the final responsibility for any diagnostic
decision always has to be accepted by the medical
practitioner. S0 the doctor may want to verify the
justification behind the decision reached, based on
his’her expertise. This requires the system to be able
to explain its mode of reasoning for any inferred
decision/recommendation, preferably in rule fomm,
to convince the user that its reasoning is correct.
All these aspects serve to demonstrate the utility
of automated rule extraction in a medical decision
support system.

In the present paper, an evolutionary strategy is
suggested for designing a modular knowledge-based
network using both rough set theory and the 103
algorithm. The evolutionary training algorithm gen-
erates the weight values for a parsimonious network.
Rough set theory and the ID3 algorithm are used
to obtain the sets of probable knowledge-based sub-
networks which form the initial population of the
GA. These modules are then integrated and evolved
with a restricted mutation operator that helps pre-
serve extracted localised rule structures as potential
solutions. This type of ‘divide and conquer’ strategy
accelerates the tmining significantly, as compared to
the training of the entire network. A restricted
mutation operator is implemented, which utilises the
knowledge of the modular structure evolved to achi-
eve faster convergence. Classification performance
of the models for different stages is compared with
that of the conventional MLP. The rules extracted
are also verified by oncologists.

2. Knowledge-based MLP

The output of a neuron in any layer (h) other than
the input layer (h = 0) is given as

1

Vi = -
1 +exp{—Zyr ' wi™h)

¥ (1
where v'~! is the state of the ith neuron in the
preceding (h — 1)th layer and wii™' is the weight of
the connection from the ith neuron in layer i — 1
to the jth neuron in layer i For nodes in the input
layer, v corresponds to the jth component of the
input vector. Note that x = Zy/~'wji".
Knowledge is extracted using two methods: (1)
rough set theoretic concepts; and (2) the ID3 algor-
ithm. The extracted crude domain knowledge is
encoded among the connection weights of an MLP.
This helps one to automatically generate an appro-
prate network architecture in terms of hidden nodes
and links. The methods model arbitrary decision
regions with multiple object representatives. The
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knowledge encoding algorithms are radically differ-
ent from existing models [4,3].

2.1. Rough MLP

The formulation of a Rough MLP [20] is described
in this section. The feature space gives the condition
attributes and the output classes the decision attri-
butes, so as to result in a decision table. This table
may be transformed, keeping the complexity of the
network to be constructed in mind. Rules are then
generated from the (transformed) table by computing
relative reducts. The dependency factors of these
rules are used to encode the initial connection
weights of the resultant knowledge-based network.

201 Rule Generation. Let ¥ =<UA> be a
decision table, with C and D = {d,, ..., d,} iis sets
of condition and decision attibutes, respectively.
Divide the decision table & = <[V A> into [ tables
d==UA=, i=1,. ..l comresponding to the /
decision attributes o, . . ., where

U=UU...UU and A =CU{d)

The size of each 9 (i=1,...0 is first reduced
with the help of a threshold on the number of
occurrences of the same pattem of atiribute values.
This will be elicited in the sequel. Let the reduced
decision table be denoted by J, and {x,....x5,}
be the set of those objects of [/, that occur in
Jui=1,...L

Mow for each d-reduct B = [h,, .. .b} (say), a
discernibility matrix (denoted M, (B)) from the d-
discernibility matrix is defined as follows:

¢; = {a € Balx) # alx)} (2)

for i, j=1,.. .0
For each object x; e x; ... i the discernibility
function f is defined as

=" 1 =ij=nj (3)
< Loy &
Then fy is brought to its conjunctive normal form

ic.nf). One thus obtains a dependency rule r;, viz
Pi—d;, where P; is the disjunctive nommal form

(dnf) of fij e i ...
The dependency factor df; for r is given by
_ :_.'urr!ll_f’l’l‘i]{:{,_]_]_l

df carddl f_.ail.]

(4)

where POS(d) = Uy, I(X), I{X) is the lower

approximation of X with respect to f. In this case,
dfi =1 [20].
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2.1.2. Knowledge Encoding. Consider the case of
class ¢; in the [-class problem domain. As the
method considers multiple objects in a class, a
separate n, ¥ n-dimensional attribute-value decision
table is generated for each class ¢, (where ny indi-
cates the number of objects in o).

Let there be m sets O, .. .0, of objects in the
table having identical atiribute  values, and
card(O;) = ny, i=1,...m, such that n, =... =
n, and £, n, = n;. The attribute-value table can
now be represented as an m X a array. Let
Mg My, - o A denote the distinet elements among
M. . ony, Such that my >ne, > ... >mn . Let a
heuristic threshold function be defined as

i 1

e Ry, — ng,
e ®)

where /() is the disjunction of all members of
¢y S0 that all entries having frequency less than Tr
are eliminated from the table, resulting in the
reduced attribute-value table. Mote that the main
motive of introducing this threshold function lies in
reducing the size of the resulting network. One
attempts to eliminate noisy pattern representatives
(having lower values of n;) from the reduced attri-
bute-value table.

While designing the initial structure of the net-
work, the union of the rules of the ! classes is
considered. The input layer consists of n atinbute
values, while the output layer is represented by [
classes. The hidden layer nodes model the conjuncts
in the antecedent part of a rule. The output layer
nodes model the disjuncts. For each conjunct, corre-
sponding to one output class (one dependency rule),
one hidden node is dedicated. Only those input
attributes that appear in this conjunct are connected
to the appropriate hidden node, which in turn is
connected to the corresponding output node. Each
disjunct is modelled at the output layer by joining
the comesponding hidden nodes.

Let the dependency factor for a particular depen-
dency rule for class ¢, be 1. The weight w) between

1
a hidden node ¢ and output node £ is set at jh-:; +

e, where foc refers to the number of disjuncis in

the antecedent of the rule, and e 1s a small random

number taken to destroy any symmetry among the

weights. MNote that fac = 1, and each hidden node

is connected to only one output node. The weight

w525 between an attribute a; and hidden node 1 is set
1

I
. Jacd
butes connected by the corresponding conjunct.

+ €, such that facd is the number of atiri-
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Again, focd =1. Thus, for an [-class problem
domain, there are at least [ hidden nodes. All other
possible connections in the resulting MLP are set
as small random numbers. It should be mentioned
that the number of hidden nodes is determined from
the dependency rules.

2.2, ID3 Algorithm

ID3 is effective when there is a body of data
consisting of a large number of patterns, each of
which is made up of a long list of nonumeric
feature/attribute  values. The class membership of
some of these patterns are known. The task is o
examine the bewilderingly large body of data, and
to find out what minimum combination of feature
values suffices to determine class membership.

In the ID3 approach [10], we make use of labelled
examples and determine how features might be
examined in sequence until all the labelled examples
have been classified correctly. We might find, for
example, that only a very small fraction of the
features need be used for classification purposes. If
this result obtained for the labelled examples, is
also representative of the much larger ensemble of
pattems comprising the onginal body of data, then
a very large gain will have been achieved through
use of ID3. In addition, the class membership
depends upon certain combinations of feature values,
as discovered by the discrimination tree, might also
provide insight into the basic mechanism that deter-
mine the processes being examined.

221, Model. 1D3 uses an information-theoretic
approach. The procedure is that at any point we
examing the feature that provides the greatest gain
in information or, equivalently, the greatest decrease
in entropy. Entropy is defined as —p log, p, where
probability p is determined on the basis of frequency
of occurrence.

The general case is that of N labelled patterns
partitioned inte sets of patterns belonging to classes
o = 1,2, 3, .. .1 The population in class ¢; is n,.
Each pattem has n features, and each feature has J
(=2) values. The D3 prescription for synthesizing
an efficient decision tree can be stated as follows
[10]:

Step 1. Calculate initial value of entropy

I
Entropyv(l) = Z —(ndNlog.(n /N (6)

i=]

i
= > —plog. p, (7)

i=1
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Step 2. Select that feature which results in the
maximum decrease in entropy (gain in information),
to serve as the root node of the decision tree.
Step 3. Build the next level of the decision tree
providing the greatest decrease in entropy.

Step 4. Repeat Steps | through 3.

Continue the procedure until all subpopulations
are of a single class and the system entropy is
zero. At this stage, one obtains a set of leaf nodes
isubpopulations) of the decision tree, where the
patterns are of a single class. There can be some
nodes which cannot be resolved any further. Now
we describe the knowledge encoding algorithm using
the decision tree generated by ID3. Let us consider
the leaf nodes only. The path from the root to a
leaf can be traversed to generate the rule correspond-
ing to a pattern from that class. [n this manner, one
obtains a set of rules for all the pattern classes, in
the form of intersection of the features/attributes
encountered along the traversal paths.

222 Enowledge Encoding. Let r, be a rule for
class ;. Each rule is mapped using a single hidden
node, modelling the conjunct, that connects the attri-
butes comesponding to the appropriate pattern class.
Therefore, one generates [ hidden nodes for an /-
class problem. The weight w}, between output node
k and hidden node i, is set at 1 + e where € is a
small random number. The weight w' between
attribute a; and hidden node ¢ is clamped to
1
Cardir)
of featuresfattibutes encountered along the traversal
path from the root to the leaf of the decision tree
containing the pattem comesponding 1o class ¢ In
other words, Cardir,) is the number of operands in
the conjunct of the rule r, for class ¢

+ €. Here Candir,) indicates the number

3. Modular Knowledge-based
Network

It is believed that the use of Modular Neural Met-
work (MNN) enables a wider use of ANNs for
large scale systems. Embedding modularity (ie. to
perform local and encapsulated computation) into
neural networks leads to many advantages compared
to the use of a single network. For instance, con-
straining the network connectivity increases its leam-
ing capacity, and permits its application to large
scale problems [12]. Most logical rules are of the
form If...Then class k., signifying the belong-
ingness to a particular class. Each module/
subnetwork takes care of one class, and can be

1

represented by the relevant mile. Therefore, it is
easier o encode a prior knowledge in modular
neural networks. In addition, the number of network
parameters can be reduced by using modularity.
This feature speeds computation and can improve
the genemlisation capability of the system.

We use two phases. First, an [-class classification
problem is split into { two-class problems. Let there
be [ sets of subnetworks, with » inputs and one
output node each. Rough set theoretic concepts are
used to encode domain knowledge into each of
the subnetworks. The number of hidden nodes and
connectivity of the knowledge-based subnetworks is
automatically determined. A two-class problem leads
to the generation of one or more crude subnetworks,
each encoding a particular decision rule. Let each
of these constitute a pool. So we obtain m =/
pools of knowledge-based modules. Each pool £ is
perturbed to generate a total of n, subnetworks, such
that my =...=n;=...=n, These pools consti-
tute the initial population of subnetworks, which are
then evolved independently using genetic algorithms.

At the end of training, the modules/subnetworks
corresponding to each two-class problem are concat-
enated to form an initial network for the second
phase. The inter-module links are initialised to small
random values, as depicted in Fig. |. A set of such
concatenated networks forms the initial population
of the GA. Note that the individual modules co-
operate, rather than compete, with each other while
evolving towards the final solution. The mutation
probability for the inter-module links is now set to
a high value, while that of intra-module links is set
to a relatively lower value. This sort of restricted
mutation helps preserve some of the localised rule

inpes
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structures, already extracted and evolved, as poten-
tial solutions. The initial population for the GA
of the entire network is formed from all possible
combinations of these individual network modules
and random perturbations about them. This ensures
that for complex multi-modal pattern distributions
all the different representative points remain in the
population. The algorithm then searches through the
reduced space of possible network topologies.

4. Evolutionary Design

Genetic algorithms are highly parallel and adaptive
search processes based on the principles of natural
selection [13]. Here we use GAs for evolving the
weight values, as well as the structure of the MLP
used in the framework of modular neural networks.
Unlike other theory refinement systems which train
only the besr network approximation obtained from
the domain theories, the initial population here con-
sists of all possible networks generated from rough
set theoretic as well as [D3 rules. This is an advan-
tage, because potentially waluable information may
be wasted by discarding the contribution of less
successful networks at the initial level itself.

Genetic  algorithms  involve three basic pro-
cedures — encoding of the problem parmameters in
the form of binary strings, application of genetic
operators like crossover and mutation, selection of
individuals based on some objective function to
create a new population. Each of these aspects is
discussed below with relevance to our algorithm.
The block diagram depicting the interaction between
the different hybrid components is provided in
Fig. 2.

4.1. Chromosomal Representation

The problem variables consist of the weight values
and the inputfoutput fuzzification parameters. Each
of the weights is encoded into a binary word of 16
bits in length, where [000 ... 0] decodes to —128
and [111...1] decodes to 128. An additional bit is
assigned to each weight to indicate the presence or
absence of the link. If this bit is (), the remaining
bits are unrepresented in the phenotype. The total
number of bits in the sting is therefore dynamic
[17]. Thus, a total of 17 bits are assigned for each
weight. Initial population is generated by coding the
networks obtained by knowledge encoding, and by
random perturbations about them. A population size
of 64 was considered.
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Fig. 2. Steps for designing a sample Modular Rough Fusey MLP.

4.2. Genetic Operators

421, Crossever. It 1s obvious that, due to the
large string length, single point crossover would
have little effectiveness. Multiple point crossover is
adopted to ensure a high probability for only one
crossover point occurring within a word encoding a
single weight. The crossover probability is fixed
at 0.7,

4.2.2. Mutation. The search sting being very
large, the influence of mutation is more on the
search. Each of the bits in the sting is chosen to
have some mutation probability (pewr).  This
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Fig 4. Varistion of mutation probability along the encoded string.

mutation probability, however, has a spatio-temporal
variation. The wvariation of pmur with iterations is
shown in Fig. 3. The maximum value of pmur is
chosen o be 0.4 and the minimum value as 0.01.
The mutation probabilities also vary along the enco-
ded string as shown in Fig. 4, with the bits come-
sponding to inter-module links being assigned a
probability pmuwr ie. the wvalue of pmwr at that
iteration) and intra-module links assigned a prob-
ability pmui/10. This is done to ensure least alter-
ations in the structure of the individual modules
already evolved.

4.3. Choice of Fimess Function

In GAs the fitness function is the final arbiter for
string creation, and the nature of the solution
obtained depends on the objective function. An
objective function of the form descnbed below is
chosen:

F=mf + af (8)
where
fi=
No. of Correctly Classified Sample in Training Set
Total No. of Samples in Training Sei

6 No. of links present
f Total No. af links pos sible

Here o, and o, determine the relative weightage of
each of the factors. o, 15 taken to be (0.9 and o is
taken as 0.1, to give more importance to the classi-
fication score compared to the network size in terms
of number of links.
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4.4, Selection

Selection is done by the roulette wheel method. The
probabilities are calculated on the basis of ranking
of the individuals in terms of the objective function,
instead of the objective function itself. Fitness rank-
ing overcomes two of the biggest problems inherited
from traditional fitness scaling: over compression
and wnder expansion. Elitism is incorporated in the
selection process to prevent oscillation of the fitness
function with generation. The fitness of the best
individual of a new generation is compared with
that of the current generation. If the latter has a
higher value — the corresponding individual replaces
a rmandomly selected individual in the new popu-
lation.

5. Implementation and Results

The data consists of a set of 221 cervical cancer
patient cases obtained from the database of the
Chittaranjan National Cancer Institute (CNCI), Cal-
cutta. Cross-validation of results is made with oncol-
ogists. There are four classes corresponding to
Stages [, 11, [T and IV of the cancer, each containing
19, 41, 139, 19 patient cases, respectively. The input
nodes/features of the proposed model represents the
presence or absence of the symptoms, and the signs
observed upon physical examination. The 21 boolean
input features refer o Vulva: healthy (Vulh)), Vulva:
fesioned (Vu(l)), Vagina: healihy (Valh)), Vagina:
spread to upper part (Val(u)), Vaginag: spread middle
part (Vaim)), Vagina: spread to lower part (Va(l)),
Cerviv: healthy (Celh)), Cervix: eroded (Crle)), Cer-
vie: small wleer (Crisu)), Cervic: wleerative growth
(Crilu)), Cervic: profiferative growth (Ceip)), Cer-
vie: wlcero -profiferative growth (Cx(l)), Paracervic:
Sree (PCHf), Paracervic: infiltrated (PCx(i)), Uri-
nary bladder base: soft (BBis)), Urinary bladder
base: hard (BB(h)), Rectrovaginal  sepium:  free
(RVS(N), Rectrovaginal seprum: infilirated (RVS()),
Parametrium: free (Para(f)), Parametriun: spread,
bur ot wpio (Parainu)) and Parametrium: spread
upto (Paralu)), respectively.

Let the proposed methodology be termed Model
§. The dependency rmles used for knowledge enco-
ding are obtained by two methods - using rough
set theory and the [D3 algorithm. The performance
of the methodologies is compared with that of an
ordinary MLP (termed Model O), trained using
backpropagation (BP) with weight decay.
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Table 1. Crude rules obtained by rough set theory.

| Cxisu) vy Paralfy, Cx(p) o/ Paralf), Cxisu) vy
Para(nu)

11 Valh) »/ Cx(u). Vath) v Cx(l)
Valu) %/ Cxlu), Paralinu), Pexif)

111 Para(nu), Parau)., Vaiu)
Vaiu) A Cxfu)) oy Cxdl) o Va(m)
(Valhy M Cxiup) vy (Vaiu) M Cxiud) oy Cxily
(Walu) A Cx(p)) oy Vaim) & Cxil)

IV (Vall) M Cxiu)y vy (Cxfudp M Vaiu)y vy (Vaily A
Para(u))
(Valy M Cxip)y v Vaim).

Table 2. Crude rules extracted via the ID3 algorithm.

1 Paraif) /™ Valh) / Cx{u)
Parainu) / Vaihy / Cxiu) / PCxify / BBis)
11 Va(uy / Para(fy /A Cxih)
Valh)y /™ Pexii) /A Cxiu) 2 BBis) / Para(nu)
Vaiu)p / Parainu) / Cx(l) /" BB(s)
I Vathy M Cxily /5 Paralu)
Para(u) / Cx{u) /M PCx(i}) / BB(s)
Valu) M Cxiu) 7 Paraiu)
IV Vaily / Cxiu) / Paralu)
Vaim) / BB{h) / Cxiu) / Paralu)
Va(m) /" Cxip) / BB(h) /" Paralu).

5.1. Knowledge Encoding and Classification

The dependency rules generated via rough set theory
and the ID3 algorithm, and used in the encoding
scheme are provided in Tables | and 2. Recognition
scores obtained for each of the data by the proposed
modular network (Model 5) are then presented and
compared. Here 30% of the samples are used as
training set, and the network is tested on the remain-
ing samples.

These extracted rules are encoded to generate the
knowledge-based MLP iModel S). Table 3 demon-

Table 3. Comparative classification scores for different
models.

Stage Model O Model 5 with knowledge
encoding via
Rough set D3
theory algorithm
Train Test Train Test Train  Test
Li%) G500 6470 6300 6470 9000 B9.TI]
(%) G905 6773 6005 6803 TIEL 7204
1% 9366 9301 9413 9002 9014 9002
IVi%) 4211 4009 4421 4187 4211 40419
MNet(%) 8097 7923 §Rl.02 7052 H274 B002
# links 175 118 82
lterations 90 90 50
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Fig. 5. Evolution of overall correct classification percentage with
training sweeps. (1) Network trained with BP (Model O3 (2)
miodel 5 with initial rule encoding via rough set theory: (3)
model 5 with initial rule encoding via ID3 algorithm.

strates the performance of Model 5, using knowl-
edege encoding by both rough sets and ID3 algorithm.
It is observed to be superior, in both cases, to that
of Model O. This can be cormborated from Fig. 3.
Note that the results for Stage IV are poor due o
the absence of sufficient training data.

5.2. Rule Extraction

Consider a simple heuristic for rule extraction. Let
us define the following quantities: Thres, = mean of
the weights = (), Thres, = mean  of  the
weights = Thres,, Thres, = mean aof the
weighis = Thres.. We consider weights having value
ereater than Thres; as strong connections (plotted
as thick lines in Fig. 6), weights having wvalue
between Thres: and Thres; as moderate  links
iplotted as normal lines in Fig. 6). We obtained
Thres, = 2498, Thres, = 76.64 and Thres; = 85.09.
If the same set of threshold values are applied to
Model O, no strong links are obtained. Hence, it is
not possible to extract any crisp rules from it. On
the other hand, the network obtained using the
proposed Model S5 contains a number of strong
links which can be used in extracting meaningful
logical rules.

A sample set of refined rules extracted from the
network, considering only the strong and moderate
links, is presented below.

For a network with initial weight encoding from
the crude rules obtained by rough set theory:

§ = (Valk) A Parai 0 5 (Cxih) A Cofu) S BBis))
= (PCxif) M PCxii)) oy Pamif) o Pamfm)
B = Vaih) & Cofu) A Cxfl) 5 Parafu)



Evalurionary Modular MLP for Staging of Cervical Cancer

(e}

Fig 6. Connectivity of the network obtained for the data, using
Muodel 5, with initial rule encoding via (a) rough set theory, and
(b) I3 algorithm.

IV = Valm) /7 (Cx{u) A Cxp)) 4 {Pam{nu) /™ Parafu)).

For a network with initial weight encoding from
the crude rules obtained by the 1D3 algorithm:

§o—= Col) A CxiD A PCxi) A BBis) A Paralf) / Paralnu)

£ = Vail) M Vaju) A Cxip) A Cxfl) A Parafnu) /A Parafu)

= Vali) M Cafu) A Cxfl) N PCxii) 5 BBis)

IV = Vaiu) /A Vaim) A Val) A Coqu) A Cxip) & PCriE) &
BB(h) S Pamimu) /% Paraju).

Here we provide the expertise obtained from
oncologists. In Stage [ the cancer has spread from
the lining of the cervix into the deeper connective
tissue of the cervix, but it is still confined within
the cervix. Stage Il signifies the spread of cancer
beyond the cervix to nearby areas like parametrial
tissue, that are still inside the pelvic area. In Stage
Il the cancer has spread to the lower part of the
vagina or the pelvic wall. It may be blocking the
ureters (tubes that carry urdne from the kidneys o
the bladder). Stage IV is the most advanced stage
of cervical cancer. Now the cancer has spread to
other parts of the body, like the rectum, bladder or
lungs. 1t may be mentioned that the mles generated
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by the proposed algonthm are validated by the
experts’ opinion.

6. Conclusions

A methodology for detecting the different stages of
cervical cancer using a modular knowledge-based
network with genetic algonthms is presented. The
proposed algorithm involves synthesis of several
MLP modules, encoding mles generated by (1)
rough set theory, and (2) ID3 algorithm, for a
particular class. These knowled ge-based modules are
refined using a GA. The genetic operators are
implemented in such a way that they help preserve
the modular structure already evolved. It is seen
that this methodology along with modular network
decomposition results in superior performance in
terms of classification score, training time and net-
work sparseness, thereby enabling easier extraction
of rules. The present investigation not only provides
a decision support system for cervical cancer man-
agement, but also demonstrates a way how different
sofi computing tools like neural networks, GAs and
rough set theory can be integrated to build an
efficient decision making system for pattern classi-
fication and rule generation.
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