Model for interacting instabilities and texture dynamics of patterns
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A simple model to study interacting instabilities and textures of resulting patterns for thermal convection is
presented. The model, consisting of a twelve-mode dynamical system derived for periodic square lattice,
describes convective patterns in the form of stripes and patchwork quilt. The interaction between stationary
zigzag stripes and standing patchwork quilt pattern leads to spatiotemporal patterns of nvisted patchwork quilt.
Textures of these patterns, which depend strongly on Prandtl number, are investigated numerically using the
model. The model also shows an interesting possibility of a multicritical point, where stability boundaries of

four different structures meet.

Pattern-forming instabilities in systems driven externally
far from equilibrium are currently receiving considerable at-
tention [1-11]. They appear in many physical systems such
as fluids [3-8], granular materials [9), candiac tissues [ 10],
reaction-diffusion systems [11], traffic flow [12], dendritic
growth [13], and nonlinear optics [14]. Spatiotemporal strue-
wres ansing doue o mteracting instabilities and the dynamics
of their textures are understood theoretically either by ampli-
wde equations [1.2] or dynamical systems [15]. In the ab-
sence of aclear separation of time scales, dynamical systems
are preferred for investigating patlem dynamics. Roberts
et al. [16]. using a dynamical system with hexagonal sym-
metry, showed the possibility of a standing patchwork quilt
pattem due Lo interacting oscillatory instabilities in the prob-
lem of thermal convection in a double-diffusive system [17].
They found miror-symmetric and mvisted patchwork quilt
patlems on hexagonal lattice. Pattems having both open and
closed streamlinesfisotherms are called paichwork  guilt.
Twisted patchwork quilt does not have mirmor symmetry.

In this paper, we present a simple model of interacting
instabilities in the form of a twelve-mode dynamical system
derived from Boussinesq equations for thermal convection in
ordinary fluids. Using the model, we show that the interac-
tion between zigezag patlern and standing squares can also
kead o twisted patchwork quilt patlem. Our model 15 based
on square lattice rather than hexagonal lattice, and it requires
only two bifurcation parameters: the Prandill number o and
reduced Rayleigh number r. The possibility of patchwork
quilt pattems on square lattice due o interaction of a station-
ary and an oscillatory instabilities is qualitatively new. We
then investigate numerically textures of spatiotemporal struc-
wres ansing due oo interacting patterns. The model also
shows an interesting possibility of a multicritical point (o
=1.57+0.01,r=11.2+0.05), where stability zones of
straight stripes, zigeag stripes, standing svmmetric patchwork
quilt, and standing rwisted patchwork quilt meet.

We consider an extended horizontal layer of Boussinesq
fluid of thickness 4, kinematic viscosily v, thermal diffusi-
tivity x confined between two pedectly conducting stress-
Sfree horizontal boundaries, and heated from below. Making
all length scales dimensionlkess by the fluid thickness d, time
by the thermal diffusive time scale 4% &, and the lemperature

by the temperature difference AT between the two bounding
surfaces, the relevant hydrodynamical equations in dimen-
siombess form read

8 V2u3=a Vi +o Vi 0—ey [V X{(w Viv—(v-V)o}].

(1)
dwy=oV w+[(w- Vioy—(v- V)] (2)
3,0=V0+Rv;—v- V4. (3)

where v=1(p | ,va2.03), @=V Xv = (@ ,w,,w;), and # are,
respectively, the velocity, the vorticity, and the deviation
from the conductive emperature profile. Prandil number o
and Rayleigh number R are defined, respectively, as o
=ik and R = afﬁT}lgd"f v, where o 15 the coefficient of
thermal expansion of the fluid, g the acceleration due 10
gravity. The unit vector ey 15 directed vertically upwand. The
symbal Vi{=V,,+V,) stands for horizontal Laplacian.
The boundary condinons at the idealized stress-free conduct-
ing flat surfaces imply f=py=dy03=dyw3=0 al x;=0,1.

We construct a dynamical system by a standard Galerkin
procedure. The spatial dependence of vertical velocity, ver-
tical vortcity, and temperature field are expanded in a Fou-
rier series, which is compatible with the stress-free flat con-
ducting boundaries and periodic square lattice in the
horizontal plane. We include mimmum modes 1o descrbe
straight stripes (8), zigeag stripes (7)), square patterns (50Q),
and nonlinear interaction among these pattems. The verucal
velocity v, vertical vorticily wy, and @ then may be wrillen
as

vy=| W yiricos k., + Wy, (f)cosk x,|sin 7y
+ | Wyaltheos kx) cosk xs

+ Wirasin kv, sink,x,|sin 29xy, i)

wy=|mleos ke + Egult)cos koxa Jeos mry

+{& alticos kox cosk,xa, i5)
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=6 g t)hcos kx| + Byl heos koxa]sin ey
+ 8 el t)sin 2y + [ B2l Fleos ko) cos k,x,
+ 6 7y sink,oy sin kg [sin 2y, (6)

where &£, = w/ /2. The honzontal components of velocity and

vorticity fields are computed by the solenmdal characters of

these two fields (ie., V-v=V-w=0). We now project the
hydrodynamical Egs. (1-3) onto these twelve modes o gel
the following dynamical system

ff'l
X=o(— !{+Yr+| |5+| |"‘ |"'r (1)
7 S zr!{+| |T|+| I|T: (8)
i
2(X: | [ Gia
rG=—oG+ 3| _XII|§;1+|I F.-|S' (9)

, :
(X, X2+G G,)

[ 10
TL=—?JH+ E:’IT— 3 ' ] . (10)
75 X1G2—X,G))

| :
— (X Y2+ Xa¥ )

f=— T ! (11
T=— —T+rS— : )
T 3 r 3
S(11Gy=11Gy)
. 2
TV=—;UV+ITX,E}1+XJU|L (12)
: ]
2= =3 Z+(X, ¥ + X1y, (13)

where the entical modes
X=(X,,X:) =(w/2g2) (W, Wo)",

Y=(¥,, ¥2) "= (w7 \2¢%00 1y, Oy,

and
G=(G,, Go)"=(w/\2¢) (L1 » Eont)”

are proporional o vertical  velocily, empemure, and
vertical vorticity, mespectively. The nonlinear modes are
redefined as S=(5,, S =(14g. ) w/g. W, Wita)',
V=(a2q 0. T=(T,.T2)" = (kg W wlg.© 12,
@77, and Z=—[?T.{:J.-‘qrb]|("lm;n The constants of the
model are qf.= e +.{' and 7=g, °. Prandtl number o and
the redoced Rayleigh number r=R/R.(=Rk .--"r‘f.--:' are Lwo
bifurcation parameters of our model. The superseript T de-
notes the tanspose of o matnx.
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FIG. 1. Stability boundaries of various convective structures in

parameter space computed by the model. Stability zones of straight
stripes (5], zigzag stripes (), patchwork quilt (PO}, and fwisted
patchwork quilt (TPQ) meet at a multicritical point (o= 1.57
001, r= 1122 0.05). The model shows chaotic behavior at much
higher values of r.

The model (7 — 13) describes varous stationary, as well
as oscillating patterns, on square lattice. The set of straight
stripes (8) parallel to the xy,, axis is oblained by setting
Xoiy=¥a )y =G=0G:=5§=8,=T|=T=¥=0 in the
model. The stationary straight stripes given by X2, =¥ 5,
=8(r— 1)/3, and Z=r—1 appear just above onset (r
=1) of convective mstability. The stationary zigeag (Z2)
patterns, which appear at secondary mstability for o< 1.57,
are obtained by taking X, ,=¥:,=0G2,=813,=T 1y
={ in the model. The standing asymmetric squares [18] is
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FIG. 2. Texture of misted patchwork quilt patterns, lsotherms

for o= 157, r=114,z=025 at (a) t=0, (b) t=TH, (c} t=T12,
and (d) r=3T/4.
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FIG. 3. Temporal sequence of textures of structures due to com-
petition of standing mirror-symmetric and rwisted patehwork guilt
patterns for o=06, r=920, z=025 at (a} r=10, (b} 1=TV8, (c} ¢
=THM, (d}) +=3T/8, (e} r=T/2, and () r=5T/8, (g} 1=3TH, (h} 1
=TT/8, (i} t=T.

meirieved by setting G =G.=5,=T,=V=0 in the model.
The asymmetric squares, which form  mimor-symmetlrc
patchwork quill pattern, appear at the onset of secondary
instability via forward Hopl bifurcation for o=1.57. The
twelve-mode model desenbes inleraction among these struc-
wres. We imtegrate numencally the full model o mvestigale
dynamics of the resulting convective structures. We do it for
afixed o by varying r in small sieps. For each value of r, the
mtegration 15 done starting with rmandomly chosen imitial con-
ditions for long enough o reach the final state. Prandill num-
ber o 15 then varied in small steps and whole procedure is
repealed for each o, The final states for vadous o and r
reported here are independent of the choice of imitial condi-
Lomns.

Figure 1 shows the stability boundanes of various patlems
in parameter space (o—r plang) computed from the model.
A transition from straight stripes (8) o zigeag stripes (Z7)
oceur as ro1s rased above s value at the lower-stability
boundary for o< 1.57. The threshold value of r for such
transition strongly depends on o The ransition from straight
stipe 1o standing patchwork quilt (PQ) via forward Hopf
bifurcation occurs when r 15 rased above s value at the
lower boundary for o> 1.57. The patchwork quill pattern
shows mimor and inversion symmetries but not fourfold
symmetry. A shadowgmph of this pattern appears as stand-
ing asymmetric squares [18]. The stability boundary of this
Hopl bifurcation shows weak dependence on o,
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FIG. 4. Quasiperiodic patterns for o= 0835, r=11.4.

All of the straight stnpes (5), zigeag stripes (Z2), and
standing patchwork quilt (PQ) are unstable i the region of
parameter space marked as twisted patwork quilt (TPQ). We
find all modes of the model active, if o and r are chosen
from this zone, and interacting with each other. We observe
spatiolemporal patterns withoul mirror symmetry in this part
of parameter space. Figure 2 shows the mwisted patchwork
quilt pattem slightly above the multicntical point. These pat-
terns have lost the mirmor symmetry. This happens due o
competition of asymmetne squares, which are mirror sym-
metric patchwork quilt pattern, with zigeag patterns. The
gencmtion of vertical vorticity breaks the mimor symmetry
of patchwork quilt pattem (PQ) as o and r are chosen from
the zone marked TPQ in parameter space (see Fig.o 1) An
mcrease mn the mtensity of vertical vorticity makes the pat-
tern more twisted. The set of four figures clearly depicts the
spatiolemporal behavior of the texture of the mwisted patch-
work quilt patterns. The texture depends strongly on o and
weakly on . Figure 3 shows competition of two sels, mutu-
ally perpendicular to each other, competng with each other.
The picture for o=0.6 and r="29.0 shows periodically vary-
g textures arnsing due o competing instabilities for one
penod of oscillation. The model also shows guasiperiodic
patterns for or=10.835 and r=11.4 (see Fig. 4). This chaotic
evolution of patlems occurs with further increase in ',

In this paper, we have presented a simple model of inter-
acting instabilities. We have shown that the mterction be-
tween a stationary imstability and an oscillatory mstability
may lead o many mteresting patterns including  rwisted
patchwork quilt on square lattee. The texture of the patterns
due to competing mstabilities may be modeled with an ap-
proprate dynamical system. The model is also vseful in cap-
turing the mechanism of the emergence of vanous instabili-
tes and resulting patlerns.
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