Flow and strain patterns at the terminations of tapered shear zones

Nibir Mandal®, Susanta Kumar Samanta®, Chandan Chakrabc:rtyh'*

‘Department of Gealogical Sciences, Jadavpur University, Calowta 70032, ndia
Uenlogical Studies Unir, idian Statistical Istite, 203 BT, Road Calowsa 700035, India

Received 20 December 2000; revised § April 2001; accepted 9 May 2001

Abstract

With the help of cormer flow theory, this paper numerically analyzes the deformation pattern at the terminations of tapered shear zones, the
walls of which are rigid and move parallel to each other in opposite directions. The overall flow pattern is characterized by curvilinear
particle paths that show convexity towards and opposite to the tapering direction respectively for low (<57} and high (=107} inclinations of
the wall verging opposite to the sense of wall movement. In tapered shear zones there are two distinet fields of instantaneous shortening and
extension parallel to the direction of wall movement. Numerical models reveal that the finite strain distributions are generally asymmetrical
with larger strain concentration occurring near the wall verging opposite to sense of wall movement. The S-foliation trajectories show a
curvilinear pattern, convexing against the tapering direction. The analysis of rotationality (vorticity ) indicates that the sense of vorticity near
the synthetically verging wall is reverse to the sense of wall movement; however W, is one everywhere within the shear zone.

Keywords: Mon-parallel walls; Simple shear, Ductile low; YVorticity: Foliation

1. Introduction

Theoretical, expenmental and field swdies over several
decades have led w0 a comprehensive understanding on the
kincmatics of parallel-sided, ductile shear zones. In such
shear zones the strain profiles generally remain almost
conslant in differing transects through the zones. However,
shear zones can show walls which converge and diverge,
and this type of non-parallelism s commonly observed at
the terminations of most naturmal shear zones (Ramsay and
Huber, 1987, p. 595). The deformation near the tapering
ends of these shear zones (hereafler called rapered shear
zone ) 15 essentially heterogeneous, and the nature of strain
distribution s extremely  complicated  with  complex,
laterally wariable strain profiles (Freund, 1974; Ramsay
and Graham, 1970; Ramsay, 1980; Simpson, 1983; Ingles,
1986; Ramsay and Huber, 1987), The mtricacy of the defor-
mation pattern within tapered shear zones and s dis-
similarity with that of parallel-sided shear zones can also
be demonstrated by means of simple physical model experi-
ments (Fig. 1), An appropnate deformation model that
descnbes the heterogencous flow within tapered  shear

zones 15, however, still lacking (see Ramsay, 1980; Ramsay
and Huber, 1987 ). This paper investigales the heterogeneous
flow within tapered shear zones with special reference o
particle paths, strain distribution pattemn and foliation rajec-
tories, using a simple continuum model.

The continuum-mechanics approach 15 a useful way for
the swdy of macro-scale ductile shear zones (Cobbold,
1977, Ramsay, 19800, Several workers have applied con-
tinuum models to analyee the deformation patiems in large-
scabe, parallel-sided shear zones involving transpressional
movement (Sanderson and Marchini, 1984; Fossen and
Tikoff, 1993; Tikoff and Teyssier, 1994; Dutton, 1997;
Jones et al, 1997). The results of numencal simalations
based on these models conform well o the structural
features observed in natural, analogous  transpression
zones (eg. Dutton, 1997; Jones et al., 1997, This paper
also uses the continuum approach but applies the comer
flow theory to study the flow and strain patterns in doctile,
tapered shear zones with rigid walls,

Comer flow model (Batchelor, 1967) was utilized by
several workers o explain exhumation in convergent
settings (Cowan and Silling, 1978) and emplacement of
exotic blocks in mélange terranes (Cloos, 1982, 1984). To
study the flow kinematics of wpered shear zones we have,
however, slightly modified the corner flow model of
Batchelor (1967) as enumerated in the following section.
The modified model has been used for numerical simulations
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Fig. 1. Successive stuges of physical model expenments on pitch blocks simulating the nature of stroin di st butions in pamllel-sided (n) and tapered (b)) shear
wones. The sense of wall movements (dextral) are shown by armws, In(b) one of the walls (bottom) was moved from nght to left, keeping the other wall
stationary . In the model of tapered shear zone () one wall is parallel to the movement direction, whereas the other wall is at a tilt of 357 with the movement
direction. Mote that: (1) such non-parallelism in shear zone geometry has resulted in asymmetncal stmin distnbution across the zone with the locale of high
fimite strmins ocournng near the wall pamllel to the movement direction. {2) The vergence of X ¥-planes of stmin ellipses with respect to the wall revemses acmss

the shear zone. Scale bar= 2 cm.

of particle paths, strain distributions, vorticity fields and
cleavage rajectories in tapered shear zones.

2. Theoretical consideration

2.1. The mode!

A tapered ductile shear zone 15 modeled by considering a

slab of homogeneous viscous material within two non-
parallel ngid plates simulating the shear zone walls, In the
model the plates are displaced rectilinearly parallel w each
other in opposite directions, and are inclined with synthetic
and antithetic vergence with respect to the sense of wall
movement (Fig. 2). Due to the rectilinear movement, the
Lwo opposite points on the boundanes of the shear zone at
any transect show  parallel displacements, and therchy
maintain a constant distance measured normal oo the
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Fig. 2. Consideration of Cartesian coordinate frames for theoretical analy sis of deformation in tapered s bear zones {(shaded ) with non-parallel walls { A and B)
undergoing parallel movements dextrally, as shown in the inset. The vergence of A and B with respect to the movemnent direction is in the opposite {antithetic)
and =ame (synthetic ) sense with respect to the sense of wall movement (dextml), respectively. #, is the taper ang le hetween the walls and ¢ is the inclination of
antithetically verging wall {A) with the movement direction. The antithetical ly and synthetically verging walls are consideresd 25 moving and stationary,

respectively, for the calculations in numencal models.

movement direction as oceurs in simple shear. The viscous
material 15 considered to be perfectly welded with the rigid
plates so that a non-shp boundary condition prevails at
the shear zone wall (cf. Dutton, 1997). The movement of
the plates thus induces flow in the viscous material between
the plates. The analysis also assumes that there s no net
volume loss or matenal acceretion in the shear zone during
the deformation.

2.2, Mathematical derivations

Consider a4 shear zone with non-parallel, rigd walls A
and B, tapering at an angle &, undergoing movement in a
dextral sense (Fig. 2). In Batchelor's (1967) comer flow
model one of the walls is considered to be disposed parallel
to the movement direction and the other with a synthetic
vergence. We, however, consider a general case with one of
the plates verging antithetically (A) and the other synthetic-
ally (B} (Fig. 2}, and therefore re-denve the equations in the
following way. Let us choose a Cartesian frame Oxy with
the ongin at the converging point of the walls A, B, and
x-axis parallel to the movement direction of the walls (Fig.
2). The wall A is at an angle o with the x-axis, and moves at
a velocity — U along the x-axis relative to the wall B,
Another Cartesian frame Ox'y' is chosen with the x'-axis
along the wall A. The mstantancous flow field within the
shear zone can be desceribed in terms of polar co-omdinates
(r, #) with respect to Ox'y' frame as:

18w
“= L5

(la)

ov
ar

Mg = — (1b)
where i and g are the radial and tangential velocity compo-
nents, respectively. ¥ is the stream function, the expression
of which must satusfy the following conditions.

At @ =10,

1 8%

T ol
o U cos o (24)

a8 oo
o [7 sin ¢h

and at # =46,
| S‘J“_

—— =0

r &f

(2b)

(3a)

S‘P‘_{}
T

To satisfy the conditions in Egs. (2a), (2b), (3a) and (3b) the
stream function can be written in the form:

¥=rf(8 (4)

(3b)

(Batchelor, 1967). The equation of mass conservation in a
flow 1s:

VIV =0 (5)
Substituting the expression of ¥ (Eg. (4)) in Eqg. (3),
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Fig. 3. Flow pattems in non-pamllel, dextral shear zones with taper angle #, = 45° & =0, 5, 10 and 15 in {a)—{d), respectively. Ses text for details.

of f{Eq. (7)) in Eq. (4) and putting the derivative expression

we have:
T3 1 in Eqgs. (1a) and (1b), we get
T{_u+rﬂ=_ﬂfhr+rj=ﬂ (6) ) | |
I ! w, = f{d) =A cos 8 — Bsin 8+ Clsinf + # cos §)
The primes indicate the order of differentiation of the fune- .
+ Dicos 8 — & sin ) (Ba)

tion f. The expression of fthat fullils Eg. (6) 1s:

Fh=Asin#+Beos 8+ CHsinf+ DAcos A (7} . : :
wy = —flf) = —(Asin @+ Beosf+ CHsin @+ D cos &)

A, B, Cand D) are constants, the expressions of which need (8h)

to be determined by applying the boundary conditions in

Eqs. (2a). (2b), (3a) and (3b). Substituting the expression Replacing 8 = 0 in Egs. (8a) and (8b) and then comparing
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with Egs. (2a) and (2b), it follows that:
A+D=—Ucosd (9a)

B =Usin ¢ (9b)

Similarly, by applying the conditions at 8 = &, (Egs. (3a)
and (3b)) we get:

Acos 8, — Bsin 8, + Clsinf, + fecos 6,)
+ Heos 6, — Bsm d)=10 (Y%c)

Asmfd, +Beos §,+ CH sin f + D8, cos g =0 (9d)
Solving Eqs. (9a)-(9d), we find:

A= T:'fE [uus"nﬂ]c{}s ¢ — K(#, + sin fcos 31}] (10kt)

B=Usindg¢ (10h)

C=UK (10c)
1 ; , _

- —[ms &+ =y {ms ticos & — K(# + sin feos H,}}]U

{10d)

where

K=

&, — sin Bcos 31{(1 = 31}!1_'05 ¢+ H{’} + sinzﬁ',{&fu{}s th—

mnstantaneous velocity vector atany point can be determined
readily from Eqgs. (8)—(12). Utilizing these cquations we
performed sets of numerical model experiments o study
the Qow pattems, vorticity and strain distributions in tapered
shear zones.

3. Numerical models
I, Flow patten

The kinematics of ductile shear zones s appositely
reflected by the particle paths. In parallel-sided shear
zones the flow 1s represented by rectilinear particle paths
under simple shear and hyperbolic paths ina combination of
simple and pure shears (Ramberg, 1975). However, in
tapered shear zones, although the relative motion of walls
15 mectilinear, the particle paths of ductile fow within the
shear zone are likely to be complex due 1o non-parallelism
of the walls, as revealed in the following numerical expen-
ments.

We simulated partic e paths, as is conventionally done, by
considering stepwise displacements of material points for a
large number of increments in bulk shear. After cach inere-
ment, the reference frame Ox'y' was repositioned so that its
ongin remains in coincidence with the meeting point of the

1) + sin ¢}

& — sinf,

It may be noted that the expressions of the constants in Egs.
(10— 10y are 1dentical to those given by Batchelor (1967)
if the wall A is considered Lo be disposed parallel o its
movement direction (i.e. ¢ =0, Fig. 2).

Now, the instantaneous velocily at a point in the reference
frame vy can be determined along the following steps.
First, the Canesian co-ordinate of the point (x, v) is ans-
formed into the Ox'v' space by:

x' coseh singd Y[ x
= (11
|:_1."' ] [ —sin g cos ¢ ][ _v:|

As the velocity functions are defined in terms of polar
coordinates in Ox'y' frame, the position of the point is
expressed by r and #, where r = /x™ + ¥~ and an =
(v'/x) and to find the velocity vector with respect to Oxy
frame we need o exercise the following conversion:

I cosd —singd I w,
= (12)
[ v ] [ singdh cos ¢ ][ Iy ]

Eqgs. (10a)-(10d) indicate that the constants in the
velocity functions (Egs. (8a)—(8b)) depend upon two para-
meters: (i) the taper angle (8) of shear zone walls, and (1)
the orientation of the shear zone walls with respect to their
direction of movement {¢b). For given values of 8, and ¢ the

shear zone walls A and B, A set of experiments was
performed by varying the orientation of the antithetically
verging wall () with respect to the movement direction.
The experiments reveal that flow patterns within tapered
shear zones are distinetly different from those of parallel-
sided shear zones.,

When ¢ is 07, particles take a tum as they move in the
tapering direction of the shear zone, describing a vortes flow
pattern {Fig. 3a; cf. Batchelor, 1967). The line along which
particles reverse their movement direction 15 asym-
metrcally oriented with respect o the two non-parallel
walls, and 15 closer o the wall wverging opposite W the
sense of wall movement. Particles on either side of this
ling descrnibe nearly rectilinear paths parallel to the shear
zone walls, With a slight increase in ¢ value (57) the vortex
flow pattern is repliced by a more or less laminar fow
pattern with parallel-disposed particle paths defining two
zones within which the movement direction s opposite;
the particle paths are, however, oblique to both the shear
zone walls, but are nearly parallel to the direction of wall
movement (Fig. 3b). When o is further increased (107, the
flow pattern is significanty different from the cardier ones
(Fig. 3¢). Particles adjacent to the synthetically verging wall
follow curved paths, convexing in the tapering direction of
the shear zone, and then becoming nearly parallel 1w the
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Fig. 4. Fields of shear-parallel instantaneows shortening {armws heading towards each other) and extension (arrows heading away from each other) in tapered
shear zones. Salid lines within the shear zone divide the two fields. The geometric conditions are the same as in Fig, 3.

direction of wall movement. On the other hand, particles
near the antthetically verging wall deseribe curved paths
convexing away from the tapenng direction (Fig. 3c). Al
¢ =157 (Fig. 3d), the pattern of particle paths is similar to
that of the previous model. However, the paths everywhere
are in general obligue to the bulk shear direction. Expen-
ments reveal that the Qow pattems deseribed above do not
change sigmificantly when the taper angle (8,) s vared,
keeping ¢ constant.

It follows that the particle paths in tapered shear zones
deviate discernibly from the rectlinear pattern charactenstic
of parallel-sided shear zones undergoing simple shear move-
ment, and are sensitive o the inclinaton of the antithetcally
verging wall with respect to its movement direction.

3.2, Strain analysis

Ramsay and Graham (1970} have modelled the nature of

strain variations  across  parallel-sided shear zones and

shown that the strain profiles are typically symmetric and
do not vary latermally. To study the effect of non-parallelism

of shear zone walls on the strain pattem we ran numerical
expenments based on the theoretical model deseribed

earlier, which mevealed sigmficantly different strain disiri-
bution pattems from that of paralkel-sided shear zones.

The infimtesimal strain at a point within a tapered shear
zone can be described by its components with respect 1o

polar coordnates (r, #) as:

&
E"_Sr
I, 1 G,
Ei = +rSH
N S(uﬂ)_'_ 1 Su,
=2\ r) 2 se

(13a)

(13b)

(13c)
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It can be shown from Eqgs. (13a)—(13¢) that there exists a
component of longitudinal strain along the bulk shear direc-
tion (€, ), which has a relaton with the stmin components in
Eqs. (13a)—(13c) as:

g5in #eos #+ gy sin*#

)
£, — E,L057H — g

(14}

Substituting the expressions of w, and w, (Eqs. (8a) and (b))
in Egs. (13a)-(13¢) and replacing the denvative expression
in Eq. (14), we gel:

1
€y = s (Dwin @ — C cos Gsin 26

[15)

Eqg. (15) indicates that non-parallel disposition of shear zone

alls can give rise o longitudinal strains parallel 1o the
movement direction of the walls, defining fields of shear-
parallel extension and shortening in the shear zone (Fig. 4).
The field of shear-parallel shotening hies on the side of the
antithetically verging wall, whereas the field of shear-paral-
lel extension occurs near the other wall, The line separating
the two fields is inclined to both the walls (Eq. (15)) and the
angle with the antithetically verging

C
6. =tan | =
e dn (D)

all can be given by:

(16}
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where the constants C and I are functions of taper angle
(&) and inclination of the antithetically verging wall with
respect o the bulk shear direction (). For a given taper
angle, with increase in ¢, @, increases, resulting in rela-

Ly

e expansion of the field of shear-parallel shorening

(Fig. 4d).

A set of numencal model experiments was un Lo study

the finite strain distibution in tapered shear zones. The
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model imitially had small, circular markers in a Cartesian
grid with respect to the Oxy reference frame, which are
deformed into ellipses of different shapes and orientations
reflecting o heterogencous strain ficld within the shear zone.
The experiments were performed for different inclinations
of the antithetically verging wall (@), keeping the taper-
angle of the shear zone walls constant.

Models show an asymmetncal strain distribution with
respect o the shear direction (Fg. 5) as observed in the
physical model experiments (Fg. by, There s also
preferential localization of high finite stmin along the two
walls of the shear zone with an intervening low-strain zone
(Fig. 5). The finite strains near the wall verging opposile o
the sense of wall movement are, however, larger compared
with that near the wall verging in the same sense.

The vergence of strain ellipses 1, in general, consistent
with the sense of wall movement near the antithetically
verging wall, whereas that close to the synthetically verging
wall 15 in the opposile sense (Fig. 5). However, at higher
values of ¢ (207) the strain ellipses near the antithetically
verging wall tend to verge opposite o the sense of wall
movement, particulady in the tapenng region (Fig. 5d).
With increase in ¢, an overall widening of high-strain
zome associated with the antithetically verging wall 15 also
noteed (Fig. 5).

Field studies reveal that straimn profiles in tapered shear
zones are generally asymmetncal, showing ups and downs,
and the shape of the profile also varies laterally (Simpson,
1983}, Similar types of strain profiles are oblained in our
numerical models, characterized by a valley with peaks and
plateans on either side (Fig. 6).

We also ran a set of numerical experiments o investigate
the nature of strain paths at different locatons within a shear
zone. The results show that the temporal variation in finile
strain 1% different at different locations. The strain at points
located near the synthetically verging wall increases to a
maximum, then drops slightly to 4 minimum, and finally
increases with a gentle gradient (Fig. 7). In contrast, at
pomts in the central region there 15 an unsteady increase
in the finite strain resulting in oregular strain paths (Fg.
7). The finite strain at points near the antithetically verging
wall increases steeply along a linear path barning a small
perturbation, and subsequently increases al a much slower
rate (Fig. 7).

3.3, Varticity freld

Vorticity, a measure of rotationality of non-coaxial defor-
mation, can be used o analyee the sense of local shear and
the magnitude of rotationality in tapered shear zones. This
can be desenbed in terms of polar co-ordinates as:

(17}

1 Blruy) 1 fu
W=Vxu= = :
u [ 5 ]

rodr r

Substituting the expressions of n, and g (Eqgs. (8a) and (8bh)
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in Eq. (17), we have:

4
W= —(Dsind— Ccos (18]
5
Eq. (18) shows that imespective of rthe vorticily s zero at a
crtical value of &:
C

e ]
. = tan ) (19

A line making an inclination #. with the antitheteally
verging wall divides the flow field within the shear zone
inte two quadrants. In the gquadrant with & << 8, the sense
of local shear 1s synthetic, whereas that in the quadrant with
f = d_ 18 antithetic with respect to the sense of wall move-
ment. The taper angle (8) and the orientation () of the
shear zone walls scem o be the prancipal parameters
determining the areal proportions of the fields of synthetic
and antithetic shear. Using Eqg. (18) a set of numencal

experiments was performed by varying the inclination of
the wall verging antithetically to the sense of wall move-
ment at & constant taper angle of 45°. With increase in ¢ the
ficld of antithetic shear tends to enlarge at the expense of the
field of synthetic shear (Fig. 8).

The kinematical vorticity number W 1s used as a measure
of non-coaxiality (Truesdell, 1954; Means et al., 19809, the
expression of which in plane strain condition 1s:

“_."

V20E + &)

where €; and e; are the principal stretch rates. If the defor-
mation does not involve any volume loss, 1.e. e, + e, =10,
Eq. (20} simplifies wo:

W, = (20

“_."

W=
~E|

(21}
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€ has the relation with the strain rate components defined in
polar coomdinates as € = 1||'E3H — € Epy. SINCE £, + Egg =1,
€ =+ &y + & Substituting the expression of €; in Eq.
{21), you get:

W

) )
2‘\! €p T Ex
Inthe present case e, = 0. Substtuting the expressions of

W oand €4 we find that the magnitude of Wy 1s always one.
Thus, even if the walls of a shear zone are non-parallel the

W, = (22

nature of local deformaton within the shear zone 15 essen-
tially of simple shear type, provided the walls move parallel
o each other, simulating a simple shear type of bulk
deformation.

3.4, Foliation trajectorvies

In ductile shear zones S-foliations develop tmcking the
XY planes of finite strain ellipses, and show curvilinear
trajectores reflecting the nature of strain variallon across
the shear zone (Ramsay and Huber, 1987). In parallel-
sided shear zones, the curvature of the trajectones varwes
systematically in a4 symmetrical manner across the shear
zone. Moreover, the vergence of the foliations with respect
to the shear zone walls remain the same everywhere. 1t is,
however, apparent from the physical model experiments
(Fig. 1) that the foliation tmjectories in tapered shear
zones would be much more complex, as s also revealed
in the numencal models desenbed below.

Numerical models were designed o track the S-foliations
developing along the XY prncipal planes of finite strain
ellipses under the heterogencous flow field in tapered
shear zones. Numerncal expenments run at different inclina-
tions of the antithetically verging wall with respect to its
movement direction show that the foliation rajectories
desenbe an overall curvilinear patlem convexing opposite
Lo the tapering direction of the shear zone (Fig. 9). However,
the vergence of the foliations with the respect to the sense of
bulk shear is different in different domains of the shear zone
(Fig. 9. Near the wall verging synthetically the foliations in
general verge opposite to the sense of wall movement,
whereas the foliation in the rest of the shear zone verge in
the same sense. However, as the mmclination of the wall
verging antithetically 1% increased the foliation at the comer
zone tends to verge opposite to the sense of bulk shear
(Fig. 9d).

4. Summary

The principal findings of the present investigation can be
summarized along the following points. (1) The corner Qow
theory of Tud mechanics can be utilized o stody the defor-
mation in shear zones with non-parallel walls. (2) Non-
parallel disposition of the shear zone walls, as often noticed

in nature, results in complex flow within the shear zone,
markedly different from that in parallel-sided shear zones.
i3) The flow pattern is largely controlled by the inclination
of shear zone walls with respect o their movement
direction. When the antithetically verging wall s at low
inclination with the bulk shear direction, the ductile flow
within the shear zone 15 represented by curvilinear particle
paths, convexing in the tapering direction (Fig. 3a and b).
With an increase in this inclination, particle paths also show
convexity opposite to the tapenng direction (Fig. 3¢ and d).
(43 In ductile shear zones with non-parallel walls there are
two fields showing instantaneous shortening and extension
paraliel to the moverment direction of the walls. The field of
shear-parallel extension occurs on the side of the wall
verging opposite to the sense of movement of the walls
(Fig. 4). (5) The finite-strain distnibution in apenng shear
zones 15 chamelenstcally asymmetrical, showing high-
strain zones along the wall verging antithetically (Fg. 5).
(6) Mon-parallel geometry of shear zone walls results in
reversial of the vorticity sense. There is a line of particular
onentation that divides the fields of synthetic and antithetic
vorticity. The Kinematical vorticity number W everywhere
within the shear zone 18, however, one (Fig. 8). (7) S-folia-
tions in tapered shear zones can show an opposile sense
of obligquity with the walls on either side of the shear zone
(Fig. 9).

In the present model there are certam simplistic assump-
tioms: (1) the model s two-dimensional, based on plane
strain condition; (1) it does not take mto account any effect
of volume change, which has been reported from natural
shear zones (Mohanty and Ramsay, 1994; Ring, 1999);
(iti) the shear zone walls are assumed w be rigid, and
perfectly welded to the ductule mock within the shear zone;
and (iv) in the analysis one wall s moved, keeping the other
wall stationary; if both the walls were assumed o be
moving, particle paths would be different from  that
presented here, however, the pattems of strain distnbution
and associated structures in the shear zone would remain
qualitatively the same.
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