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This article first describes a fuzzy version of 103,
called fuzzy ID3 by incomporating fuzziness at input,
output and node levels. A fuzziness measure is com-
puted ai each node, in terms of class membership, to
take care of the uncertainty arising from overapping
regions. The measure @5 such that in the crisp (non-
overfapping) case, the algorithm boils down 1o the
classical 1D3. A confidence factor is estimated ol
the nodes for both making a decision and determin-
ing the rule base for network mapping. In the second
part, we deal with a scheme of designing a fuzzv
knowledye -based network by encoding an MLP with
the rufes generated wsing fuzzv 1D3, whereby the
network topology i auwiomatically determined. The
Srequency of samples (representative of a rule) and
the confidence  foctors of  wunresolveddambiguous
nodes are laken into consideration during mapping.
The effectiveness of the svstem, in temms of recog-
nition scores and speed of convergence, is demon-
strated on mwo real life data sets.
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1. Introduction

Decision trees have been used extensively as classi-
fiers in pattern recognition [1]. By applying the
decision tree methodology, a difficult decision can
be broken into a sequence of simpler steps. Because
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of the inherent tree structure, only some of all
possible questions need to be asked in the process.
Each node in the decision tree is either a leaf node
(decision node) or an internal node (a testing node).
Each leaf node usually represents a unique class.
When a data point reaches a leaf, after traversing
the tree in a top-down manner from its root, we
decide the class of the data point as that represented
by this leaf node. Each internal node represents a
test, with respect to a feature, that is made in the
process of ardving at a decision.

Quinlan popularised the concept of decision trees
by introducing D3 [2], which stands for Inreractive
Dichotomiser 3. Systems based on this approach use
an information theoretic measure of entropy for
assessing the discriminatory power of each attribute.
ID3 is a popular and efficient method of making
decision for classification of symbolic data. Gener-
ally, it is not suitable in cases where numerical
values are to be operated upon. Since most real life
problems  deal with non-symbolic  (numeric,
continuous) data, they must be discretised pror to
attribute  selection. Another problem with 1D3 s
that it cannot provide any information about the
intersection region where the pattern classes are
overdapping.

Generally, Anificial Neural Nets (ANNs) consider
a fixed topology of neurons connected by links in
a pre-defined manner. These connection weights are
usually initialised by small random values. Recently,
there have been some attempts at improving the
efficiency of neural computation by using knowl-
edge-based nets. This helps in reducing the searching
space and time while the network traces the optimal
solution. Knowledge-based networks [3-3] constitute
a special class of ANNs that consider crude domain
knowledge to generate the initial network architec-
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ture, which is later refined in the presence of training
data. Such a model has the capability of outper-
forming a standard MLP, as well as other related
algorithms, including symbolic and numerical ones
[3.4].

Both decision trees and neural networks are most
commonly used tools for pattern classification. In
recent years, enommous work has been done in an
attempt to combine the advantage of neural networks
and decision trees. The new architecture so obtained
is called a newral free [6-11]. The neural tree
architecture repored in the literature can be grouped
according to the learning paradigm employed for
their training. Most of the existing neural tree archi-
tecture are either directly or indirectly related to
feed-forward neural networks. In fact, the character-
isation neural tree has been indistinguishably used
to describe approaches using feed-forward neural
network as a building element, in order to improve
the performance of decision trees. This also includes
the approaches employing the decision tree as a tool
for building and training feed-forward networks.

In the first family of approaches, one attempts to
develop a tree structure containing a feed-forward
neural network among the nodes. Some of the
remarkable work in this area are Sankar and Mam-
mone’'s Neural Tree Network (NTN) [6] and Ceomn-
petitive Newral Trees (CNeT) by Behnke and
Karayiannis [7]. The architecture of NTN consists
of single layered neural network connected in the
form of a tree. On the other hand, CNeT has
a structured architecture, and performs hierarchical
clustering by employing unsupervised learning at
node level.

In the second family of approaches, an attempt
is made to build neural networks either by
developing tree structured neural networks or by
mapping decision trees to multilayer neural network.
Sethi [9] proposed a procedure for mapping a
decision tree into a multilayered feed-forward neural
network with two hidden layers. The mapping rules
are as follows: (a) the number of neurons in the
first hidden layer equals to the number of internal
nodes in the tree. Each of these neurons implements
one of the decision functions of the internal nodes;
(b) the number of neurons in the second hidden
layer equals the number of leaf nodes in the tree;
(c) the number of neurons in the output layer equals
to the number of distinet classes. Ivanova and Kubat
[10] have directly mapped a decision tree into a
three-layered network, such that each conjunction
(in a mle) is modeled by a hidden node. The input
domain is partitioned into a set of non-overlapping
intervals of attributes, which are then mapped to
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input nodes of the network. Setiono and Leow [11]
computed binary tmining patterns from the decision
rules and attribute intervals. These are used to train
a feed-forward network, which is then pruned to
generate an optimal topology.

The fusion of fuzzy sets with decision trees
enables one to combine the uncertainty handling and
approximate reasoning capabilities of the former
with the comprehensibility and ease of application
of the latter. This enhances the representative power
of decision trees natwrally with the knowledge
component inherent in fuzzy logic, leading to better
robustness, noise immunity and applicability in
uncertainfimprecise contexts. Fuzzy decision trees
[12] assume that all domain attributes or linguistic
variables have pre-defined fuzzy terms, determined
in a data-diven manner using fuzzy restrictions.
The information gain measure, used for splitting a
node, is modified for fuzzy representation and a
pattem can have non-zero match to one or more
leaves. Designs of fuzzy decision trees have also
been repored in the literature [12-15].

The present aricle consists of two parts. In the
first part we attempt to develop a fuzzy version of
ID3, called fuzzy 1D3. Fuzzy set-theoretic concepts
are introduced at the input, output and node levels
of the ID3 algorithm to handle uncertainty. A
scheme for linguistic discretisation of continuous
attributes is developed. A fuzziness measure is com-
puted at the node level. in terms of class member-
ship, to take care of overlapping classes. Fuzziness
is incorporated in such a way that in the crisp case,
when the classes are not overlapping, it boils down
to the classical ID3. In the case of overlapping
classes, it provides extra information regarding the
intersecting regions. A confidence factor is estimated
at the nodes while reaching a decision and determin-
ing the rule base.

The second part deals with a scheme of encoding
an MLP with the rules generated using fuzzy ID3.
The network topology is automatically determined,
and the initial connection weights directly mapped.
This results in a fuzzy knowledge-based network.
Since a decision tree is used in the process, one
can also call it a neural tree. The frequency of
samples, representative of a mle, is taken into con-
sideration while mapping the initial weight values of
the MLP. A novel approach for mapping confidence
factors of unresolved/ambiguous nodes directly into
a fuzzy neural network is also described. The resuli-
ant knowledge encoded network leads to faster con-
vergence. The effectiveness of the algonthm is dem-
onstrated on two real life data sets, viz., Vowel and
Balance Scale data.
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2. ID3 and the Need for Fuzzification

Before going into details of the proposed fuzzy [D3
algorithm, let us first describe the classical ID3 in
braef. This is followed by explaining why one needs
o incorporate fuzziness in [D3.

2.1. ID3 Algorithm

ID3 uses an information-theoretic approach. The
procedure is that at any point we examine the
feature that provides the greatest gain in information
or, equivalently, the greatest decrease in entropy.
Entropy is defined as —p log2 p, where probability
p is determined on the basis of frequency of occur-
rence.

The general case is that of N labelled pattems
partitioned into sets of patterns belonging 1o classes
C.i=123, ..., [ The population in class C, is n,
Each pattern has n features, and each feature has
Ji=2) values. The D3 prescription for synthesising
an efficient decision tree can be stated as follows
[16]:

Step 1. Calewlate initial value of entropy

I

Entropyv(f) = 2 — (nmi/N)loga(n /N

i=1

i

=2 —plogap, (1)
im=]

Step 2. Select thai featwre which resulis in the

maximum decrease in entropy (gain in information),

fo serve as the root node of the decision tree.

Step 3. Build the nexi level of the decision rree

providing the greatest decrease in enfropy.

Step 4. Repear Steps | through 3. Continue the

procedure until all subpopulations are of a single

class and the system entropy is zero.

At this stage, one obtains a set of leaf nodes
isubpopulations) of the decision tree, where the
patterns are of a single class. Note that there can
be some nodes which cannot be resolved any further.

22, Relevance of Fuzzy Sets

As we have mentioned earlier, ID3 cannot provide
any information in the intersection region when the
classes are highly owverlapped. Let us explain why
ID3 fails to give any information when there are
overlapping pattern classes. In [ID3 algorithm we
partition the sample space in the form of a tree by
using attribute values only. When two sample points
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from two different overlapping classes lie in the
intersection region, the corresponding features for
these samples are the same. This implies that they
travel through the same path in the decision tree
and finally land onto the same node. We cannot
split the node further because the gain in entropy
AEni will always be zero, which is one of the
stopping criteria during tree building. Thus, in the
overdapped region, an attribute value fails to provide
any decision about the leaf node.

To get more information in this regard, one needs
to dig the data further. Intition tells us that the
pattemn points of any particular class must be clus-
tered around some characteristic prototype or class
centre. We wish to exploit the fact that the points
nearer to this centre have higher belongingness to
that class, as compared to the points further away
from it. This brings in the concept of fuzzy sets
which allows a pattern to have finite non-zero mem-
bership to more than one class. Here lies the utility
of employing fuzzy sets to model overlapping/
ambiguous real life pattern classes [17].

Moreover, the conventional [D3 can handle only
discrete-valued/symbolic attributes. Real life prob-
lems, on the other hand, require the modelling of
continuous attributes. Fuzzy sets can also be useful
in this aspect.

3. Fuzzy ID3

Fuzzy set-theoretic concepts are introduced at the
input, output and node levels of the [D3 algorithm.
Linguistic inputs [18,19] enable the handling of
continuous attibutes at the input. The output is
evaluated in terms of class membership [15,19]
values. A fuzziness measure is computed at the
node level to take care of overlapping classes. This
is reducible to the classical entropy, used in the
conventional 1D3, in the crisp case. A confidence
factor is estimated at the nodes while reaching a
decision and determining the rulebase.

3.1. Input Representation

Any input feature walue is described in terms of
some combination of overlapping membership
values in the linguistic property sets low (L),
medium (M) and high (H). An n-dimensional pattem

F,=|[F,,, Fa. ..., F,| is represented as a 3n-dimen-
sional vector [19.17]
I'?i o I#1-:m-ﬂ‘,|] [Fi]!‘ #u.mdhmﬂr‘”][Fi)!' [2}

Migns p (Fids ooy Muign,y ()]
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where the p values indicate the membership func-
tions of the comesponding linguistic -sets fow,
medium and figh along each featre axis. Each p
value is then discretised, using a threshold, to enable
a convenient mapping in the ID3 framework.

When the input feature is numerical, we use the
w-fuzzy sets (in the one dimensional form), with
range [0,1], represented as

wiFed) =
' |F—cl|\? A
2(1 - ErA), for S = F = ol =
F—e A 3
Lo 2("”)1 ‘ )3, for 0 = ||F, — ¢f = 5 )
0, otherwise

where A=) is the radius of the =function with ¢
as the central point. Note that features in linguistic
and set forms can also be handled in this frame-
work [19].

3.2, Ouiput Representation

Consider an [-class problem domain. The member-
ship of the ith pattern in class k, lying in the range
[0.,1]., is defined as [17]

|
palF) = T (4)

1+ (Em]’"

Ja,
where z; is the weighted distance of the training
pattern F, from class C,, and the positive constants
Jo and f are the denominational and exponential
fuzzy generators controlling the amount of fuzziness

in the class membership set.

3.3, Fuzziness Measure

Fuzziness is incorporated at the node level by chang-
ing the decision function from classical entropy to
a fuzzy measure FM. This is defined as

i) i N
1
FM() = 2. (N > min(p 1 — pa)
fm ] =]

- () (3)

Lol
- 2 (NZ ming g, | — )
k=1

i=]

— M |“E~:P.¢)
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where N is the number of pattern points in the
training set, { is the number of classes, n; is the
population in class C, p, is the a priori probability
of the kth class and p, denotes the membership of
the ith pattern to the kth class.

The expression for FM is so defined that when
the class membership values are zero or one (crsp),
it boils down to classical entropy. The first term on
the rnght-hand-side of Eq.(5) ensures that pattem
points lying in overlapping regions are assigned
lower weights during the construction of the decision
tree; this is intuitively appealing. The reason for
this lower weighting is that such ambiguous patterns
(having wp values close to (0.5) lead to an increase
in FM, thereby placing an impedance to its minimis-
ation.

3.4, Estimating Confidence of Nodes

Mandal etal. [20] provided a scheme to calculate
the Confidence Factor (CF) and mlebase in order
to infer the belongingness of a point to a particular
class in terms of multiple choices (e.g. first choice,
second choice). It is defined as

1 1 <
CF = #'+;"_1'§:{#'—;5-}] (6)
2 o
where p; is the class membership of the pattern to
the jth class C, and p’ is the highest membership
value. The concept of CF takes care of the fact that
the difficulty in assigning a particular class label
depends not only upon the highest entry p', but
also on its differences from the other entries p,.

Note that for computing CF, and CF, (when
second choice is necessary, leaving out the first
choice in Eq. (6) [20], p' is set equal to first and
second highest membership values, respectively. Let
CF* denote the CF, value of a pattern corresponding
to class O, (having highest membership value). Then
the rule base is as follows:

1. If 0.8 = CF* = 1.0 then very likely class C, and
there is no second choice.

2. If 0.6 = CF*< 0.8 then likelv class €, and there
is second choice.

3. If 0.4 = CF* < 0.6 then more or less likely class
Cp and there is second choice.

4. If 0.1 = CF* < 0.4 then nor unlikely class C; and
there is no second choice.

5. If CF*<0.1 then unable to recognise class C
and there is no second choice.

In the case of single choice (when mle 1 fires), we
update the confidence factor to one, such that
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CF,=1 and CF,=10. For other choices (when
rules 2 to 4 fire), we additionally compute CF;
corresponding to the class with second highest mem-
bership wvalue. Finally, an aggregation is made at
the node level.

3.5, Algorithm

Let us now describe the algonthm in detail.

I. Calculate initial value of fuzziness measure (FM)
using Bq. (3).

2. Select a feature 1o serve as the oot node of the
decision free.

(a) For each attribute A, 1=12,..., 3n, par-
tition the original population into two subpar-
titions according to the values a; (j=10 or
1, stands for the attnbute value O or 1) of
the attribute A,. Although there are n;, patterns
coming down branch a,, these patterns need
not necessarily belong to any single class.

(b) Evaluate the FM for each branch.

(c) The decrease in FM as a result of testing
attabute A; is AFM (i) = FM(1) — FM(IA).

(d) Select an attribute A; that yields the greatest
decrease in FM, 1e. for which AFM
(k) = AFM(i), for all i= 12, .. L i# kL

(e¢) The attnbute A; is then root of the decision
ree.

3. Build the next level of the decision iree. Select
an attribute A, to serve as the level | node such
that, after testing on A;- along all branches, we
obtain the maximum decrease in FM.

4. Repeat steps 3 through 5. Continue the process
until all sub-populations reaching a leaf node are
of any single class or the decrease in FM, ie.
AFM, 1s zero. Mark the terminal nodes which
have pattern points belonging to more than one
class. Such nodes are termed as wnresolved nodes.

5. For each unresolved node do the following:

(a) Calculate the confidence factors CF, and CF;
as in Eq. (6).

(b) Identify the classes corresponding to which
there is at least one CF, or CF.,.

(c) For each pattern point in the node, if
CF, =08 then put CF, =1, CF, =10.

(d) Consider the classwise average summation of
the CF wvalues.

(e) Mark the classes getting the highest and
second highest CF walues. Declare this node
as the representative of the two classes found
with membership corresponding to the two
highest CF values.
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4. Generating Network Architecture

Before going into the details of rule generation
and network mapping, we introduce the different
parameters of a multilayer perception (MLP). Let
the output of a neuron in any layer (i) of an MLP,
other than the input layer (h =0), be ¥/ = 1/[1 +
exp(— E 'wy )], where 3! is the state of the
ith neuron in the preceding (h — 1)th layer and
wi~! is the weight of the connection from the ith
neuron in layer i — 1 1o the jth neuron in layer h.
For nodes in the input layer, ! corresponds to the
jth component of the input vector. Note that x =
}:.J_\f"'»vjj i

The 3n-dimensional input vector of Eg. (2) is
clamped at the input layer to the input nodes
[Wol. . .35 Here ¥'... .5, refer to the activations
of the 3n neurons in the input layer. The [-dimen-
sional output vector, in terms of class membership
values () of pattems by Eq. (4), is clamped at the
{ nodes in the output layer of the MLP. During
training, the weights are updated by backpropagating
errors with respect to these membership values such
that the contribution of uncertainfambiguous pattem
vectors is automatically reduced.

4.1. Rule Generation and Encoding

Now we go into the details of the knowledge enco-
ding algorithm using the decision tree generated by
fuzzy [D3. Let us consider the leaf nodes only. The
path from the mot to a leaf can be traversed io
cenerate the rule corresponding to a pattern from
that class. In this manner, one obtains a set of rules
for all the pattern classes, in the form of intersection
of the features/atiributes encountered along the tra-
versal paths. The ith attribute is marked as A, or
A, depending on whether the traversal is made along
value a,, or a, Each rule is marked by its fre-
quency, that is the number of patitern points reaching
this leaf node. Note that each leaf node that has
pattern points corresponding o only one class is
termed resolved. We assign the confidence wvalue
CF of each such rule as unity.

The rules corresponding to the unresolved leaf
nodes are also generated by traversing the coire-
sponding paths from the root. Here each rule pertains
to two or more classes. Hence we obtain two or
more frequencies at such nodes. The CF is computed
using Eq.(6). Each rule can have both CF, and
CF,, when there exists a second choice according
to the rulebase provided in Section 3.4,

Let ry; be the ith rule for class C; with frequency
Jiw. Each rule is mapped using a single hidden node,
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modeling the conjunct, that connects the attributes
corresponding to the appropriate pattern class. Note
that each class can have one or more rules. There-
fore, one generates at least [ hidden nodes, in a
single hidden layer, for an [-class problem. The
weight w,, between output node k (class C,) and
hidden node i (rule ry), is set at f;; + e, where €
is a small random number, [, =;;‘ # CF* and
Aki
CF* is the CF computed for class Cp by rule .
The weight wfy, between attribute A, and hidden
C-.H{:};mj + €. Here Card(r,)
indicates the number of features/attributes encoun-
tered along the traversal path from the root to the
leaf containing the pattern corresponding to mle
of class C,. In other words, Cardir,) is the number
of operands in the conjunct of mle ry for class C;.

node { is clamped to

4.2. Example Demonstrating Network
Mapping

Here we illustrate the scheme of mapping the
decision tree obtained from fuzzy 1D3 into the neural
network with an example. Let the training set consist
of 15 sample points, to be classified into three
classes according to two continuous-valued features
F, and F,. These features are transformed to L,
M, H,, L., M., H; using Eq. (2). Let the sample
decision tree be as shown in Fig. 1.

The root node is split at attribute M, by step 2
of the algorithm. There are 6, 4, 5 samples belonging
to classes 1, 2, 3, respectively. The path M, =0
results in a resolved leaf node for four patterns from
class C,. The path M, = | further splits on attribute
L. In this manner, we obtain resolved leaf nodes for
classes G, and C,. All resolved nodes have CF = 1.

There is one unresolved node UV, with two samples

My
n (A0
.f’_,- 1
.""-_C_-\"‘" Bk
LS T
WL k\-\_ _-";
/“\ .
4
oD )
W I
o/ ML

Gl D CaD

L

Fig. 1. Sample decision tree genemted by [ueey [D3.
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Table 1. Class membership of sample data in unresolved
node.

Sample Class

i C, C,
dy 0.80 0.02 0.60
i 0.70 0.13 0.50
ds 0.16 0.10 .90

from C,, 00 samples from C; and one sample from
;. Let the data points in ‘U" be represented as 4,
da, dy Table 1 indicates the membership of these
pattems to the three different classes by Eq. (4).
Mote that a pattern point can have finite membership
to all three classes.

The CF, and CF, (sample level) values of o), d,,
d; corresponding to the classes with highest and
second highest frequencies, using Eq. (6), are given
in Table2 (the classes being indicated within
parentheses). As o3 has CF, = 0.835 (=0.8 by step
Sic) of the fuzzy 1D3 algorithm), we clamp CF, = 1
and CF, =(.

The aggregated CF for class O s
(0645 + 054 + 00/3 = 0365, while that for class
Cy is (0,395 + 0291 + 1)/3 = 0.562, using step 5(d)
of the algorithm. As class C; has a higher CF value,
we put CF, for node ‘I as 0.562 for class ¢ and
CF, =0.365 for class C, using step 5(e).

The rules comesponding to the decision tree of
Fig. 1 are as follows:

(i) M,—C; 4, 1.

(i) M, AL A My—Cy 4 1.

(i) M, NT; = Cy; 4, 1.

(v) M, A\ L, A\ M, — 3, 0.562, 0.365, Cs, C,,
1,3,

Mote that
(a) the two numbers on the right-hand-side of miles
(i)—(iii) indicate the number of patiern points

satisfying that rule (frequency fi) and its con-
fidence (CF), respectively;

Tahle 2. Confidence factor of sample data in unresolved
node.

Sample Confidence factor

CF, CF;
e, 0.645 (C)) 0.395 (C5)
- 054 (0 0291 (Cs)
d; 0835 (G) =009 iCy)
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(by in rule number (iv) (unresolved node *L7) the
entities after *—" indicate, respectively, the fre-
quency of the mle, first and second confidence
factors (CF,, CF,), classes corresponding to
these confidence factors and the frequency of
the samples belonging to these classes which
satisfy this rule.

The comesponding mapped neural network is pro-
vided in Fig. 2.

Since there is a total of four rules, we use four
hidden nodes in the hidden layer. As class C, has
two rules with frequency 4 & confidence 1, and
frequency 2 & confidence (0,363, the output node is

connected to two hidden nodes with initial output
2
H = ¥ — Ed — - — -

layer weights of [, = 4+3"‘1 =8 4= 412

#0365 = 0.121, respectively. Analogously, for class
C'; one has the initial output layer weighis to the

1
' ; ¢ g #] =3 it Y =
two hidden nodes as At 1 =3, e 0.562

0.112, respectively. Class C,, having a single rule
with CF =1, is connected to the corresponding
hidden node with a weight of value 1.

If there is only one output node connected with
any hidden node, the weight on the hidden-output
link percolates down to the weights in the input
layer in proporion to the number of input attributes
connected to that hidden node. Hence rule 1, with

2

M,, provides a weight of _.; (taking account of the

1

negative attibute M, ).
When there is more than one output node connec-

ted to a single hidden unit (due to the presence of

Fig. 2. Sample mapped network.

ial

an unresolved node), then the maximum of all the
weights on the links from that node to all connected
output nodes is taken. This propagates to the weights
in the input layer in proportion to the number of
inputs attribute connected to that hidden node. For
example, mule 4 shows that two output nodes denot-
ing classes € and 3 will have connection to one
common hidden node with weights 0.121 and 0.112,
respectively. The maximum of these is 0,121, Hence,
the weights in the corresponding input layer links

0.121
(with three attributes) become 3 - 0.04,
0.121 0.121 .
3 = ().04, = —0.04, respectively.

-Fi:mllj.', the connection weights of this knowledge
encoded MLP are refined using the backpropag-
ation algorithm.

5. Results

Here we present some results demonstrating the
effectiveness of the knowledge-based MLP encoded
using the fuzzy ID3 algorthm on Vowel data
[17] (available at heipfwwweisicalac ind~sushmita/
patterns), and the Balance Scale dawm [21]. As a
comparison, the performance of the conventional
MLP has also been provided.

The 871 Indian Telugu vowel sounds, collected
by trained personnel, were uttered by three male
speakers in the age group of 30 to 33 years, in a
Consonant-Vowel-Consonant context. The details of
the method are available in Pal and Dutta Majumder
[18]. The data set has three features, F,, /> and Fs.
corresponding to the first, second and third vowel
format frequencies obtained through spectrum analy-
sis of the speech data. Note that the boundares of
the classes in the given data set are seen o be ill-
defined (fuzzy). Figure 3 shows a 2D projection of

]
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Fig. 3. Vowel disgmm in F, - F, plane.
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Table 3. Comparative performance with nine hidden nodes, using knowledge encoding with 1D3 and conventional MLP,

for Vewe! data.

Training Testing
Set (%) Scores (%) i sweep Scores (%)
1 2 3 4 5 [i] Met 1 2 3 4 5 [i] Met

| 10 500 B57 937 857 64 10D gis 2330 59.0 B1.7 859 920 712 B85 BOD

20 615 937 848 862 675 T42 TIT 039 T46 THE1 849 910 748 793 808
D 30 400 880 T80 #3 754 735 159 507 Tl 766 870 925 767 756 307

40 407 764 820 B47 Tes B2 TIO TR0 689 836 B6T7 913 Tol TRO 814
3 50 485 814 B47 905 606 820 TR2 451 676 848 B51 922 819 758 822
M 10 500 857 875 857 737 o941 g22 2632 56.0 853 B46 912 744 B840 809

20 538 937 848 B2 675 T4 Tes 1771 576 794 B49 918 T4 757 T84
L an 400 B0 TEO #1 TS5 TI3 751 2491 59.6 797 861 906 TeO T48 T93

40 481 794 821 B30 753 B3 TI3 2560 T5.6 836 867 891 746 TRO B1.2
P 50 514 814 B47 905 676 809 TR 32300 64.6 848 B50 B7T.0 781 758 801

the 3D feature space of the six vowel classes (4, a,
i, u, e, o) in the F, — F, plane, for ease of depiction.

The Balance scale data [21] consists of 6235
instances generated to model psychological experi-
mental results. There are four numerc attributes
corresponding to the lefi weight, left distance, right
weight and right distance, and three output classes,
viz. tip right, tip left and balanced (referred to as
1,2 and 3 in the sequel).

Tables 3, 4 and 6 provide the performance of the
networks initially encoded using riles generated by
ID3 and fuzzy ID3 for Vowel data. Comparison is
made with the conventional MLP, initialised using
random weights. Different training set sizes 10%,
20%, 30%, 40%, 50% are used. Recognition scores
(classwise and overall) for both tmining and test

sets are provided, along with the number of training
sweeps. Classes | to 6 indicate the six vowel classes
d, a, i, u, e, o, respectively. The mean square error
is used as the stopping criterion. The comparative
performance for Balance data is provided in Table 5.

Tables 3 and 4 correspond to a modified version
of the algorithm ID3. Fuzzy linguistic attribute
values are considered. The frequency of the training
pattem is taken into account while computing the
initial weights. Table 3 considers nine rules for the
six classes. This is mapped to nine hidden nodes.
Table 4, on the other hand, considers 15 rules. Note
that we consider only the rules with high frequency
of occurrence in Table 3. It can be seen from Table 3
that the proposed algorithm gives better results, both
in terms of ecognition scores and number of train-

Table 4. Comparative performance with 15 hidden nodes, using knowledge encoding with ID3 and conventional MLP,

for Vewe! data.

Training Testing

Set (%) Scores (%) fisweep Soores (%)
1 2 3 4 5 [i] Met 1 2 3 4 5 [i] Met
| 10 500 857 875 857 64 100D g22 970 667 853 846 8O0 T0.7T 834 BO4
20 615 875 B48 862 725 743 TR3 554 610 794 B41 918 T30 B0O0O 796
D in 400 920 T80 841 738 TT3 763 434 635 07 861 906 T4 795 BOO
40 444 794 821 ®13 753 B2 Te7 m 644 854 867 902 746 TO& HIO
3 50 486 7o 823 BO2 T06 B3 TIR 267 649 B4R B51 896 To.0 758 BOR
M 10 500 857 875 857 64 100 g22 1256 591 829 846 8O0 745 859 RBO9
20 615 937 848 B62 750 740 TO5 644 627 To4 B42 910 T4E 752 To.0
L a0 500 920 800 B18 754 736 767 542 692 TRI1 869 906 740 TET B04
40 407 794 B20 BT 728 B2  Ted 575 607 854 876 902 T30 TR0 ROE
P 50 629 B14 B47 905 696 B9 TO2 444 T56 B4.8 B62 BO6 To.l 758 B12
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Table 5. Comparative performance of knowledge encoded MLPs for Balance data,

Muodel Train set Recognition scores (%) MNo. of

%) SWEeEps

Training Testing
1 2 3 Met 1 2 3 Met

10 979 577 97.4 942 g9.2 12.8 BE4 B28 312
D3 20 980 36T 96.5 930 937 M 926 87.7 252

30 983 228 97.5 919 97.3 6.9 962 896 272

40 97 .8 16.6 497.0 91.1 96.9 16.8 956 903 271

10 906 BR.O O8.8 983 9.9 15.6 B6.2 g28 309
MLP 20 97.0 353 97.2 91.8 95.2 123 927 875 331

a0 97 .6 26.8 96.5 1.8 96.2 143 919 878 o7

40 979 283 95.9 913 7.2 10.2 935 BE.G 312
Meuro-Fuzzy 10 8.7 576 98.0 95.6 89.7 LR g7 825 97

20 98.7 410 97.5 939 938 93 942 875 252
ID3 30 974 284 97.0 91.8 96.4 11.8 950 B89 242
[13] 40 98.1 243 97.0 920 6.8 11.5 955 90.0 237

Table 6. Comparative performance with 25 hidden nodes, using knowledge encoding with fuzzy ID3 and conventional

MLP, for Vowel! data.

Training Testing
Set Scores (%) i sweep Scores (%)
(%) - -
1 2 i 4 5 [i] Met 1 2 i 4 5 [i] Met
F 10 500 B57 937 857 6R4 100. #i5 T30 65.1 841 B53 912 750 779 806
U 20 678 BOEB B34 926 TT2 TS5  BS 389 69.5 TE1 842 91.0 778 779 B80T
Z 30 400 BEBO BODO 863 754 Tie 62 201 673 797 B69 925 To.7 756 BOT
Z 40 407 Ted B2 830 TIR B2 TTO 251 T1.1 854 857 902 770 780 816
1D3 50 514 Bi14 B47 890 725 Hild TO2 180 676 848 B39 BRI B3B8 758 BL7Y
M 10 500 B37 875 857 684 100. g22 Bi3 606 B78 B46 912 Teb 773 80T
20 615 937 B48 862 T25 743 M6 445 61.0 T80 856 918 742 779 795
L 30 400 BEO BOO 840 754 TT4 M7 M1 Ti.1 781 869 906 719 779 799
40 407 765 821 B30 741 B3 Teld 267 T1.1 854 BB6 924 730 T80 BL5
P 50 570 B3T BT 905 696 B9 TOO0 07 67.6 B48 851 909 752 758 BO3

ing sweeps. This is because the encoding of prior
knowledze results in a faster convergence. The gain
in terms of recognition scores is however not that
explicit in Table 4 involving |5 hidden nodes.

In Table 5 we use three hidden nodes during
network encoding, mapping only the highest fre-
quency rule corresponding to each class of the Bal-
ance data. The performance of the network encoded
using the modified ID3 is compared with that of
the conventional MLP (with no encoding) and the
Newro-Fuzzy 1D3 [13].

Table 6 demonstrates the performance of the net-
work for Vowel! data using fuzzy [D3, that incorpor-
ates fuzziness in the node level of the tree. The use
of confidence factor and class membership resulted
in the generation of 25 rules. Here unresolved nodes

of the decision tree were also taken into account.
The performance is always better in terms of the
number of training sweeps. The gain in terms of
recognition scores is not as evident as in Table 3.
This leads us to the conclusion that the smaller the
network, the more noticeable is the improvement of
the proposed algorithm.

6. Conclusions and Discussion

A fuzzy version of the ID3 algonthm, for handling
uncertainty in overlapping regions, is developed. A
method to initially encode the connection weights
of an MLP using the fuzzy D3 algorithm has been
described. Fuzziness is incorporated at the node
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level to tackle unresolved nodes. The concepts of
confidence and membership are used to arrive at a
suitable decision at the node level. In the cnsp
case, this decision function reduces to the classical
expression involving entropy. Rules are generated
in linguistic form and are mapped onto a fuzzy
neural network architecture. Each rule corresponds
to a separate hidden node. The confidence factor and
frequency of sample points are used to determine the
initial connection weight values.

This type of knowledge encoding leads to faster
convergence, as compared to the conventional MLP
using random initial weights. Unlike the models
reported elsewhere [9-11], the mapping scheme used
here takes into account the frequency of the rep-
resentative  rules, in  addition to  handling
uncertainty/fuzziness at various levels. It is observed
that the effectiveness of the algorithm becomes more
evident in a smaller network. In other words, the
fewer the number of hidden nodes the greater is the
improvement shown by our algorithm, in terms of
both recognition scores and the number of training
cycles/sweeps, as compared to that of conventional
MLP involving random initial weights. This fact has
also been established earlier by Banerjee etal. [5].

The rules extracted using fuzzy D3 need to be
evaluated in quantitative terms. The effect of missing
attributes on the overall performance is to be investi-
ezated. Studies related to issues of convergence have
been made experimentally. Some theoretical analysis
is also required. Future research is envisaged along
these directions.
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