Flattening in shear zones under constant volume: a theoretical evaluation
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Abstract

This paper presents a theoretical model based on strain energy and work rate caleulations that evaluates the possible degrees of flattening in
finite, ductile shear zones withrigid and deformable walls under constant volume conditions. The principal parameters governing the ratio of
bulk Aattening and shear rates (5, = €/ ) in shear zones with rigid walls are found to be: (1) the length to width ratio (Dy measured in the
normal section parallel to the extrusion direction), and (2) the inclination of shear zone normal (e} with the bulk compression direction.
MNarrow and long shear zones (D = 10) are characterized by low 8, ratios, implying little flattening in the shear zone even when « is low {in
the order of a few degrees). Accordingly, the kinematical vorticity number W, is close toone when Dy is large (=10} or o is high(=20°7), and
is much less than one if Dyor o are low. The stretching rate of shear zone walls relative to the shear zone (R} is an additional parameter that
controls the degree of flattening in shear zones with deformable walls. For given Dy and e values the flattening rate increases with increasing
relative stretching rate Ky, and is significant at large values of By, Likewise the kinematical vorticity number W, shows aninverse relation with

the relative stretching rate of shear zone walls

Keywards: Shear zones; Strain energy: Vorticity: Work rate

1. Introduction

Ductile shear zones are locales of intense deformation
within a relatively less or undeformed country rock and
are essentially charmetenzed by non-coaxial deformation.
However, in addition to the shear deformation, there may
be a flattening component across the shear zone (Gapais el
al, 1987; Ghosh and Sengupta, 1987; Jain, 1988; Mohanty

and Ramsay, 1994) and in such cases the non-coaxiality of

the bulk deformation is influenced by the ratio of flatlening
and  shear rates (é/9) and  their relative orentations
(Ramberg, 1975). Shear zone structures such as porphyro-
clast mantles, inclusion trails of synkinematic porphyro-
blasts, foliation drag, pressure shadows around rigd
mnclusions ete. are dependent on the kinematical vorticily
number W, (Ghosh and Ramberg, 1976; Passchier, 1987
Hanmer, 1990; Masuda et al.. 1995; Beam, 1996; Jezek et
al., 1999; Mandal et al., 2000}, a4 function of the matio of the
shear and fattening strain mtes (Troesdell, 1954; Means et
al., 1980; Ghosh, 1987). W, attains a value of one for simple
shear deformation and decreases with inereasing flattenimg
component, o a minimum valoe of zem in the case of pure

shear deformation. Estimation of the flatiening component
of progressive deformation is thus an essential part of the
kinematic analysis of non-coaxial deformation. Flatening
in shear zones has been taken mto account in the Kinematic
analysis of tmnspression zones considering extrusion of
ductile materials under the confinement of rigid blocks
(Sanderson and Marchim, 1984; Fossen and Tikoff, 1993;
Tikedt and Teyssier, 1994; Jones etal., 1997; Dutton, 1997).
Werjermars (1992) has shown that i multilayers under a
layer-oblique compression the deformation takes place
dominantly by layer-paralie]l shear if the thickness and
viscosity ratios of the stiff o soft layers are large. The flat-
tening effect sets in only when these mtios are low o
moderate. Similarly, the magnitude of flattening deforma-
tion in a shear zone s hikely o be affected by the following
parameters: (1) the viscosily contrast between the wall rock
and the shear zone, (2) the orientaton of the shear zone with
respect o the principal axes of bulk stress, and (3) the
lengthowidth rmtio of the shear zone. Mohanty and Ramsay
(1994) have estimated the amount of flatlening in a natural
shear zone, and attributed it to synkinematic volume loss in
the shear zone. In this paper, however, we intend to evaluate
the relative magnitude of the flattening component in shear
zones and determine the Kinematical vorticity number
under constant-volume condition by considenng the three
parameters mentioned above.
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Fig. 1. Considertions of geometrical and kinematic parameters and Canesian reference frame oxy in the theoretical analysis. 20 and 21 are the length and width
of the shear zone, respectively. épand Jy, are the bulk Aattening and shear mies of the shear zone. i, and v, are the normal and tangential velocity components
of the shear zone wall. %, is the viscosity of ductile rock within the shear zone. @ is the inclination of shear zone nommal to the direction of bul k di fferemtial

compression {p).

2. Theoretical analysis
2.1, Basic premises

The theoretical model i based on the assumption that the
ductile rocks within the shear zone are Newtonian, and
rheologically homogeneous. We also assume that there is
no volume loss during the deformation, and the flow of
material in response 1o flattening takes place along the
shear direction. The analysis considers a non-slip condition
at the shear zone boundary (ef. Sanderson and Marchini,
1984; Dutton, 1997).

The theory i developed by balancing the energy involved
in the flow within the shear zone with the work 1o be done
for the movement of the boundary walls. The flow field in
the shear zone 15 formulated vsing the solution of Navier—
Stoke’s equations, as given by Jaeger (1969). Separate
analyses for shear zones with ngid and deformable walls
are presented in the following sections.

2.2, Shear zone with rigid walls

Consider the cross-section of a tabular she ar zone parallel
Lo the shear direction with a length and a width of 21 and 21,
respectively. The shear zone nommal 15 at angle o with the
principal direction of bulk compressive stress (Fig. 1) We
sel o Cartesian reference frame oxy with the ongin at the
shear zone center and the x axis parallel o the shear zone
boundary (Fig. 1). The shear zone 15 subjected to bulk shear
at a rate ypin the x direction and bulk fattening at a rate
epacross the shear direction (i.e. along the vy axis). The ratio
of bulk flattening and shear rates (é,/9,) is henceforth

termed the strain-rate ratio & (cf. Ghosh and Ramberg,
1976).

We first consider the energy involved in the flow within
the shear zone in response o flattening. The velocity
components at any point within the shear zone doe to the
flattening deformation can be wrillen as:

2_ 2
= 31',,-.'71' [ la)
2 2
¥y — 3r
v=n 2 ) (1b)

(Jacger, 1969, Eq. 16, Section 40), where w, 15 the velocity at
which the rigid walls approach each other due to futtening
deformation in the shear zone (Fig. 1), Using the velocity
functions in Egs. (14) and (1b), the total energy required per
unit time for viscous flow due to flattening 15 obtained as:

12m,07 [ gy 1 ][
= —— | =t + = 2
Eq. (2) has been derived by integrating Eg. (A6) given in
Appendix A, Balancing the energy in Eq. (2) with the work
done required for fattening movement in the wall (Eq. (A8)
in Appendix A), we have:

3,

B, 1,
= Er + ?" = 2y peos2o (3a)

This can be rewritlen as:
)
i

1 =
+ —(;) = 2peoslo (3h)



N Mandal er el ¢ Jowrmal of Stracierad Geology 23 {2000 ) 17711 780 1773

3.4
> @
p——
B 23 -
= Dy values of the curves
= {from top to bottom): 4. 6, &, 10
< 24T
&
- 4
d.
£ Id
E 1
L
i R
==
= i
)
& 2
° .5
E 4
x ——
{J.{J T T T T T T T T T T T T T T T #

1 3 3 7 b 11 13 13 I {hat

nclination of shear zone normal to the compression direction ( g in degrees)

: (b)

f values of the curves
(from top to bottom): 2%, 67, 107, 147, 18"

Ratio ol bulk Nallening and shear tates (50)

4 6 8 10 12 14 16 L8 20
Length to width ratio of shear zone (/3 )

Fig. 2. Calculated plots showing the dependence of the degree of fattening upon the geometrical pammeters — length to width ratio { £) and onentation (o )of
the shear zone. {a) §, versus o at different constant values of £ (b} &, versus £ at different constant values of o

where pand o are the differential compressive stress and its (see Egs. (A9) and (A10) i Appendix A).
orientation with respect to the shear zone nomal (Fig. 1)

Similarly, we can caleulate the energy and work asso- \“i = psinle (da)
ciated with sheanng, and denve the following equations
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or tional to the square of the length o width mtio () of the
; : shear zone. For given p and o values, the flattening rate thus
N ¥p = psin2o [dh) ; ] : i

decreases strongly with an increase in the §r o, On the

In Eq. (3b). the bulk flattening rate. €18 inversely propor- other hand, the bulk shear rate, ypis independent of the [
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Fig. 4. Varations of strain mtio &, with the inclination of shear zone normal o at different valves of relative stretching mtes (/) of deformable shear zone

walls,

ratio (Eq. (4b)). It s therefore evident from these relations
that the shear component of the bulk deformation is msen-
sitive o the i ratio, and would dominate over the flattening
component in shear zones with large [t ratios. From Egs.
(3a). (3b). (da) and (4b), the ratio of bulk fattening and
shear rates are obtained as:

1% 2eo12 o 10 i
= e = —— el 2 e (5)
i 3 | 24 + 505
3 e .
5 3r

where Dy s the & ratio of the shear zone.

Eq. (5) reveals the relationship of the stmin ratio 5 with
two geometrical parameters —the orientation of the shear
zone with respect o the bulk compression direction (o)
and 1ts length w width ratio (5 = F. AL given Dy the strain
ratio 5, decreases steeply with increasing o, and is nearly
zero when o is greater than 207 (Fig. 2a). Similarly, S,
decreases with increasing Dy, and hies below 0.5 at Iy = 8
if & =2 (Fig. 2b). For large values of D) (=20), §, is
virtually zero for any non-zerm valoe of o

The relation between the strain ratio 5, and kinematical
vortcily number is:

]
W, = — [6)

1+ 4527

(Ghosh, 1987 Egs. (5) and (6) reveal that Wy increases
steeply, and then asymptotically tends to be one, as the

mclination of shear zone normal (o) increases (Fige 3a).
For large Iy valoes, Wy becomes nearly one at a small
value of o. For example, W, =09 at & =3" when
Dy=12 (Fg. 3b). The kinematical vorticity number is
virtually one for any non-zero value of & when Dy s very
large (=200 (Fig. 3b).

The theoretical results imply that in the case of rigid walls
flattening component is likely to be negligibly smallin shear
zones with a large length to width ratio, even when the shear
zone 15 at a high angle w the paneipal compression direction
(Le. for wery low o) Flattening becomes significant
(=50%) when a is less than 67 and [ is less than seven
(Figs. 2 and 3).

2.3, Shear zone with deformable walls

The velocity functions in Egs. (1a4) and (1b) are vahid for
shear zones with rigid walls. It 15 commonly noticed in
natural shear zones that the wall rocks have undergone
deformation during the movement in the shear zones. The
wall deformation may take place both by pure shear or a
combination of pure and simple shear. In the present analy-
sis, however, we need to consider only the stretching
component parallel to the shear zone boundary. Let the
shear zone boundanes experience strelching at a mte €, in
the shear direction, which is assumed 1o occur in response Lo
the nommal stress component o, (Bqg. (A7a)). Flow within
shear zones with stretching walls can be descrnibed by the
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following velocity functions (see Appendix A).

4 o
3 . P .
W= E[:r,, = E“f}.l'T + é,x (Ta)
2 2|
1 ’ v —ar ;
V=gl - Euy—— — & (7h)

It may be noted that Egs. (7a) and (7h) simplify to Egs.
(1a)and (1b) for &, = 0, representing the case of shear zone
with ngid walls, as modeled in the previous section. Using
the velocity functions in Egs. (7a) and (7h). we can find the
total strain energy required for flattening and shear defor-
mations in the shear zone following the same method as i
the previous section {(detals i Appendix A). The total
energies involved in flattening and shear deformations,
respectively, are:

v —€ut) (B 1, : .
El’zﬂm"‘[r—‘(? + if)f+4e“f(2r1,—e“r]l

(")

I
E = 4nhuﬁ; i9)

Substituting the expressions of E; and E, in Egs. (8) and
(9 and after some algebra (see Appendix A). the ratio (5 ) of
bulk flattening and shear rates is obtained as:

2eot2 o

N=
' T 1
11— R = + D—’)+ 2 — R\R
( |]'(5 3D 4 i) Ry

[ 103y

where By = é,/€é,, i.e. the ratio of swetching rate of the
shear zone boundary to the bulk shorening rates across
the shear zone and Dy is the length o width muo of the
shear zone. The parameter B is actoally a measure of
competence contrast between the shear zone and s wall
rocks (see Discussion). Using Eq. (100 we can analyze the
additional effects of wall rock deformation on shear zone
kinematics. For a mven value of I (say 12), when Rypis low
(=20.5), & increases a litthe with decrease in the inclination
of shear zone nommal o, and s always less than one (Fig. 4).
In contrast, for large values of By (e.g. Ry =10.8), 5, mcreases
steeply to attain a large value (1) when the shear zone
normal makes bower (<257 inclinations.

Using Eqs. (6) and (10}, the bulk non-coaxiality of shear
zones can be analyeed by varying the kength to width matio
{0y of the shear zone and the mtio of wall stretching rate
and bulk flattening rate across the shear zone (Ry) for
different shear zone orientations () (Fig. 5). For a = 2°,
Wy increases more or less linearly with Dy at large values of
Ry (=0.5). The variations show gentle gradients, and Wy
remains low (generally less than one) at large values of D,
(Fig. 3a). The theoretical result indicates that shear zones
with a large length to width ratio can have a low non-
coaxiality of flow only if the relative stretching rate in the
wall rock s significant. With a decrease in Ry, Wy versus Dy

varations inerease their gradient and become progressively
non-linear. For very low values of By (<00.2), W, increases
steeply and tends to be one at moderate values of D (=15).
Similar Wi~y variations are obtained for a = 18°, but the
Wy values are charactenstically in the higher range (=0.6)
sor that the curves representing W=Dy variations are ¢lose 1o
the line W, = 1, implying a simple shear type of deforma-
tion (Fig. 5b).

3. Discussion

The present analysis reveals the pnincipal parameters
determining the ratio of bulk flatening o shear rates or
the bulk kinematical vorticity number Wy in rigid-walled
shear zomes. These are: (1) the length o width oo (D)
of the shear zone in the normal section parallel to the extru-
siom direction, and (2) the onentation of the shear-zone
normal with respect to the bulk compression directon (e ).
Wi increases with increasing o, and 8 close to one when the
length to width ratio Dy is large. Our model thus suggests
that narrow shear zones hosted in a ngid ambience should be
ideally dominated by simple shear deformation.

In natural and expenmental shear zones, the material of
the walls may also undergo ductile deformation, albeit at
much slower rates than that within the shear zone. Our
analysis indicates that the degree of wall mock deformation
along the shear zone boundary 15 an additional factor in
controlling the bulk kinematics within such shear zones.
In order o analyee this, we have considered a parameter
Ry, which represents the ratio of strelching mate of the shear
zone walls to bulk-shortening rate across the shear zone.
The parameter is actually a measure of rheological contrast
between the shear zone and the wall rocks. Putting £, =8
vy in Eq. (8) and then substituting o, by 21, €, and after
algebraic manipulation we obtain the relation:

TII:-\. 1 4"I;I'.I
My 3GH1 — R+ 4R(2 — Ry)

(11)

where n, and 77, are the viscosities of the shear zone and the
wall rocks, respectively. G 15 a geometrical factor, which
has a relation with Dy as:
Gy = 2 g o (12
5 =

It may be noled in Eq. (11) that B, =1 when n, = 7. a8
in the case of homogencous media and 1, tends o infinity
as Ry=10 in the case of shear zones with ngid walls. Our
theoretical results suggest that flatiening deformation can be
important in shear zones only when the relative stretching
rale K is not oo low (Fig. 4). This condition can prevail if
the viscosity contrast between the shear zone and its walls is
not too large, as revealed from Eq. (11). Shear zones with a
large viscosity contrast will have low By values and are
unlikely to experience a large amount of shortening, even
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if the shear zone normal s at a low angle o the principal
compression direction.

The present analysis s based on a normal section of the
shear zone pamllel to the shear direction along which lateral
flow of material in response to lattening is allowed. Several

Fand (b) @ = 1, & is the inclination of shear zone normal to the bulk compression direction.

workers have shown that the direction of material flow in
response o fatlening can be at any orientation with respect
o the shear direction (e.g. Dutton, 1997) It may be noted
that our analysis is based on independent estimations of
energy required for fattening and shear deformations in
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the shear zone, and the onentation of material fow direction
with respect to the shear direction thus does not mfluence
the results obtained. However, the parameter [ of our
analysis is 1o be considered along the direction of flow
that takes place i response W flattening. For example, in
vertical shear zones where the shear direction s honzontal
and the extrusion of material due o flattening has taken
place in the vertical direction, the length and width of the
shear zone are o be measured on a vertical cross-section
normal Lo the shear direction.

4. Conclusions

1. The principal parameters controlling the degree of fat-
tening in shear zones under constant volume conditions
are: (a) the lengthiwadth ratio of the shear zone inoa
nommal section parallel o the extrusion direction, (h)
the onentation of the shear zone with respect o the
bulk compression direction, and (¢) the viscosily contrast
between the shear zone and wall rocks.

2. In shear zones with rigid walls, the flattening component
15 likely to be negligibly small if their length w width
ratie 15 high, even if the shear zone 15 at a high angle o
the principal compression direction. Flattening becomes
significant in shear zones with a low length to width matio
and the onentation of the shear zone normal (o) 15 at a
low angle to the bulk compression direction.

3. In shear zones with deformable walls, the viscosity
contrast between the wall rocks and shear zone s an
additional parameter controlling the degree of flattening,
The deformation ina shear zone i likely to be dominated
by simple shear if the competence contrast is high. Flat-
tening can be significant when this contrast is low.

4. There are three principal hmitations that adbere to our
analysis. (a) It does not take into account the effect of
volume loss in the shear zone deformation. However,
Mohanty and Ramsay (1994} hawve shown that shear
zones may experience a large amount of volume loss
leading to significant flattening across the shear zone.
Thus, the theoretical mesults presented here may not
strictly conform to those from natural shear zones that
have evidently undergone a  synkimematic  volume
change. (by The analysis considers Newtonian, homo-
geneous material and assumes g non-shp condition at
the shear zone boundary. (¢) The analysis predicts that
litthe Aattening 15 possible iF Dy s large. However, many
natural shear zones such as the Ossa—Morena zone, the
Ibero—American zone, and the San-Andreas fault, have a
large length to width ratio (Dy) on the outcrop sections,
but record significant lattening across the shear zones. It
is possible that in these shear zones there has been
upward extrusion of matenal and theirr dimensions
when measured on a nommal section parallel to the extr-
sion direcion would yield a Dy value within a range for
which flattening 15 possible. However, some  other

factors, e.g. slipmon-slip condiions at these transpres-
sion zones might have also played mles in dictating
[ranSpression.
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Appendix A

Al Energy calculations for shear zones with rigid walls
The rate of energy required for viscous flow within an

infinitesimal volume in the shear zone is:

dE, = 2n(&, + €, + 2e,)dxdy (Al)

(el Jeffery, 1922). The total energy (£,) required per unit
tme for flattening deformation in the shear zone can be
obtained by integrating Eqs. (Al) as:

) ]
E, =4[2th. J. (el + €, + Zf_f\.}tl-.'d_r], (A2)
aJo o '

wheme € ..€,, and €, are the strain-rate components and n, is
the viscosity of rocks within the shear zone. Now imposing
the condition €, + €, =0, Eq. (A2) simplifies Lo

I
fe= mth. J. (€], + & )dxdy (A3)
oo ;
From Egs. (1a) and (1b), we have:
i F —}'2

€ — e . 3"'1r 2]._1 5 ng‘l}l

o 1(1’?[! i z?v) o (AS
€ = 3 I e e E""‘Ir?j' b

Substituting the strmin components (Egs. (A4) and (AS5))
in Eqg. (A3), we have:

el
N T 2
E, = 36m, — (7 = »") +(o) txdy (A6)
o 1o Lo

MNow, we calculate the work to be done for movement of
the shear zone walls mvolving the stresses acting on them.
As the shear zone nomal is at angle o, the deviatori
normal and shear stress components on the shear eone
boundary are:

o, = peosloa (ATa)

7= —psin2a (ATh)
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where p = o) — o2/2 and oy and o are the principal bulk
stresses. Work done per unit time for moving the shear zone
walls during flattening deformation is:

E, = 8w peosla [AR)

The shear stress component on the shear zone boundary
develops a homogeneous simple shear at a rate . Substi-
tuting €,, = ¥,/2. €,, = 0and e, = 0 in Eq. (A3), we petthe
Lol unﬁrgy required for bulk shear in the shear zone as:

f
E, = dnlrji = E, = 47, ;n;’., (A9)

where iy 15 the rate of displacement of shear zone wall in the
shear direction occurring i response 0 the shear stress
component 7 (Eq. (ATb)), which mequires the followng
rate of work:

E, = dpuy fsin2o (A1)

A2, Formulation of velocity fields in shear zones with
deformable walls

The velocity field in Eqgs. (1a) and (1b) is vald for shear
zones with ngid walls. Following the same method as Jaeger
(1969), we can determine the velocity field for shear zones
with deformable walls in the following way. According 1o
Navier—5Stroke’s equation, the viscous flow can be repre-
sented by:

ol #J“_'_r?!n_'_&"u

=0 (Al
M, o ar* v 2)
1 Fv v
S i LA BT (Allb)

oAy A A
Applying the condition of continuity:

i o
+

=) Al2
ax a ( )

Egs. (Alla) and (Allb) give nsc to:

3 1
P 9P _

Al3
e ay* ¢ )

The pressure {p,) distribution due to flattening deforma-
tion are symmetrical with respect to the xand v axes. Thus,
the solutionof p,in Eq. (A13) can be expressed interms of a
polynomial function as (Jaeger, 1969, p. 141):

(Ald)

. I ...
Po = jc‘,} = jc‘,.-. + Ca

where o) and o are constants, which need to be determined
from given boundary conditions. In the present case, v is
independent of x, and the velocity function of u must not
have any terms of second or higher degrees of x, as revealed
from Eq. (A13). Therefome, 8w = 0. After substituting

the expression of Eq. (Al4d), Eq. (11) gives:

;)
au Ox

o
the solution of which is:

1
=T :;_I-'f_‘r‘z + 3filx) + falx)

As the velocity component in this case 15 symmetrical
with respect to the x axis, this must be an even function of
¥. Then, fifx) must be zero. Now imposing the boundary
condition n = € ,x at v=1, we find:

il P
a(x) = = —af EyX.
27

= £

The function for the velocity component i 15 then:

]. [} 3 a .

u= EEI(F_" )+Ew_i. (Al5)
From Eq. (A12) of continuity and Eq. (A15), it follows:
av ] av [1 i (_:. _) e ]
_—= = T === — | === f — w | =
ay Ay ay 2 : 2 *
c
= — _ﬂfrll, (- 37) - ey + S

{AlG)

If the velocity component v has Lo assume a constant
velocity at y= *£ 1, fifx) has to be essentially zem.
: 3 ;
Imposing v= — v, at y =t, we get ¢; = 3n/r (w, — é.0).
Substituting the ¢xpression of constant o) in Egs. (A15) and
(Al6), we have:
2
3 ; Ei=y i
M= ;{1}, — €,1)x p: + €, x

{AlTa)

) )
y —3r

(v — é“r}_r'T (A17h)

— Ey¥

| —

The strain components can be obtained by differentiating

Eqgs. (Al7a) and (A17b) as:

du 3 F—y

€, = = = 2{% ét)—3— t €, (Al8a)
1 { o av 3 T

E.'r_-.' = E(E + I) —_ _Et:'l-'h = E“_f}F {A].Hb::l

Substituting the strain components from Egs. (A18a) and
{Al8b) in Eq. (A3), the total strain energy required per unit
time in the shear zone 1s:

)
) ) 3 r! _r! -
E. =16 — | v, — €t . + é
P T]:,J-“J-”|{2(h w) ] W

(A19)
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We now determine the energy budget for bulk shear in the
shear zone. The tangential velocity of the shear zone
boundary 15 . which develops shear at a rate, ¥, = i/t
in the shear zone. The totl energy required for shearing
motion is then:

E, =4n,yilt (A20)

Substituting £, and E, (Eqs. (ATa) and (A7h)) in Eqgs.
(A19) and (A20), and dividing the derivative expressions,
wi have

(vy — €ut) (E :
=3 5

3 o F) + dé (v, — é,1)

2vyeos2o

Hpsin 2 o

= .‘Fmi'..ul =

Replacing vy, = é,r and wy, = ¢, and afler some algebra
the equation can be reorganized as:

a
3o - e 5 + %%) 62 - &) ¢
o = 2u{}t2a,—h
T!_r ¥

(A21)
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