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INTRODULCTTION

— iy Eem ek vews Sm U mmn mam o GO w

It wag John worn-Weurann who lald the foundationm of a
methematical theory of Tgames of ﬂﬂ?atngyf. The ¢limax of
the pleneering period of development came in 1944 with the
publication of 'The Theory Of Games And Economic Behaviour'
by John von-Neumann and Oscar Moraenstern. fThe Tield of
game theory iz now well astablished and widely diffused
through the mathoematical world- thanks %ta the zaucceass of
the voiumes entitled *Contributions to the theory of games'
end ‘tAdvances in game theory's. Thege volumes comprise &
collection of contributions 4o the theory Ufrgames and
answer some guestlons raised explicitly or impliciily by

von-Neumnarnt 4

My interest in the theory of gmues received great
gtimulus from the inspiring articles of Ire L.5.Shapley and
a number of others. Thase papers arc listed at the end of

thiz thesisg.

Detelled introduction and sumtbary will be given at
the begimning ol sach chapter, , I shall now describe in an

outline the contents of this thesis, In chapter T, various



aufficient condltions are given under which an infinite game

with unbounded Kernel Ki{x, y} pogsesges a nolutlon. In

some cmees these sulficient conditions have been supplemented
%

by effective necesgary conditfons. Filnally an application

to a minimax theorem, In probability theacry iz given.

Tn chapter [T, we cangider the bounded pay-off Klx,y)
defined on the unit sgquare and whose diﬁ@pntinuities lie on
a finite number of curves of the form y = qk{x};

K=ly 2Z,0e.4 a In general such games need not pooseass the
min-max valuc =~ but it 18 shown that such gnmes have min-max
valuz provided the gecoond player'a mixed strategisa are
reatricted to abaolulely continmicus ﬁiatﬁ&buticns on the

unit Iintervale

In the lagt chapter a new class of product solutions
i3 obtalned for the product pame J {é{j K where
T = M, X} B, + M, being 3-person majority game and B,
being 1 = person pure bargoining gesme and K is an arbitrary
simple game. These solutiong need not have the property of
ful) monotoninity in the senge of Shapley and theorem 5 or 6
of Bhapley [Solutisns of compound simple gameg « By
T+ 8« Bhapley - 1n ‘Advances in game theory'] cannot prediok

thage aslutlonge.



CHAFPTER I

Minimrx Theorema

Introduction and summary 1: Tt was John von ¥Neumann who

proved the well known minimax theorcm for finite pames. His
theorem can be gtated mathematically as followss IT X and
Y are compant convex subscts of RT and ‘P respectively
and if K iz a bilinesr functien ov X X Y then K hasn

a saddle point. That igs Max Min K(x, y) = Win Wax K(x, y).
Ville end Wald [21] have génerglized vun—ﬁeuian'i regult -
when X and Y are allowed to be certalrn Infinite dimen-
slonal linesr spaces end X 1s asssurkd to be bllinear.

It was Kneser [5], Ey Fan [6] and Berge [1] who proved
minimax theorems for Concave Convex functions and one of

the spaces ls assumed to be compact or aconditlonally compact
in a suiteble topology. . M. 3ion [16) has proved minimax
theorems for guasl conecave - convex functicons that are
appropriately semi-continuous in* the variabicsz, Very res
recently Teh-Tjoe Tie [18] has ;rﬂved A general minimax

theorem for functicns that arme Qoncave -Convey like,



In this chaptor we prove minimax theoorams - of which
one will be a generalizabion of Wald's {heorem [22] while
the rest will be general minimsx theorems, bthat are exten=-
tions of T.T+Tie and Ky Fan, In all the Lheorems compact-
ness or conditional compactneas of one of the spaces has
pleyed a cruciasl rele. More precigely, the aﬁsump;ian of
compactness or conditional compactness orables one to reduce
“the problem to finite dimensionsl case under appropriale
continuity assumptions on the Kernel Kix, y) which in

general will bhe unbounded, We will now stzle some of the

theorems thet are proved in this chanter,

Theorem 1,3: Let Kix, y)} be a real valued funcition

(no* necessarily bounded) defined on X » 1  such that
X dis conditdonelly compacl in the semi-intrinsic topology.
Purther auppose X(x, y) 4is bounded in y for every fixed

x and

K, 2) = f f Kix, yhau(xldr(y)

= [ [ E(x, yiar (y)dalx)

*
e 5]
for all w €my ead X € my . Then the game is strictly
Inf Kiu, A
rr

£
']

determined Yeoe Inf Sur XK{u, ) = Su
g [
m

&. o] mY
Ty My ¥ Ty



Theorem le6¢ If - X. 17 conditionally ceompaat in the

{8) topology and K(x, 3} ia poncave-convex lilte then

Inf Sup K(x, y) = Bup Inf Kix, v}
¥ X r X

Theorem le7: Lt K be defined aover X ¥ Y.

Suppose X iz {8) conditionally compact. Them the

following conditions are equlvalent.

L) Given any € » O, any finite subgets A and B

of X and Y vrespectively there exiats x' e X, ¥y' E Y

guch that

K{xi! y') L E(xh, yj} + & for all xja A, ng B.

2) Sup Inf X = Inf Sup K
X by Y X

3) Inf sup K £ =up Inf K for every finite set
T A X T
Ao X

4) Bup Inf K > Inf sup K for every finite set

* B JERE |

Pheorem 1.9: Let X be a compact smee. K(x, ¥)

is upper-semicontinuous In x  for every fixed yo Then

the following atatementz are equivalent.



1) Tnf sup X = sup Inf K
Y X X ¥

e 3

2a) Given any € » 0, any finite subsets A, B of
X, ¥ there exlisls x*,.y* auch that Kﬂxi, y') £

K{x', yj) + € for all x,

£ A, ¥ £ B and

h) Tor any O ¢ Inf sup K there exisds a finite
¥ X
set 4 of X s=uch that for every ¥ There axists an

x & A with K{x, y)>» 0.

In the lasl aoectlon a simpls gsenernl mlnimax theorem
ie proved and from that theorem as an apolication a rosul’®

due to Ranga Rao [11] igvdeduncd,

Sece 2:  Gamen of Strategy

If X &and Y are non-empty sete and if XKz, v} is
a finite resl wvatued function on fthe Jartesliun product
X X T then the triple (X, ¥, K) 12 caliad a game. In
a gams (X, Y, K) the elenens#® of X arc called pure
strategles ot playsr 1 and the elsments of ¥ are called
. pure strategies of player 2, Tﬁ; pairs (x, v} where x € X,
¥EY wlll be ecalled plays, Ior x € X, ¥ €Y the number

K(x, y) 1s the pay-off in the play (x, v).
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Let Kix, y)} bYe bounded. We will now define the
neighbourhood systems for every point x  beolonging to X.
1
[
J

IE}'

Iy ¢ = 3L-x | Suplklxy) - Kixyy)] <

where £.> 0 and x & X, TIhls class ol neighbeourhoods
will form a bage which will induce a fopology which we
ghall call the Intrinzis topology or almply I-topology
for Xe Actually this topology is induced by the

following paeudo mebric
Alxys xp) = Sup| Klxyy ) = Klxpy 1)
But one can actually convert this into a metric by defin-
ing X' as the class of all gets of the form
— .
Ty 4x | Kix, y):K(KO, y}} - S ¢
yer. °
end K' ae the funotion on X' X ¥ aaticfying
K'i{x'y, v) = X(x, v} for x € Xt

Tet Cri*}]i and m}r darote the omallept o=fleld core
taining T=open mets of X and the cslaas of a11l pmbability

digtributions on X respectively. ﬁf% ad m% san be
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defined in 2 similar way for Y. We will am=ume wd thous
logs of generalily ﬁﬂi and 55%. ineludens pure atrategies.

Flements of Ity {mY} are oalled mixed atratrgies.

Definition: i iz said to pe I-conditionally

compact il and only if for every £ > 0 there oxists &
n
finite (xl, Hgpeeos xﬂ) nf % rmuch that E_{

‘[.]{‘ ,[: = K.‘
L

Remark: X dig I-condiftlonally compact 1L and only
if ¥ 18 I=conditionally eompact. PFor a proof refer
wald {23}. We will now state the theorem of wald [23]

without proof.

Theorem lel: Let X be I~conditicnally compact and

let Klu, M) = [ J Eix, y) dul(xlaxly) where g € m%,
» Cm then
sup Inf K{y, %) = Inf sup Klu, M)
T I T |
my My my My

In the next section we will prove a generallization of
theorem 141 by weakening the topolagical assumptions in

Theorem lsl.



Berce 33 Geperplizatlon of Theorem 1,1

We are now poing to introdoce Sopologles for X and
Y which will lead te mors eeheral theorems than theorem
lel, Tet Kix, ) be a (not necessarily bounded) feal
valued finetion defined on ¥ X Y, 7Then lthe class § of

the subanta

8{x , 8) = L x | eup [K(x, y) - K{x", )} < E}
? L Y

g > O, X, £ X

iz a base for u topalogy for X.
- @imilerly,

: 7
8y s €) =5'(H | Sgplﬁ(x,ya}ﬂﬁ(w,y}] < cj'

£>0, 3,07

is 8 base for a topolopy. for Y.

We shall refer to thede topologies as the aemi-intrinsic
topologles or simply the S~tnpelogy. This was firat consi-
dered by Teh Tjoe~Tie [L&].
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Definition: X 1a sald to be S-condilionally

compact 10 given nmy € > 0 there exiots a finite net
iy

E‘)=KI

—,

le, Koynees mﬁ] rach that igﬁ 5 {xy ,
Remarks: Bvery Se~open set of X is T-open. Alsc
- every Te-conditionally compact set in S-condiiionally
compact. K(x, v} iz {8) uopet semicontinnousz in x for
svery fixed y £ Y =snd }S] lower gemicontinucus in  y
for every flxed x € Xo If ¥ 1z {§) conditionally
compact It need net Amply that T dis S-conditionally
compact, Thig is evident from the following examplet Let
X be the set of pesitive integers and Y fthe class of
all subsets of X+ Define Kix, y) ==1 1t x £y and
1 If % £ ye. It ie readily =zcen thal the Y-sopace ia
B=comditlonaily compast but the epace X 12 noh,

Let Gyi ard m% denot e the amnlleat o=field con-

taining S-open sefts nf X and the pure ptrategies and the

8
Y
‘are defined similarly. Iet ({4 be the smallest o=algebra

clags of all probability distributions ou X. r%?} ad m

ot .3
containing the rectangles C X Dy 08 (Fy. D (P v
v s T ) - S oo i1
If X 1s I-peparable thon My = fay W will now

prove the following Jmown lemma [18]) which is necded in
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the mequel.
Lemna 14835 If ¥ 1= \(I} gaparable then Kix, ¥
ig {(8) meaeurable,

Froof: We define!

7 ]
3 = i’{x’ v} | K(x, y) > a; a real

it

Clx ) = ix ! 3(xy,y x) < I‘& repositive rational

X = d{x | ¥{x, ¥} > & for at 1.ast one ¥§ ?}

Simee K{x, v} is (I} continuous for eash fixed ¥,
the met X, 1o I-open. Dot X, be any fixed countable
dense subset in }IG and {’x{_},l 'l'] be o polnt of 2 Then
there exints g vpeint xy € & and a4 pueitive rational r

guch that
&{xc, xl} {17 and v < I{{xl, ¥i) -
Lat € be a posifiive mumber such that 0 < r + £ < folsﬁrl }=a.

Then, if (%, ¥) 18 a polmt of the rectangle Clxy,r} XS(yy€)

we hatve

T Tk
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K(xp,¥7) = Kix,3) £ 1K{zy,5;) « Klxy)] +

+ (K, 5y )= Kiz,3))

(r+8<1{{x,y1}-’fa

- It follows that X(x, v} > a or G(xl, T) X'S(yi, e} is

g mithact of Z.

It Y(x], r} 1a delfined to bhe the set

.
Ty, v)= () 48(y,8) ye¥, € > 0 and

0 <+ &< K{xyy ¥ - a-‘l}'

then it has besn nroved that for any point (x, vJ)€ &
there axists & point Xy £ L, and a Tatienal T > 0 such
that

(ry 7} 68 Clxyy v X T{x., ) G A

Since Oz, r) € ﬁf)j{: end the claas of rectangles
Clxyy x) X “f(}tl, r) is countable, the et Z is S-measu-

ratles We wlll now atatc and prove our theoroms
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Thoorem 1e31 Iet Kix, vy} be a resl-valued func-

tion (not necesaarily bovmded ) defined om ¥ X ¥  such
that X is {8) conditionally compact. Further suppoac

K(x, y) is bounded in y for every fixed x and

Ky, A) = [ Kix,yiap(zdaniy) = [k {x,y)da(y )au(x)

for all u ¢ m%, AR m?, tnen

Bup Tnf K{y, A} = Inf Sup Ky, A,
8 _8S 5 3
mK m? mY mx

Proof of theorem l.3: Given sny £ > 0, since X

i1s Swoonditlonally compact thers is a [inite get A, such

that for every x there exists an x; € Ap with

Kix, ¥) £ K{xi, ¥ o+ 6 for all v
Hence it follows that,

6
Injs.’ sup Kl{pg, ) < Inf Max K(j{i, A} + €.
5 S

Ty My My AH
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Write V = In{ Max K(;{,j, A

5
™y A

Now we shall estaplish that there exists a probability

vactor
ro= [El «vs F ) suchk that

A} > ¥ for all A

Suppoge, 1f 1t is net true, 1t means that for every F
there exigta a A  such that ¥ £y K{xi, A) < ¥, SBinee
the get of prohability vectegrs 12 nompact, we can find -

finite number of 3, Aoyeemy A guch that for every ¢

there exists one lj with T g4 K(xi, li} < Ve Tt other

1

- worde for every ¢ there exists some probabllily veotor

It follows that Max Win Afr, m) < V.
E %

By von-Neumann 's minimax theorem we have Min Mox ﬁf{,ﬂ]i )
n g
or Ewg £y K(xg 2} ¢ V. for wll f and for eome .

This meano I &; K(x;, ) A,) <V for oll . That is
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K{xj, AP) LV for 1 =1, 2yeee, I

whers A' = & ﬂ? li. It follows that

nf Max K(x,, X) < ¥ = Inf Max K{x,, 1)

m% Bp m? &B

which i3 impossible. ¥Fence, for seme =

Prom this it iz immediate that, sup Inf Klw, X} > V
b

which in turt Amplies the conolusion of theorem 1,75« We

’ .
will now guote Lhe result due %o T.7,Tic (18],

Theorem ls43 Let KE(x, ¥} be a feal valued Func-

tionon X X ¥ suck that X and Y are bolk (3) con-

gitlionally. Compact. Turther guppose

Klugn) = [EG, v au(e idn(y ) = [fK G,y lan(y Ydulx)

[ (=
for all yfmy 4 AE m@ ther Bup Inf K = Inl sup K.
X 88 & 8
X v ¥ X
Wo will now give an exampls to show that tlheorem 1.3 ig
not included ir ftheorerm lede In other werds theorem L.3

is logicully independernt of theorem l.d.
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Example: it X pe the spaee of poaltive intepers
and Y the clang of 211 subzets of Xe. Define Hix,yi=wl
if x ey and =1 1if x £ ve Tt ic realily s2en that ¥
iz (8) cobditionally nompact while X 1s nos: Ao T is
trivially T eeparable, freom lemma 1.2 1t fallows Eix, y}
is S=measurable, Turther E{x, ¥} is boundsd and hence
[z, yiduta)ar(v) = fF ®ix,yax(yiapgixde 417 the conditions

of theorsm 1,3 are saticfisd and 1% is quickiy geen that

Sup Inf K = Inf Sup K = « L. Theovem le4 canmoet he applied
s .9 8 9
Fit) hid T ESLT. .

applied hers as X da wet (8§) sonditionally cempuact.

Ramerk: [t ic nol known whether $he conolusion of
theorem 1.3 remalns trae 117 one omi}& the aggumption namely

Kix, ¥) iz bewnded in ¥y for every fized w.

2

are A Gerncrgl Mindimex Theorsme:

Definition: ¥ix,y) 42 upper semicontirusua in x for
every fixed ¥y 1iff ia | E{c,v) € r ] 28 open for every
real number 1o K(x, ¥} iz lowzr renmiconbinuous in oy 4f

.

and only if fer every real number v, Lhe set

4

};F’I E{x, y) > r ? in onen.

Definition: I (=, y] 1a aaild to oo conegve In X Cop

fixed ¥y 1ff for any t € [0, 1] and any Xps g L X thero
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exinte an =lomant 't'-:-zl + f_! - 't]:]'rt‘:,\.l.:; ¥ aueh thal

K{x, v) iz said to be nonvex in v Tor fixed x Aff far
~any % € [0, 1] and ALY ¥y Va £ ¥ fhere exists un eia-

ment 'l';;'g}'l + {1- ‘E}Tf? B Y such thak

K(x, tyy + (1= $)y,) £ tK(x, ;r,rlj + (1= t)1K(x, yp)

Thig definition is meaningful LI the spaves X and ¥
have lipear structures, We Witl now seneralize Lole comcept
so that it may be valid for spaces which 2o noed noszess ANy

linear structure. Thig was Tirst done by Ky Pan (6],

Definitiant A real valued function E{x, y) is said

to be coneave liks in x {convex~like in ) if and only il
for any * in [0, 1] and any iho  x, v, £ X (4, ¥p 8 7)

there exists an }:3 e X {Ty“{f} £ ?j ekl that

tR(xy, y) + (e t)K(x,, ¥) £ Klx,, ¥) for all vy

It Kix, yl} + (1=t) Kz, v.} > Kix, yo) for all x ]



Klx, ¥) ig roncave~convex like if it is concave-like in x

and convex-like In .

L concept which is cquivalent to I-conditionally
gompaciness ig thal of almosi periodic Tunctions defined
as follows [ﬁj! A r=al valued bounded funotion K{r, y}
defined on the product of X = ¥ 1g 1eft zlaost pordodins
1ff given any € » 0 dhere existse a finite subaet
[xl, Xy aeny Xn] af ¥ gueck thal for any x & X there
ig some =, for which [K(x, y) = ®lxy, v1| <& fer all y.
It is not hard to check that left almost periodicity of K
implies and is lmplicd by right almost perdodiclty (which
gan be defined In an obvious way ! Ky Fan has roved the

following Lhworem, ‘

Theorem le5: II K{x, ¥) is 1ot alwmoest periocdic

cand concave-comvex like then Sup Inf K = Inf Sup K.
L ¥ X

We will now prave the follawing theorem |71,

Theorem Le0: Let Kix, yv) be a real valued {not

necesgarily bounded ) Tunclion dstiined over arbvilravy pro-

#
duct space X X Y. Bunnose X da (3) rconditionally

cowpast and K ls concave-gonvex like. Then

Sup Inf K{x, v) = Inf Sup Kix, yh
& ¥ i ke
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Remark: Theoarnm 1.6 includss theorem le9 a2z A
epecial nase. It iz pogsible Lo mive A direcd oroef of
- theorem Le& without resorting to von-Noumann's Minimax
Theoram, but we will not be deing 1%, The following lemma

is requifed %o in senquel.

Lemma 1.7! Let A und - B b any two [inite oub-
sete of X and ¥ respontively and K be voncave-convex-
like, Then thers exicts =x_ € X, y. C Y =uch that

il o

K{xi, yﬂ] £_K(RD, yj) for all Ki LA, yﬁ £ B.
Prooft The conclusion of tho lemms 1o an immediate
consequence of voneHeumanm's thoorems  From the lemma .7
it follows that for any twe finite subsets &, 0 of X, ¥
respectively, Inf Max Kix, y) < Sup Min Hix, y).
¥ A g

L

Proof of Thearem 1.6: Since ¥ io (3} conditionslly

sompact, given any # > O there ewiants o finite set AL

guch that for any = one £an find an £: & Ay with
K{xy, ¥) < K{x,, vy + 6 Tor all y

Therefore we haove,



=

Inf aup K < Ind Max K + €

* K v
T A ‘G‘P..

From lemma 1e7 it follows that

InT sup K _-g_ Inl sup In* K + ©
T X . X B

where () denotes the elass of all finite cubsebs of Y.
Through oubt we *t1w the C whick we nave chosen already.
‘¥ow we shall prave

Inf sup Inf K g gip Inf K + ©
& XD L 0F

£

Tet ug write ¥ o= Tnf aun ‘nf K
A X B

If V== <her we are throughs Vo oot nowver be 4 oo
beceusge of the aszgumption thal X i S-conditionally
compact. Hence we will agsume Vo to be a4 Tinite real
number. Supnozc the ~bove inequsiity is nel true, Shen we
have

Sup Inl X < ¥ -« 26 P
Y v

Inf Xix, v) < V =26 Tor all %
y

Therefors,

Inf E{x,, y) <V ~20C for all x, € A
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It follows that there oxiats at loaat one y, Tor every Xy
such that

Ki{x;y, ;0 ¢ ¥V =28,

Sinee X is (8} conditionully compacl, for any x  there

exliats one indsx 1 - surh that
K{x;yﬁ,)iﬁ[ﬁi,yﬁ}+-ﬁ {V -20+ % =sV-E.
M .. N .

In other words,

Sup Inf K{x, y'_i] LV =0
£ B

where B is the finite sot [gef ¥, «o0 ] that i V £ Ve
Tof

which is dimpoosiblas

Therefare wo have,

Inf sup K £ sup Inf K + 32
Y X O §

Since £ i3 arbitrary and Inf sup K(x, ¥} > sup Inf Kix,y)
¥ £ X

holds good slways, our thoorem folleows and thus the moof is

completas

¥ow one pan prove the following more genoral theorem

which alse includes thoovom LeGa



Theorem le7: Iet E  bhe oreal valued funetion deflined on

¥ X Y. Purther assume X to be (3) copditionally com-

pact. Then the following conidilidnsz are cquivalent.

1} Given any £ > 0, any finile subsets & and B of X and

Y respectively there existe x € ¥, y, CY wsuch fhat

4 . fe . o) e “ap gl Ty 3
R(ﬁi, Vo) £ K(x,, vl Tor all xigﬁayjbﬂ.

< 2) S8up Inf K = Int Sup K.
A § Y X

3) Inf sup K £ sur Inf K for every {inite sect A of X.
Yy A £ ¥

4) Bup Inf K > Inf gup X forfevery linite set B of Y.
£ B Y X
Prooft One can prove as before [proof of theorem 1.6]
that (1} => (2) and it is trivial $o chech that (2) => (1},
(3) and (4). Using the (8} conditional compeotnesa of X
it can be shown that (3) az well as {4} implies {2)s Hence
the theorem [pllows. Theorom 1«7 inciudes the Tollowing

theorew dus to Te Ty Tica

Theareﬁ 1.5 Tet K* be dofined over ¥ % Y and X

be (8) vonditionally compact. Suppose K iz concave-

gonvex like and ¥{x, y} is bounded below in y for avery
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fixed =+ Then Bup Tnf K = Inf Sup K,
Y ¥ Y X

Remark: Any function that is concave=-convex like
will have the property (1) of theorem 1.7. We will now
gtate & minimax thoorem that is valid when one of the

gpaces is compacte

Theorem leo9: Tt X be a compact apace Kix, y) 1o

upper gemicontinuous in x for every fixed ye Then the

following two mtatements are equivalent,

(L) Inf Sup £ = Sup Inf X

Y X iy
(2) (a) Por eny € > 0, any finite subacts A, B of X,¥
there dxists x_, y, such that K(x;, y ) LElx,, yj) + C

for all X, € 4, y, € B

(b) Por any G < Inf sup K, there exists a finite
I X

get A of I such that for every y there exiots an x € A
with K(x, y) 2 C.

Proof: We will prove (2} => (1) as 1t can be sasily
checked that (1) =» (2).

Prom condition (2) (a) 1f followa that

Inf Sup K ¢ oaup Inf K
T A X B



where A and B are any twp finito setg of I and ¥,
Sinee X is compact and  Kix, ¥) iz vpper semicontinuous
Inx it i3 not hard to prove the {olleowming: Given any © >

gup Inf K , there axists a finite sot R of Y auck thai
X x

for every x there existe a y € 5 with Kz, v) < ¢, We
will denote this condition az (2)(b') we will now nrove

sup Inf K p Inf sup K. Buppose, if it iz not {rue, then
X Y ¥ X

gup Inf K ¢ Inf Sup ¥ o 80 we can Tinag twn real numbers
T X ¥ X

- ok at
?1 .snd rg guch tha

sup Inf K < Ty < T, < Imf sup ¥

r f Y X

Prom (23(b) and {2){(nu') we have

Inf sup ¥ > r, and
¥ A

Sup Inf K ¢ ry

X 8 -
Hinee 1y < Ty, gup Inf K Ly {1y £ Inf sup K which
X B ~ T A

contradicts our ascumption {(2m). Hence the thonrem follows.

In fact one can prove the following for concave-convex
»

F1ike funections, IfT K is concave-convex Like and furiher

“Af either #b or 2b' is satisficd (compactness wssumpbion

‘ms well aes upper semicontinuous ascumpiion 1o omitied) then



gup Inf K = Inf Sup K. This cbsorvalion iz dune to M. Bion
r Y Yoo

i), One ean zasily ceonstrucl examwlos to show that
theoram 1.9 in lopicalty independent of Lhe akove facts
If we omit the assumptions of compastnean and vrper semli-
conbinuity im ticoram (.9 Ahon the teilowing quashion
ariges, Will {(2u] and (2b) alone imply {1) ﬁwm sunpz
that the anawer ls fne', buf we do not huve any counter

examplos at present at our disposal.

For the sake of completepege wo will stote without
proof the moot genaral minimax theovem for guasi-concavew-
gonvex funcllona {15}. We will ascuds X =nd ¥  to bhe
convex. K is arid Lo b quasi~concave in oz 1ff the set
%x | Klx, 77 > r% is eonvex for every real numbsr rve K

L™

ip quasgi-convex in ¥ iff %he set i_y | XK(x, ¥) £ rj is
convex for evary roal numbar e K iz guasi-concave-convex
1ff it 18 gaani-concave In x and quasi-nonvex om F.

Thegrem of Sion oun he gtated an foilcws.

Theorem 1.10: et X and ¥ be convex and supposge

one of the spaces Lz compact. Turthey assume X is guasi-
eoncave-convex and  Hlx, y) iz uppzr semisontinuous in

and lpwer scmiconftinuous in y. Thon
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‘Then

Sup Int K= Inf Sup
A Y X

Secy 9t A minimux theorem and an apvlication

In this acction we will prove a very aimple goneral
minimax theorem that o valid for c¢ompact spaces. [rom
thig theorem MHMnl's theorem wigl follow immedistely. We

will also deduce a known thecrem [12] in probability theory.

Theorem lell: Tath :é fm(x} Y Dj ho a collection of

upper memi-conditions functiona on aj;compact apace X
where D 18 a directed set. PFurther assume «, B & D

¢ > @ dmplies £ (x} 2 fo{x) for all =x, Then

B

Sup Inf £ {x} = Tnf sup f‘ﬂ:(}:)

X D D X

Theorem 1,11%: o > g implies £ (x) £ fﬁ{x) for

all %, Bup Inf £ (%)% Inf Bup £ (x). W:. will give a
¥ D p x "

gimple diveet proof of Uheorem 3.11 (as it may be voasibls
ta deduce it from the theorems oroved in the previous

gection .
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Proof of Thoorem lells Tel il possible sup Inl fq (x) <
A D '
Inf Sup f_{x). Wrile ¥ = Inl sup L {x)
X Ik X '
fongider A, =X | £, (x) < v

Then {_) A =X ond eash A is opem in K.
1

Since X Iz ocompact, .{;_._.E' ll!"n:nt.- = X

L=l S
Tet 4, = Min [ Ty Oprevey D:n].- Ther 11 [ollows thuat Tor
BTETY X, frr {x) ¢ ¥. Thab is Inl aum .li‘qe (x} <V or VT
iy I X ;
ghich leadn to 8 contradictisn. Weo will aow state the

thegrem of DIWT.

Theorem L.l23 T o monntoninally incveaning net

i'ﬂ ¢t nee D of conlinusun real valued functiomp on a topo-

logival gpace X conversow poinfwise Lo a combinuous Tuno

tion f then the net comverges to unitormly on compacta.

Remark: Thia da egacntially fthe sare as the minimax

thegrem 1,11le Thoorem L.l2 can be writhen as
Inf gup (|) (x) = oup Inf ([){x) where {4_]{1] = f—:f.'_rf{x:!l
D K f K a1 s e

and K is sny eotmpant subzet of X, Since Inf {|Mx) =
o o
1im '[_“_}(J{J =0 At Fallowe Inf Sup ({)(x) =0 .
], A K ]



Ag an application of theorem 1,11 we will prove the

foliowing theorem dus to Ranga Bao [12),

s

Theorem Ll,13: Lot X be any complete separsable metric

gpaces. Let 4 => y where po and u are prohability
measures on  ¥. Let (A& = %Et(x} I I Tj be any family of
continuous funclbionz an X .with the followins nropertias
(1} a 1is eguicontinuous and {(i1) fthere exists a constwnt

€ such that lft(w} | €2 for ail x and for all t,

Then.

lim sap |f T 4 T Jfdu] =0
N = oo a '

Before converting this theorem intofa minimex thaorem we

will ztart with some prelimineries.

Dafinition: We say My =) 4 i.0. 4, ronverges

weakly to g ifl 1im ff dp, = [ty for evory continuous
Iimp

and bounded funclion an .

Definltion} Laj'is aald to be couicontinuous at g
point xgErX 1ff given any C » 0 there exiats a 3 depen-

ding only on x, snd C such that

[£(x)e £(x )l <& whenever Afx,x ) <3 and for all
fE =1



- Y

We gay *%hat Llhe family is cquincontinous il it ia

gquicontinucus at svery point belonging to X,

From *he theorem of Ascoli (4] it follows that the
family (- of equicontinucus and uniformly bounded func=-

tlons becomes condlitionally compuct In the uniform fopology.
£, =€ In the uniform taopalogy 108

1im  =up if‘n (x) = C{x)| =0 fov every compant
n =»ce K
nubset K oof K.

We will assume without luse of generality that the given
family a 1a compact (otherwise we Lawe 4o Sake 1ts closurs
with respent to the uniform topulogy on compacta ).

Te need the followirvie thoorem dus to  Yua V. Peokbovay [11]

in the geguels

Thenrem lwldd Lot X be any complote separable

metric spaces Let | be any family of probability measures
on ¥» Then [* 1s conditiemally compact iff civen £ » O

there existe a compact st K X  auch that

6=

g(KE) 1 =6 forall p o [ .



Define r:_p(:s*) = | [rap, - frau|

¥]

and bn{f)kn Sap (|i{f).
' morn m

The proof of thearim L0109 io complete if we show Lhe

follewing namely,

Sup Inf o (£} = Inf sup b ()}
Ly n ol
Yy

] |

where a  denobes the rlosure of a. Put thiz will follow
from theorem 1.1l it it ie ghow! *hat b (£} 1ia upper
gemi-continupus in t  for svery fixzed n. In facl we will
now ghow ket oanh bn‘:f ) dis continucus in f.o Let j“m-}f
In the wniform 4opslosye  Silnce Ho, =2 Hoy o 'u”. iz com=
pact in the weak topelogye DBy theorem 1.11 i1 follows that
given sny £ » 0 thers exiots a compasl sel ¥. such that

ﬂnﬁ{ﬁ'] 2 l-1" angd T 2 A= B How it Tollows thatb

-
L
-

| SE00, = Srpde - (g = ftap)]

< S, - J‘Edun +Jlg, - lap
- ﬂ‘,h_P P o X I - .
g%" |f’m f!d”rn+‘<1£ |lm‘|d“+f£.|lm f|d;.4,nt]£1l£m T|du
5 o o “C
£ {2 + 400 vhenover m > m, acd for all m.
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This mtep proves lhe asserbion namely that each b ()
sontimious in £ Theralors,

Sup Inf anff“) = Inf sup hn{f}.

- i ! -
b=} a

But Tuf bﬂff) = Yim sup (1) (£) = 31m ([} (£) =D
n T ey o n el

Henee, Jup Inf bn{f} = 0 = Tnffeup bﬂifj

"n —
El na

= lim sup ‘bn(f]
Ny A

= 1im  8un (}) (D).
Y ym o 20 ; T

Thug the praof 1o completeo,



CHAPTER II

On games played over the unil sguares

Introduction and Summary 1: In attempts to [ind

ethods of solving & fairiy wide olass of {(Z-porson zero-sum )
rmes over the unit sguars, real suenocss has been attained
h orly two cascas (4) grmcf in which tho problem is ecpen-
iglly & finitc dimennional one, notably Lhese with paolynoe
dal or polynomlal like pay-offs and (41) gameo baving
wlitions which are abzolutely continucus and can be solwved
Ha differential or inftegral equationc. These laller games
wve digcontinuitics in the wvay-offs or thuir derivatives.
fecides, Karlin [3} hen dealt with bell-shaped and Polya

wpe Kernels succoaatally. Sion and Wolfe have given an
ample [17] thereby showing that Lhe pinimay Shoorem due €0
i ickebera (2] carnot be oxtended in cortadn Alrections.

if particular interest in applicaticns Lo problems of hanti-
wl games ls the cass where the pay-oft Wi{x, ¥) is bounded
ind has discontinuities along the disgonal x = o In
gneral the value ol such games need not exist - Sion and

klfets example 1s onz such, Our obiect iz t5 show that

- -
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guch kermsls have mixed value provided one ot J4ho players!
nixed atrategiles are restricted to absolutely conlinucus
fidgtrimtions withh respect to the Lebesgur meanurz. - We

hope that thig theorem will be of some thooretical intersst,

Preliminaries: Belors proceedins to stats and provs

the theorem we begin with e notations and terminology.

T and ¥ will stand for the unit dnterval {0, 1], My Dy
will stend for the prowability measures on X mnd ¥
resprcbively. Ay OT Ay will denote the class ol all

shsolutely continuous disgtributisns in _[Q,. l}.

Definition: A sequence of measurcs y €m, is saild

to converge weankly to w Cm 1L wund only if tor each boun-

z
f8d continuous funchiosn on X,

; i

1im ffdu = [ £au.
n == i}

¥e endow My And M with weak ftopolopys It iz woll known

that Ty is metrizable and compact in the woak topology.

fLsl,
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Sace 2% SBtatoment and proof of theorem 3.1

Theorem 2.13 Lot Kf{x, ¥) be bounded on the unit

aguare 0 £ %, ¥ £ 1 and all polnts af discontinuity lie
on a finite number of curves of the form ¥y = ?kgx)

k= lyPyes.y 1 whara QR{K) arn continuous funchbionz.
Purther puppone,

K, 2) =!z:f}§ K,y dan(x)axy) = [ ] Kix,y)axy)aulx)

D0
Then

max inf K{py, X)) = inf max ¥(u, \)

Oy Ay Ay Ty

Proof of theorem 241%1 Firet we will prove for every

M E Ay J Klx, y)Ax{y) 18 continusus in x.
Let {%)fx) ='£ Eft,y )ar{y)s Tet ™M = Hup |K(x,y)] on the

sgunare 0 £ X, ¥ £ 1

Go= 0o,y [y = 00 ¢ e/Lmn holds for some K,

.I
where K = 1,8,4.04, nr

md F=G'(J (X X Y¥) whare 6! denotas the complement



of Ge Obriously F iz closed snd  Kix, y}‘ 19 wontinuous
on F. Bince T A5 comwmant, K 4o uniformly contingous on
Fo Thal 13, thors cwizse & @& sguch Shat For poians

(x*, ¥), {x'",y} in P for which Jx'-x''} < 3, the

inogquality 1K(x',v) -~ E{x'', ¥y} ¢ 6/3 heolls poods How

let x' and x'' be zuch tﬁyﬁ btex '] < B

K{xtyy) ~ Kl y) | (y)dy

\ N ]

i(P(}t’) - {_i_,lhr”x[ < S

0

where A (y) is the Radon-¥ykodym derivative of A with
reapect Yo ¥

ReEe3« of the above eon be evalunted by Integrating

aver the oum of Ther Inhorynls

7o O (x)] < ¢/12kn
E = 1,2,-:-‘! i
by =0 G ¢ gfanmm

=

{denote the sum ol thoss intervals by B, ) and over the

comploment Hi ol 3y #wlth renpect fto the claned interval
[0, 1), It te elear Lbat the longsh of i, AiRA not

excead €/ B .
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Hence,

é- [K(xf,y) = Ky )| atiylay < 6/3

Bince A ia abpolulely continuous wierst. Tebespus moasure

it follows that,

K[K',j{{: ket dInt (ydy < amr

L1t—
o

whare T e @ small positive quantity (ME[) <) with the

troperty that r => Ous €«>.0. Therclore 1+ follows that,

LIRGe ) = Kletoy) | Ay < £ + o
or (DG = (D6r) | £¢/3 + pMr

which in turn implies that {[i(x)} is continuous in  xa,
Since {_p (x) iz cortiruous in {0, 1] it i= hovmded and heneca
we ocan conclude that K{u,l] ig continuous in g or everv
fixed A € fpe  Further 4, Is convex, m, 15 convex and

: il X
eempact in the weak torologys The comeluaion of the thoorom
follows from the general minimax theorem that is given in

Chaptor 1.
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We will now gunte cerdtaln result in thio direcction

without proof that are proved by B.B.Yanovskeya [2¢].

Theorem Ze2: - It n

‘:: o "‘....ﬁ -
r }_J G wp -
with C » 1 E whave T is a distribulion function on {O,l].

&

- '
Suppore K{x, ¥} ia measurable and [ E{x,y)dx end
J

b _
JEG,y)d vy are uniformly ofnversent then Max Min K{g,2) =
0 ' n, fig

Min Max K{u, 21
Tp Mg
Tneorem 2430 Let K(x, y) be measurable and suppose

[Klx,yid y and éfo,y]dx are centinurus inr x and ¥
3

for any Lebesgue measurable set ST [0, 1] {hen
Hin Max K = Max Win K.
Ny My LR N
Theorem 2,1 and ¥.3 are similar in azture, 4 spoelal

gase of theorsm 2.8 1z considered by Wald [2E].

Secs 3: Example of Sion and Wolfe: [17]

el AL x <y <xo+E
Tet HKix, ¥) = |} ’ 1
- O 1f =2y or y¥=% 3%
§ [y
[+ 1 ntherwiszc.
s
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This function- K has its discontinuities along ¥ = X

3

¥y =X + %-. We ghall now shew that,

Sup Inf Klu, A) = % and

MI Tn-ir
Inf Sup Ky, A) = %
111\;1; ﬂnK

Let u bhe any prnhahilify messure on L0, 1]. Ir

. 1l
wlo, $] < % et y, =1,

-

It w [0, %} > %, chooge 3 > O auch that

"

cof—

. 1
- 2} 2 & and let yn =5 - P

o

1 EG!

In either case, it is nuickly checksd Lhat,

e ) Ky lan(oarly) ¢ F Kimy e () ¢ 3
Moy 00 0 '

n the other hand, 11 w ig choser zo that

W) = pE) = u1) = %

then for a1l i,

s [

(k(0,y) + Kigoy) + X0, 7)1 2

]

'gKE::,y}rl ulx) =



mF 0

Hence Sup Inf KE(x, A) = % ‘e
IIE‘I::{ Iilv
$imilarly it ear be shown that  Int Sup K(ud) = & .
My Ty

Az the conditions of theorem 241 are satizfied in thie

example 1t follows that,

Max Trnf K = Inf Max K =
I, L

X v A, my

[

Af—

and

Sup min XK = Min Sup K = %.

Ay ™y My Ak

This goame can be consldered as a conlinuous Blotto
game as follows: TFPlayer I must aspizn o foree 2 to the
attack cof one of two mountain passes, and 1 - x to the other,
Player II muprt assign a foree ¥y  to the defence of the first
pasg, and . 1=y to the ather, at which 1z almo located an
extra ghtatlionery defence force of %. A player recelvwes from
the other a payment of .1 at cach pass if his foree at that
excecda his opponent's znd receives nothing 17 they are

gqual there.
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The pay=-off iz fthun,

Blx, ¥) = 8gn (x - y). + 8m ((1 - x)~ 'E% -¥))

It lg easily cheoked that 1 4+ B(x, y) = K{x, ¥v) 8o lhat
this mame hag the value - = (and - %} it playst IT

_ A
{plagyar L) wrestricle hls attention only to absolutely

conbhinuaown distbribublornds



CHAPTER IIZ

Product solutions for olmple gamon.

Introductinn and gummary )= Thiz iz ar investigation

of the nolutionn of the gemes that are formeod by combining
wo or more simple gfamens played by separate grounn of
ndividualss A gsmae fgﬁuulled pimple il every coalilbion

8f pleyers either wing or losesze.e Given any two =inple
cgamen = players are agsumad Be be digtinat in tho two gamnno,
we define the produst asn one in which cvery wirning conli-
tion must include winning contingents from boin the compo-
nents. - A typical example of a product game 1z any wrga-
nization in which zgme mernber has vetbo powere LeSs Shapleoy

has obtained the follawing theorem on product aolubtlons.

(18], {141,

Theorem Sels ¥or 4 o= 1,8 let [ ‘r..'i{ﬁ'.} 10¢ ag 1)
ve a monatanic family of solutions of T (Pi’ wﬁ; BRCEL
that Y1{l) need not bhe externally atable and let

Ei {e) = AP - ﬂom?

Y. fale Then
i 1 1



[
— e i

o= (L) Xy fu) X X, (1 - @)
0¢ odl

ia a solution o T (T, W) = T (1?1, Wl} & T ’{P?, W, )

In this connectlos Giopley kan raizsd the [ollcwing guestions:

o
{1} Cun the requirement of full monotonieity ke relaxed
outside a neighbourhood of oy =1 for the yalidity of

tiegram Fel T

(2) If the answer $o (1} 45 'yes' fhen iz Tt suffieicnd

to assume monotonicity conditlon to hold good In any arbl-

trarilly small weiegnbeurhoed of o, = 1 for the walidity of

i

the #bove Llirorem 7

(31 IF ke aaswar to (L) Is 'yes'  thepn doos Shaee exish o
dotutlon te produet piople Zapes winish need nol keve Lhe

property of Mall moactoniaibty 7

We gnswer the Jiret question in Vhe affiroative.
We are unable %o prove {(2) in ko general casee Howouey
w2 have succacded in proving (8) in o epecial case. More

preglsely the feliawing Lhearoms are wrovaed,. Lﬂ]
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Theorem 3«2 Let E}{lir:r.} b o <a £33 ] beoany
Femonetonic family of sommound or product zolulions axecnh
that X%, {1) need not be externaliy astable o the zane
J = MS (33} B4 whare I'JI3 denotos the satmpie wmajorlbty game

on 12% and B*i the I« person pure bargninine game., Then

S,
x= (_J_ ula} > 2,01 ~ua)
0 a1l a7

is & solution for & () K where K i3 any orbitrary
sitiple game and 31 (w) = By = dnml 1{1 (@) amd ?j.?{l-_*cf,) = 32

.

being any solution of K,

Thaaran S.Eli Let K'E {(x} b= 0= golutions to J

and Il{u)' b demonatonice. Then X as defined above is
a solution for (::{] ko where ¥ i3 any arbitrary simple

FALE .

An examosle of & product solubion Ls siver din order
to ghow that every product solution nesd not have the pro-
perty of full monofornicity = in bthe gense of Shapley. The
guthor is extremsly gratelful to L."s OShepley lor having
reiged questions 2 and 3 in a private communication to the

gathor and fav hig dntoregt in thiz worke
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Snng B Definitions and Molationg:s

Simple games:  We ghall denote g ocimple game by the

gymbol T* (P, W) where P 1z a finite et (vlayers) and

W is a collection {:ﬁ\fubﬁetﬂ o T {the winning eoslitions ).

We demand that IO W wsnd the smpiy sel not an clement of W,
Let T (Py, W) and T (Pys Wy) e two simple

ames with P'_Lm I’.E =@ and let P = Pl (_)T‘M Then the

product
T* (I’l, % )T {PE" ng (far simvlicity we winl
write Py (3X) Py )

iz defined as the game Tw' (P, W) whore W consists of all

5 <. F sush inuat 3 () Pl o ‘q'fl and 3 () PE’ o If.,rﬁ_

Imputatione: let Ap  denote the simplex of real
' ¥

nop~negative vecbors x, such that = X, = le Thooe vertors
L

are traditiomally ealled timpubationo! whero Fodas bthe aet

of pleyers in a ginple pamcs Lot ug write x(8) for

z Xy Let H. x bha the restriciion 2f % +to 8
i 8
thust
Xi ir i1 a5
HS No=

0 10 4L 43




™ barveentrisz projection of % on 4 in given by
R 1 i b K

. 4
PsrEgTmy Re %

Thia is well defined provided x(8) > 0. Tet P, and P,

be fixed disjoint ravugs ghct P =P {;} P. and

&)
submets of API and APn reapeontively we dofine an opera-

e

=[x | xCay and x (P;) =11 If X and ¥ are

tion ® by (0 £ a< 1)
@

¥ X ¥Y=|5& l Z = ax +{1 = o)y for aoms X6X,76Y]
a

We recall that a asclulion of the game T (P, W) 18

a set X of imputationn such that X = Ap = dom ¥ where

T
dom X denotea the gel of ail v © A? auch that for sone

x & X, the set {i | x, > ¥ ] ts an clement of W. The

i
notations domy and ﬁﬂm? will be ussd for domination with
reanect to special clasnen Wy Woe I will arways stand
for the game M3 () H4 wWhR T .ﬁ% slardy for J-porson

rajority simple game end B, - 1 person pure bargaining

£ame ,
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Definitioni A parametrizged famlly of setz of

jmputations

[Y():0<a 1]

will be ealled acmimonotonie if for ewvery o, B, x such
that 0¢ a < f <1 and xXOY(R), there oxisho v© Y(x)
with

ay £ BX

DPefinttion: A semimonotonic family ¥Y{a) is

s

called mono%onic iT for every o, P, ¥y such that

0o £ <1 and y € Y(a) thore existas x & Y{g) with

e will now peneralize this concept of monctonicity.

Definition? semimonotonic Ffamily Y{w) is called

A
§= monotonic (0 <& <1) Af lor evorvy o, B, y such that

d<a $Pp £1 and y & Yi{a) there existe x £ T(3} with
Gy £ 8=

Remark: iy 3~ monoctonis family i neccssarily
drmoncteonie 1f & 2 8 13 - in general will atand for
any poslitive number with O < 8 <1 unliess oihcerwize 1t is

gtated |,
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Bece 3! On two theorams of Shapley IBLR!

Shapley has proved theoreswm 3.1 and the following
“theorem [13].

Theorem B.3: Lot ‘“Ei[u) be aemimonotonic families

of solutions of T (Pi, w, Jv»  Thon
= () %) X z, (1-a)
- G i

is a wolution of Py (3} Py

The purpose of this section lg to nrove a Ltheorem
which includen bholh the theoremee.

Let Yi(m] C.hp for 1 =1,24 Further suppone

i
the families to be semimonotonizé Ietd

Ii(u) = APi— don ?i{a}. For every sj € W4 Oonsider the

following sactok

/\J{Sj} =Lla|12>a>0 there cxigtbs X, £ 1 (@) and

}Fli;l 1{1_ (1) - Yl {t) ouch that ax > yq on Sa]



] -

Kow ahoose one o from sach A !{Sj) whick are not
emptye Let q;n = Min u‘,j. W fix thess ﬂ.j!E and it is
‘glear that @, ? 0« We \Qsh to ramark that fkzre is cere
taln amounl ol arbitrariness in chooasing ;;tj*r;. How we
shall prove The fellowing simple but uscful lemma.

Lemma Ge4t If Y]_ () ino {;ﬂ—monotom.ft thon thero

exists veclors 33 & Yl fl} for those 3} for which

A{S.) A @ and a a8, with 0 < & < «. such that
v 1 & L )

oan

L
L)

Further 4f woe teke any g P ,"\HEFS,?}, A

Pragf: Sinnc .z 6 f\,(si) thers exiabs X, ':Yl(“i}
] 4 L - i

such that ajxj >0 on Si' Sinas g :‘:i_ui ol thie

family ia aﬂw—monutonin there exista Z--r &1, (1) such that

P T . S
doo- Jdod

Let 9 denote the lesst conponent among the a4 COmpo-

nents of % Obvriously Ej > 0 and it follows that

J‘

Deline 8 = Min a. v e owe hve



30

Bj 2 & on Sj

Moo 1t 4ig kriviaol to chieck that 0 < ﬂl < o, Henco the

Tiret part of the proof ol the lemma 15 comvlete. Yo shall

now prove that any o © fﬂ(ﬁj} wlll satisfy the incgquality

o g_ali, Take any o O ;ﬁﬁsi] « Thiz mosns, thers oxisks

an Xy B Ylfaj) A ¥ B-Xl{l] - Ylil] suat that

& Xy b yp oon Si' We olaim theat at least one ol the Si

componenta of e wust be greater lthan or equal Lo 33

atherwise zi >y oom Sj and therefore y, C dom Zy

domy Y](l) which centradichs the assumption that

¥ % Q0) = ﬁyl

lenes the procf of the lemma is comploto,

- domg Yy (1)e Therelore we have u:>;5r._1_( g2 9 .

Similarly wo can et hold of a? Wy constricting
pn§s§} for 8! € Wye IF atl ke ;\ﬁsjj and ;E585}
arc emply we dofine 3, to b ey pogitive number in the
interval (0, 1) « in facl we om Lake B, = La TF
ﬁwﬁsiﬁ A @ for agome 1 and /1(5%} F B for some 3 owe
define a_ = Min [al, 623. 1r fH(Sj] A7 Tor some ]
ﬁ”(Sij =@ for all j we definc 3, = @, and In the

A )

obher cauge we take o = 8,. In all those coagon we anc
K



~o0=-

that ¥, > 0« How we are in o position tn stete and prowe

our theprems

Theprem 3¢5t Let Yy (a) and Yolw) Ve semimonoto-

nic family of selutioms of  TH(Ry, W) and TP, W,)

regspantively ercept Lhat ‘Ylﬁj} and  Y,(1) unoed not be

externally stables ¥urlbev aunposc Vi(w) L3 30 monostonie
Then

Y= {0 o) X, (L« 3]
0¢agl ! @ ©

is & anlution of T (jgj Poy whepe X, {a) = &, ~ daom, ¥, (=),
1 © i is 1 [

Remark:  Sinoes Yi [z}  in zmemimonotemic 11 follows

o

that ¥, {1) ie internally stable. If ¥,{1) for 1 =,
iz alec externslly gtable, that ig, i7 Yi(l} i1 a solution
thon it 17 not hard to oheck that ﬁwtgj} and 3\555} ar
all emphty and we can bako a, = 1. *In other words: theoram

3.3, 18 included in our thoaorem,  Ont oon alss orave Toat

full monotonicity impiies 4hat the A wsets are 211 empty.

Wo will show by giving an example that theorvm 380

ig actually o senaoralization of theorems M.l ond Jed.

Proot of thosrem 3«50 Our prooi follows along who

name 1irs as tha aone girern Poav Lheorer 7,30 WHoeto thnt



Xi(ﬁ} = Yi(a] for all a except g » la

Exterpal Stability: Take any ¥y C ﬂP amd define

f; = ¥(B;) and let y; be the buryoentric vrojection of

Cape 13 0 < gy < 1.

GCage 1a: yy 6 X By )y wp € X;(po te Then

Y = ¥y + Bo¥g O X
Case tht yy § Kl(ﬂl} Yo £ KE{EEJ“ Then

_there exists % € Y (B )y X, € Y,{85) oauch that y, €

domy x; for 1 = 1,2« Ther the lmputation delined by

T;’Eaﬁ.lxl-rﬁgxq

i

which is in X, alearly dominaten -y or vy & dom Xe
Find X, & ?2(52) sich that y, Cdom, Xpe Debt x5 > ¥,
on Sé E W, chooor & > 0 so that i, iy = Bo Vo S a  Aan

8!.  Using the semimenctonic property of Y,{a), find
[ L.

= ¢! x! i non-nega-

[ -
“ e

x) € Yolpg=e) much that por, = (3

tives This wector must be Leas bhan or squal to e ip &all



opmpeonents, sinoe no component of 2 non-negative vector e

1

exceed the pur of all fJoomponents. Tt follows that we have

(BE - ) xé » Bo ¥, on Sé .
Let wy be any interior point of Ay, . Then the imputation
P,

x defined by

* =By +eup * (B, -~ o) x)

dominates y on Pl{ﬂ) Sé » I xE X then ¥ & dom X
and we are throughié Suppoae x £ ¥Xi Then the harycentric

projection off x on AP namely
1

By e
Yo TR e vy * B, + = ol

- must not be an element of xlﬂgl +0) =Y, (g +2)s Hence we

can {ird x; € Yliﬁl+ e) such that x0§1dmm1 ¥ Then it

1-
ig clear lhat the imputation 72 defined by

Z= (P4 o) e +-(BE - e} x

T3

Tominates Fe OSinee 2 € K Lt follows that y € dom W

Cage 1d: ¥y & 3](51} ¥y © XE(ﬁEj. fdAke case loe



-l

Cage 2a: y, 6 %,(1). Then y €X

'y
b

Case Zbr ¥, £ L, (1)

This means ¥, C dom, Y.{1) and hepce apvgument »f case lo
e i hel

ean be repeated with the underitandinags thnat BV = 0
Cape 3¢ fq = L. Like case Z.

Tniz completes the proot of the ryternal stahility of  Xs

Internal S3tability of X3

Suppons Lhere exists x, y € X nuch that  xoy
on§ €W Let 8, =8(T)F, 8, = 8(7 )Py and
o= gy + (1= u]xa y ¥ = ﬁyi + {1 = ﬂ)yg sy Sines X X oy on

51{_)53 =8 it follows thal © < g < 1,
Cage la: 1 > 3 > a.

Bince w » 0, B 15 alsa atrictly ponlbives  &lsn o Xy }ﬁyj
a1 51- Since (‘(L{{:N io penimonotonico, theres cxictsa

x{ € Yl(n::l such that ﬂy.l 2 6 xl. Henee, o %, > a Xy on

-

%: or X > % on B conbradieting the Internal atability

of ‘TT-L {ﬂ)l



Thiz moans 1 » 1 = 5 21 = e Since o £1  Shic case i
gimilar -to the previous casc excepl that we have Lo utilise

the semimonotonic property of Y, (u)s

Cage 2oz f, =1 that ia a2 >y =y, ou S
If ¥ & Ylil}, then using the semimonctenia property of
¥ (e) we will arrive at a confradiciion, I
¥ € Ilfl) - Vl{l] then  ak ;lsfﬂl} and kense by lemma Bwd,
G 29 28 . Since Tl(u} i= &Dfmﬂnntnﬂic gna can find
¥ e Y-_[_{l;'l such that _}ri‘ £ o % thal is yi 2w xg 2 Iy

on S;« Thia fmplics y; € domy YL{IJ or ¥y 4 %, (1) which

contradicts our asgsumption regarding Ve

Cage bt $# =0 or 1 « f =21 and %he argument can

be parried owver as in gase Sat

Hence tho proof of the thecrem is complets.

Sece 41 An example of a solutisn of product simple

garn

I
i

w1

The following example showe that solutions to product
simple mames orm be found that satinfy the conditions of
theorem Jeh  bul not that o7 Jel or 3e3. T other words

gvery solution that calisfics the condidtions of Lasoprem 7



need nol have thn properiy of full monvtonicity. My sdn-
gere Shunks ars que bto L.Je¢ Shapley for having rolsed

this relevant point.

Brapple: Twe four person gmne J I3 defined by

—— e

J = T7(I%37, 194, 132, 254, 1204 ¢ )

where members in the curly hragkets denote the winning

porlitionn of the game Je

7= My (> By

¥, denoteg the JF<person oimple muaicyd tvy rame and B the
3 1 o T

4
l- person pure bargaining gamc.

Fow we pghall write down Lhe aglutiong of T'.'Lﬂ

nown 119).

(a)} +the finite sed

1 1 ) ' 11,
(E r Ty le (%‘! 0, %Ej; (U, =5 .:;.]

(baj the line~germont

2
)
&+

-h

(B, t, Tedmt)] 0L ELL - 2]

for emch 0 £ a7 %;-

witioh are well



T

{na} the Line gegment obtained hy peyaating players

(4

5

1 nnd 2w fbd}

the Time gepment obitnined by pormuting playatra

I ard 3% in (hﬁ).

Ho gemimonot~mic famdlly deawn frowm Shic 1ist {nelude

representatives from more than one of the four proups
{a) « (d);

g family is in Lhe value of 3.

t(g)

for

T(1)

that

H |

hence the only posolible variantion within such

Duline, for @ £ a < __%2__

Kl(ct]= () ()  where

0¢ X1

(Ce%/2, 6ty pliwt) = 3%/2, 1 =)0 ¢ b ¢ 1-p/2]

£p <1 ond

Wty -t 0 0Lt <E o, § % 0)

Define for -3- <o _{-g.uﬂ whers %, is o chosen such
ﬂrﬂ {:L - 7 1 = -i

81+ w, ]

‘ = | FILEIG
Kl{fl) o4 é_*?;}l YIla) where

pn



2 L
Tg) = (e Bty pl-tY o g 5, 1 -0

where 0 <t (1 - pri=yJ for 05 b < 1.

For &, < a <1l define

where 0 £ <1 - (1 ~-%=)g) for 0 <p L1
- Par g =1 define

{_J  1{g) where for Diﬁ_ﬁil,

1) =
n = L)

T() = [(g%/2, pt, (1= t) = g5/2, 1~p) for 0¢ t¢ 1-p/al.

Now 14 is not hard to check lhat the fauily X (e)
ig semimonotonic and that each Xl(u} 1a o =zealubion %o

the geme J except that X (1) is not externslly stablo

Lanauee

Oy % 5 0) £ 2, (1) () aom % (1)

1 oK) =% 0) (0, % 3

'

s O) ther Kﬁ{l} in a

4



L HT=ts

solution of d. But X, (ah 0 ¢« < 1" together with

Ei(l) ie nnt semimenobonia, for, corresponding to

(@, %, %—, 0} 6 X{(l], there exlisats no element x £ Kl{m)

for any a 2 % with o % % {G, %, %, 0J)s Purther the

family [%;{e) ¢ 0 < @ £ 1] 1s not fully monotonic because

1
=

corresponding to the element (0, %, " pY & KW( %] there

exlets no elament ¥y € 31{1) with ®he properly that

y-i % (o, %, %, 3}s Hence 1t is elcar that the conditlons
of theorem 3.1 as well az theorem 3,3 are viclated.
Moreover 14 is not dirTicult to cheel that f%gsa) =

for a1l 3 and us such we omn teke By = 1+ Henes this
family Xi[a? car be uged Lo produce productk solutlons o
arbitrary games of ‘he form 4 {3X) K = colvtions which

theorem 3,1 or the#rem Za3. Canmoet predict.

Becy Of  Proof of theorem 3,8

We will start with some preliminaries thalb are esszsen=

tial for the proof of theorem 3,2,

Definition: Let X be a solution o the product of

simple games Py () Fop We noy X is a product solution
if and only if



Yooz e 35 X, (1 - o)

where [ Y, (u) 3 0@ {a £1] are semimonotonic family of solu-
tionz to Py, except that ¥, (1) need not be externally

stable with ¥, (a} = RP1- dom, ¥, ().

If XT= () x{a) %L ~a) and X {a}sX

for 1 = 1,8 then we call X a compound z2et. We roquire

the following theorem due to Shapley.

Theorem heb6? 4 compound get X ds a zolutlon to

p (X)p, 1ff X%, is & solulion for P, (i =1,2). For
s proof smee [15]. We call such sotutions as cormpound solu-
tione. In fact every compound solutiom is a product solution

Now we are in a popltion to prove theorem 3e2.

Proofs Tet X = Zl(uﬁﬁéi 2q (1 - o) where

l(a} = &y = domy Ilfm) ard

Zo{l = o) = 7, where &, is any solution of K.

Obzerve that Elfa} = Ilfm) for every o ecxcept o = 1,



3T

External etability can be estahlisghed an in the cawss aof
theorém of 3.5 ag the proof depends only on the gemimono-
tonie property of Klim} and the external stability of
ﬁl{a}. Henee it ie enough to establish internal stabllity
of X

Internal stability of X

Case 13 Xl(m) are all compound solutions except

1 ~n
1

This re-preseuntation 17 pogsible because of theorem 3.8

% (L)e Now one can write,

0

% (a) = [(loy ty 1mt-o), 1-p)f 2

jo L
™
1 b~

‘and the fact that ezpliclt solution to M3 is lknown

completely.

I - N N - .
Let o be a acqguence of poslitive numbers inereasing

to 1 with

[ Por simplicity we wlll not be writing the possible
‘values of t and § J.



e

With lossz a7 generalidy leay Gn -2 Gg Monsider the

get

"

M o= [ x [ X = {ﬁ{co, fy, 1T = t = cﬁ}i L= ﬁ) amd

TL?{ Y
5, T 1

.
there oxigtn xnﬁﬁ K](m k} mach that o
i Ly

Pirst we akall establirh that the olosurs of K]{1} BT~

fainn N.e I0 im nol dflicult Lo zes thats Y 10 nenempive

n

. . \ . . I
Let x BN o This weanes theroe exinds L llim )
& -

£

with

Lihk AD_I{,[\ Xe

il 4]
. 1 s .
Except a finite number of o & %he remalning o k Wil
b greatior thab 21 gqual bto Jo¢ Since by assurpiion the
famlly Il(u) ig gemeonoforic 16 follows that there exists
.TL_ Tl’k nl"‘

a sequence ¥ wolangzing bo 31[1) with v & > o =,
~ - Ir

o

Hance it follows thal the ologure of Elkj} - wprlttomn an

ii(l) vontains  ¥x. In other worde M X, (1)

AL thin junsoture we would Like to makz ancther
Coheervation namely 31(1} tnmge Cher with [Ilim) : 3 <a 217
is a gemimonotonic famlly and nence X, (L) i1 also inter-

- hally stable,



=R

If 0 <=

5 <% then Z; (1) =3 and further W is a solutien

for Ja. lignco by Lheorem 363 it follows thal ¥ is inter-

nally slable,

I By = %- thon Klfl) = T

It 1ls olear that the s=at

L (o, p/2, p/2, 1epl/ 0<p 1]

is not deminated by El{l}.

To prove internal stabildty of X in this cape, it 1g sufe
ficlent to egtablish that there does not exist any clemont
IE:Kif&)With e domineting (0, /2, /2, 1-p) for
some  Be  In ofheor words we have %o chow ,ﬁH{Sjj =@ tor
all .

Let if possihle

« (8100, %oy %) 1mpt) > {0, p7/2,5%2, 1-07)
Vin say I2T. Hence ot = ') > 1 -~ g% or g
Iet X {a) = {gle, t, 1 -t =}, 1 = gl.

%ow 1t is clear fthat



4@

g (L ~c)>p?fe >a/e
or all — e} >» 1/2

Further {(1/2, 1/2, 0, 0} & ijil)' and Xlia) 1a semimonotonic
It follows that

g (¢, l=c, 0, 0) ¢ (L/2, 1/2, ©, 0)
or afl - ¢) iﬁl/ﬁ and
hencs thers ia » comtradiction.

Let if possible X, (&) = [p(t, 1~t, D), 1~p].

‘It follows that « > 1/2. We also have

(i/2, o, 1/2, 0) 2 a (1, @, 0, O)

or & § 1/

cwhick is dmposalbles Thun o have eslablished internal
gtahility of X 1In thia eane also. I0 fove Indrnitely

mAny I,

iﬁﬂnj = iﬁfzg Q, ﬁfag-lﬁﬁ)(_)(S/ziﬁfgf th“ﬁw
() (0, B/2, 372, 1= 8)

thun Il[l} will aluoo be the same 8ot and this case ina



.

Lt ol

similsr tn the cace when 80 <

. and internal stabiliby

(2]

of ¥ can be zhowm g theorszsm Ae.ds

Gase 2t Kl(a) are product solutiong.

Let oo be an increaslng acquence of positive numbers with
"t oer 1
L i ocpct
% (a™) = Llple,, £, 1= o - %) 1~§) (oYy (1)
L B B . n 1
0Lt L1l g

Tl
where Y] (1) nced not be an internally stable set for M.

Qongider as befors the net,

N, =[x | x = {8{e], t, l-t*ﬂgj, 1~g) and there exists

B ¥
I TL
, - Tk 'y .
8 Sﬁquenc% an £ Kl(a J such that « E”K 1 x ]
if GB < % for cvery @ then,
(1) = () w
S T

and (“)'NE 18 o solution for J and internal stability

followas by thoe theorem of Shapley.

Let € = % for some R. To complaie the proof of theorem

f

%e2 it dis sufficient o establish that there doss not

exist any wechor x C Klfa) with g x deminating ¥y with



-f

¥y G 31{1 V- X (1Y [zt 47 neanidle,

=]

wx >y via 124 with oy € 37400 = % (3]

et y = (€ By Bay €,) ond

¥lad)= [{3(!3&-, ty, 1= &= GE)', 1 = 8]

et

rx(ﬁ{,{:ﬁ, t'., 1- £ r}ﬁ}, T=p) >y on 124
Chooge any @' with afl - p) > 1 - Bty B
e will choose ana $ix f'

Lot Mgy = [{;’ﬁ’(c;, , t, L=t c:g,"}, 1m ']

If a°' GE, < 8, vnon

ax ¥ (ﬂ’(cg (y Oy 1 cg.}, 1-5') vin 124

Thig will mean X » & W whoers w0 }{1(1;1“‘] e e Tontrns.
dioting the internal stability of Xy lads 17 TR LoD
g it l ﬁ .
then B'IL = Cﬂr:' { €, otherwisc thers will by un elemons AN
B = T
N gt dominating y Lthoeoby nomtradicbing tha axmnption

that ¥ & 31 {1)e S~ wo have pril - oo ) € By How a



wfifie

sultable positive t?  ean be fownd such thalb

a[ﬁ(ﬁﬁ, 2, 1-t°-cﬁJ, 1=8] » {S’an., 1 0},1-p'}

! ﬁ'.'
Via 234 which will oneec apain contradict the internal ata=
bility of Xj(ade If Z;(a) = [8(t, 1=%, 0), 1] or
oLntaine elements of the Tora (§/2, /2, 0, 1-3) and
whatever be ihe form of Hﬁ' thon also one can show the
lmposslbility of a«x dominating v € Zl 1} - Klfl)

Thus the internal stability follows and tho proof of the?rem

Ze2 18 complete.

Remark: The example given in thz provious
gaction will serve as an exmmnle for theorem 3902 ap each
Il{aJ congtrucstad there are product sclutions Lo 4 execept

Xl{l) end the family is

a,-monotonle where 0 < ®. < la

Thearem 3+2 han ita own limitations benause every golution

to J need not be @ product sstution. We willl now cons-

truet a soluticn which is hot 2 produect solution Lo Je

Let 8 = (0, 1/4, 1/4, 1/2) and T be the set defined as
L =1 () Lo () L,  where



sam

; >

L. = () [, @y v 3 %, 7 2 0 and zey= 5=t]

1 Gi?ﬁlfﬁ ik B ' A ¥= I

Lo= (0 (Gt x, v, )] %, ¥ 20, xéy = 3 ]
AES-

<t ¢1

Ly = () I, x, ¥y 6} %y 20, x 4+ v = Let]

A=

Define H =L () dom o
Then it can b shown that,

TR NI

is & solution for J« For a proof of this assertion one

cun reler to the woell ¥nown paper of Shapley [13). TFurther
it is emsy to verify that the solutien nouhstructed above is
not a product solutione Dub Lhis is not 2 zerioun limitation
a8 can be scen from the next section = where in we are going
to show that theorem 3«2 1z valld if one dnecludes solutions
of the type constructed by Shapley [1Z] cortoining an arbie

trary closed componant for the game Ja

We are unhble %o gottle the followlng gquestion:
Suppose Klim) in any #emonotonic family of zolutions (not
necessarily productesoluticns or C-solutiens) to J  except

that Klﬁlj necd 1ot be externally stable. Then will this



=68~

family yield produci solutions le gamos of the faorm

J () K7 The author firmly believes thab this problen
can be scttled provided one knows all peseible solutlons

to the game J, However one can prove the following partial
results which give product solutiones to games of the form

My () K and 5 (GZ) K.

Thoorem 347: Lot ¥ {a)  be any dEmenotonic family

of solutiens o M, = T [123, (12, 13, 23, 123 )] exccpt
that Y5 (1) need not be cxternally ntable, Let
}[l{q) = Ay = domy Y, (@)« Then

(

¥ = Xl{:rx)éii Z (1 ~ )

()
0¢ asl

in a solution for M, {(3{) K where X (1-p) 8 X, is any
solution of fthe simple game K.

1
=

Theorem 3e8: Let Xy {x) be monatonic Lomily

of solutions fo J except fhat X;(l) need not be exter-
nelly stable. PFurther suppose [Xl(m} o g_& 1 are product
- saluticnss Define Zj{a) = A; ~ dom X, (@} Then

I = {

) Zyla) x Z2,(1 « a)
oc a0 e

18 a solutlon for J (X) K where Z,{1 - o) % 3,, any



r.1s 3

solution for the simple game K,

Hemark: Wo guapect that theorem 348 will be true il
we Teplace 1/2 hy any positive @& sufficicntly near one,
Proof of theorem 3,7 is aimple and we will bhe proving only

the internal stabllity of theorem 2.8.

Internal otability of theorem Z.8: %o necd only show

that /\(Bj) =g for 3 =1,2,3 where &, =124, §,ul34
and 33 = 234, Let if poasibhle

L
almy, %o Xz X,) > ¥ = (&), €, €y €) via any

3, whers ¥y £ 51{1) - lel)-

1

Lot HBT==(ﬁ'hE,,1h 1—t-c%,},13-3'} whare 3' is
go chosen such that « x, >1 - @t > £y

g! G&' cannot be less than or equal to B, as this contra-

1
dicts the internal stabllity of X1(Q}+ Hence @'ogy > G

3ince ¥y £ 31[1] 1t followe, #'(1 - cﬁ;} ﬁ oy ES' S0
we have the following inequalitles

oK, > 1 =g

4
©x, > E 2B~ cgr) 2 8'/2:

il

Therefore ¢« > 1 ~ /2 » 1/2.



“B0-

Since Eﬁ(m) in % =monatonic, there existes o we 11{1} such

e

that w>a x>y via Bl which contradiets the assumption
Let if posgible 3y, = (8'/2, B'/2. O, 1ea 1))
(ﬂ'fzs Q, ﬁ'f:’]! 1"@“”..).
©, '/2, p'/e, 1-8")
Az belore we have
B'/2 > & and p'/2 (B
o X, > 1 = gt
tx, > B2

or « > 1/2

This onee again contradictc $ue hypothesia thet y & 2, (1]
Similarly other cases can be dlsovoged of ond thus the
proof 13 comploto.

In fact thearoms (3420 and 2.2 oun be written in a

slightly more gensral form ag follows.

Theorem 3¢8%: Lot ina) be any 1/2- monotonie

family of solutions to J. Turther suppose [ Xl(u}: o Ee%}

aras product solutions. Let El(a] = ﬁJFEﬁmlEi{E} and
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ZE(G} be any aemlimonotonic Lamily of =olutlens to Ki Then

= () z(@) X 2z, (o)
OLdugll a ~

is a soluticn for the product game J (F )} K. Tn a similar

fashion theorom P2 can be ptated,

Secs £ A& clasa of product solutions

w
In the previcuz section we have constructed & solu-

tion thet 1s not & product solution for J. TIn thias aection
¥e will prove & theorem correéesponding to %.2 that will

inelude solutions of the type conetrucied in section 5.

Let € ©be an arbitrary closad sct in {0, 1) and

let 5 ©be the image of € under the one-one map

Uy €0 wed €0, —5 g e, Uy

ar

consider the gzt L which comaicnts of all imputations of

the form
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1 =w, -~ 90, c°)
- 4’
(' 4 = =y X3 ¥, u4), 114 & {-3,. 1]

£

whera Q° =0 () 1 9(“4: 0°} = Inf fuggg - u |
“ug g°

x20 yv2>230 and x +y = ~ —— « Leg

"

d=15 {7 docm 8

Then it followe that 8 {_){L « 1) iz a solution for J,.
L ]
For a proof rafer [12]. We will call such soluftlonn am

O = golutions=,

Theorem Ze8's Tet X;{e) de Cwuolotions to g

and Xlia} be d=monotonicas  Then

L= ()
0g T4 1

-

Zq (o) o~ I{l=0) i5 A

solution Tor J (%) K where Zp(l ) 8 Z, iz any sclu-

fion for K.

Prooft We will only indicats the proof of Internsl
atalbilitys Tet if nossible a(xl, Xgr Kas x4} >
¥ o= (6qy €ps €ay €,) via 124, y © %y(L) = X (1)
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Using the #=monotonic propovty, il com be shown that

1-u, - g% 1 « uy + g?

ML= 5 2 i I Oy u4) g 11(1} and
l - ﬂq: - gﬂ l - u4 + gﬁ -
W = 2 r Oy 5 y u,) € % (1)

where o X, > u, > €, and 8% is a non-negative real

number.
G -
L - u - 9
It ) < B, we are throvghs We will =suppoas
1wu, =9° 1 =u, + §°
2 > follows % < €
3 & and hence 1t follows that ) ~ £ €5

If Xy > 0 then g x > Wy via 234 which will in turn
comiradict the internal stability of X, ({a). 5o we will

B8 8yme ‘XE e (),

Let ©, Ve the closed subset of [0, 1) correspon=
ding to X(z). Ir x, € 0, ‘then

0y =g, ——=, x,) € X(a)

2

1 = I
Since Ly = 0 1t feallows that xl = ——ﬁ—-i andg Xy = ey

Henre,

¥ x> wy va 124 which is impossibie.
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1-x, - 9(x,, 09}
Let =z, £ C, + This means xy = — & M and

[

, ' Oy
2 2

s
wharea {
' [+4

E‘EE {_} Hlﬁ

¢ (x,, Gg ) >0 for = £-G§ and G; ia compant.
%

Tet 0 ¢ € < 9{:{4, G Then

| o | _ 0
1-xy = 8(x,, 0 ) 1 -3 + 80, cﬁ)_“ “ & x,) X (a)
4 o ¥ E‘g 4 1

e

That ig,

Q ) ] 0 r -
bexy - Sl o) o 4%l 0 -0 g
E[ T ) A ' LI x4 2 wl

Es o

via 234 which will contradict the internal stability of X{(m).
0

1mx, = %e,, O}
Coripider the case whern Xg = — ] —r ] daty

when E(xé, Gg) =1 - X,

Prom the way in which every C-solution iz constructed
it followe that the first twe coordinates can run between O

ton 1 = K4|
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Henre we have,

u’.(xz, Xy 0, x{i} > w, via 124

which leads %o a contradiction. Other cases can be diswposed

of gimilarly. Thus the proofl is complete.

Remnrk: Y ols posagsible fo construct a product
golution but not a C=geluticone In furl solublons constructed

for d In gece 4 are product solutions and not Ce=asiutiona.

Seces 7t Oomeluding remarks

The purcuit of the complexitiass in the soluitions of
product gemea dis justilied in part by khe ingight this
activity provides into the still more diffioult mroblems
gurrounding the soluidlons of goneral neperson gumes, The
results se far oblalined on product games are prilusrily of a
congtructive nature. It may s8tl1ll be possible to conatruct
a polution for J which {5 neituer a product solution nor a
Cegolution thereby reflecting the conspicuocus limitations of
puy preasent beckniques Delinitive regulta on compoaition

of product simple games may be achieved provided one can
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charaoterise all possihle solutlona for simple gamess At
last we wish to remark that it will be of some intercst

1f one can glve a lower hound for 3, 1in thecrem 3.5,

We have not yet succeeded in ¢onstructing a -

(where of nourse 0 < 8 < 1 ) monoteonic famlly of solutians
to J wherein f\ﬁSj} EF for at least onc 3. If there
exiets no nuch family then 1t mesans that Shapley's conjecs-
ture iz true in thin openial cases In fact no exsmple is
known to the author so far for any game whatsoever, where
the A =88t%8 arc nonvaccuous, while the family of sol&tiﬂns

13 3= monotonic,.
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