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SUMMARY. Lot {Z}az1 be a sequence of i.i.d. random vectors. Let Iy be a statistic

based on the mean veotor Z, whose asy ic null distribution is a central chi-sq) with p
doegrees of freodom. It is shown that (ho distribution function under contiguous alternatives
of Wa a valid asymptoti jon in powers of n=13, the leading term being a non-
cantml chi-square with p degrees of freedom and the coeffic wnln nl' n=13(j > 0) being finite linear

of I chi-sq with same and with degrees
of froodom p, p+2, p k..., provided the conditions of (Imnllm and Ghosh (1979) together
with a uniform Umluér's lition and th on hold. The result

is applied to got expansions for the likelihood ratio statistic, Wald's and Rao's statistics under
sontiguous alternatives. Tho similar expansion for the likelihood ratio statistic obtained for-
mally by Hayakawa (1977) has been justified.

1. INTRODUOTION AND MAIN RESULT

The limiting distributions of a large class of important statistics used in
asymptotic theory aro either the normal distribution or the X2-distribu-
tion, It is ofton dosirablo (from the point of viow of theoretical interest as
well as of numerical aceuracy) to improve upon the limiting distribution by
obtaining asymptotic expansions. Bhattacharya and Ghosh (1978) sottled
this problom whan the limiting distribution is normal, and Chandra and
Ghosh (1979) when it is a contral y%.  What aro the limiting distributions of
these statistics under contiguous alternatives ? Tho answer for the first caso
follows almost immediatoly from that of Bhattacherya and Ghosh (vide
Romark 3 Dbaolow, page 5). It is the socond caso that prosents some novel
foaturos. The following discussion is confined to it.

Lot 0, be a fived element of R¥' and {0,}n 5, @ fived sequence in R¥'. Lot
Z.}n51 boa sequenco of k-dimnnsional random vectors which are indepen-
dontly and ideatically distributed (i.i.d.). Expectations under 6, will be
denoted by E, (n 2 0), Put for each n > 0

w0,) = B(Z), V, = Eo(#—p0,)(Z,—p(0,))

where T' denotes transposo. We shall assume that V., is nonsingular and that
H(00) 18 the null vector.
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Tho following facts will be referred to frequently and are collected as &
remark.

Remark 1: We shall assume later (vide condition (c) of the Theorem)
that {f,}a>1 is “‘contiguous” to 6, in the sense that the first (s—1) moments
under 6, have expansions (in powers of #=/%) up to o(n=(¢-*"/%), whose leading
terms are the corresponding moments under 6,. Suppose that Se, is a sphere
around 6, such that the distribution of Z, under 6 is defined for each 6 in Sg.
Then under enough regularity conditions the j-th moment under 6 will be
(s—3) times continuously differentiable; in this case if 6, is contiguous in
the commonly used sense, i.c., of the form 0,,+n“/’z (n > 1), then the Taylor
oxpansion for the j-th moment under 6, (around 6,) will lead to the kind of
oxpansion required by condition (¢) of the Theorem. We shall also need &
uniform Cramér’s condition (vide 1.6)).

Lot H be a roal-valued nwd.sul&blo function defined on RF. Consider
the statistic H(Z,) where Z, = n-! L Zi(n > 1). Assume that the limiting

distribution under 8, of the statmtlc
W, = 2u[H(Z,)— H(g(6,))] s (1)

is a central 2. Chandra and Ghosh proved that under some conditions on
H and the distribution of Z, under 6, the distvibution function of W, when
6, obtains admits an asymptotic expansion in powers of n~*, the coefficients
of n4(j > 1) being finito linear combinations of the distribution functions
of central y¥'s. To stato these conditions, we noed the following notations.

Lot s be an integer > 4. Denote the partial derivatives of H at u(6,) by

l‘x‘z
(1< iy, .0rig < k3 5> 1) where D' stands for differentiation with respect
to the i-th coordinate variable. Write

~0"'p"... D H(u6) o (L2)

P=(. ) L = (C))-

Let p be the rank of L. Denote by H,_,(2) the Taylor expansion around p(6,)
of H(z) up to and including the terms involving the (s—1)-th order derivalives of
H. Thesymbols || || and <, > will denote Buclidean norm and inner product

respectively. Let él, » be the characteristic function of Z, under 0, i.e., let

Gu, o) = Boloxpli < t,2,>}) n>0,tcRE . (L3)
A34-5
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Z, is said to satisfy Cramer’s condition under 0, if
sup {| G.a(0)]: It > 8} <1 e, (1)

for each b > 0 (sce Bhattacharya and Ranga Rao, 1976, page 207).

Chandra and Ghosh assumed that under 0y, 2, satisfies Cramér’s condi-
tion, E, (|1Z,]*-!) is tinite and that the following assumptions Ay(i)—(iv) hold.

Assumption A, : (i) all derivatives of H of order s and less arc continuous
in a neighbourhood of x(6,);

(ii) the vectar I is null;

(ifi) the matrix L is non-null and satisfies the equation LV,L = L;

(iv) if under some nonsingular linear transformation * = Az,
& =(zV, ..., z¥), 27 Lz becomes a positive-definite quadratic form
in & = (aV, ..., 2'P) then

2
Hy (A7) = X a'PaPPy(x) oo (1.8)
i,J=1

for some polynomials {Pig}.

Z, is said to satisfy Cramér’s condition uniformly if

sup{| @u, o0 Il > b, n > 0} < 1 e (L6)
for each b > 0.

If Z, satisfies Cramér’s condition under 6, and the distribution of Z,
under 6§, converges in variation norm to that under 6, then the uniform
Cramér’s condition holds. Under the set-up described in Remark 1, suppose
that for each 6 in Sg, the distribution of Z, under 6 admits & density
fy such that the map 0 — f, is continuous in Sy ; then using Scheffé’s theorem
(se0 Lemma 2.1 of Bhattacharya and Ranga Rao, 1976), itis easy to see
that the above sufficient condition holds.

In this paper v will always denote & vector of nonnegative integers and
2 an oloment of Rk, Foreah v = (s, ..., »®) and for each 2 = (20, ...,2%®),
put

2 =(zm)'(u (zlk))v(tl
9] = W0 4. ot o (L)

2 = (2, ...,21P)), 28 = (zP*D), .., 2tk))
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(1< p < k). Lot py,, = E,(Z3) be the v-th moment of Z, under 6,, in case
the latter is finite. Let f1, andf,., be rospectively the density and charac-
teristic funclion of a noncentral y* with degrees of freedom j and noncentrality
parameter 8(j 2 1, 6 2 0).

In this paper
§ = (AYTTAIAL

whore V2! is the submatrix consisting of the first p rows and p columns of

the inverso of ¥ and
= lim n/%(E,(Z,)—Ey(Z))).
n—po

Wo can now stato the main result.

Theovom : Asswme that for some integer 8 > 4,

(1) H and V, satisfy conditions Ag(i)-(iv);

(b) 2, satisfies the uniform Cramér's condition (1.6); and

(c) ns\;}‘)) E,(1Z,|°) is finite and ps,, admits an expansion (in powers of
n=113) up to o(n='-372), 1 < |v| < (8—1).

Then there exist nonnegalive integers ky, ..., ks_g and conslants {P1, 4}, not
depending on n, (0 < i < ky, 1 < j < $—3) such that the following holds wni-
formly in we[ug,), ug> 0. One can replace uy by zero ifp> Lt

-3 u
Py (W, < w) = S 02 [ Yy()do Fo(n="e-3"2). ... (1.8)
j0 ==
where

7]
'/’1:?-‘“1’4,1 forens 21

(1.9)

Vo=1In,s
Remark 2 : The theorem in its present form is often unsuitable for statis-
tical applications 1 of the p that W, is a function of the
mean vector Z, based on somo sequence of iid. random variables. One
can however easily verify that the Theorem remains valid if the normalised

t A similar modification is needed to correct a mistake in Theerem 1in Chandrs and Ghosh
(1979) ; spacifically the uniforntity in u asserted there fails for p = 1 unleas u ¢ [uy ®)uy > 0,
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deviation n/%(Z,—u(6,)) thero is replaced by #%(U,—E(U,)) where {U }sz
is an arbitrary sequence of random variables possessing a uniform Edgeworth
expansion.

Remark 3: Suppose assumptions (b) and (c) (with & in place of (s—1))
of the Theorem hold. Assume A,(i) and instead of the rest of A,, assume
as in Bhattacharys and Ghosh that tho vector I is non-null. Let

Wa = VA(H(EZ.)—H(u6r):

Then P,n(W: < u) has an asymptotic expansion (in powers of #~1/%) valid
up to o(n-'*-9/%) with the leading term of normal distribution with nonzero
mean.

One may prove this by applying Theorom 2(b) of Bhattacharya and Ghosh
(1978) with Py in place of P and then expanding the coefficients in the

expansion. Alternatively one may proceed as in the proof of Proposition 1
of Section 2 up to a relation analogous to (2.7) and then proceed as in the
proof of Theorem 2(b) of Bhattacharya and Ghosh (1978).

It is easy to chock that this expansion agrees with the formal Edgoworth
expansion obtained by evaluating the first s moments of Wy formally up to
o(n=6-2/%) by the delta-method.

Remark 4 : It can be shown that cach of the coefficients {Pys} is & poly-
nomial in the constants appearing in the expansions of {uy, , : 1 < |v| < 81}

and that for each j > 1, the sum ?; Py, always vanishes; for a proof of tho
last fact, one needs only to veiify';hat the Fourier-Stieltjes transform 1},(1)
of s vanishes at ¢ = 0. Also one may note that if 8, = 6, then the assump-
tions of the Theorem reduce essentially to those of Theorem 1(b) of Chandra
and Ghosh and that in this case each of {Py s : 0 < i < kj} vanishes whenever j
is odd; this follows from Proposition 2(), relation (2.19) and the fact that the
coefficient of n—4/2 in hy_y(2) or £y, ,(2) is & polynomial Py(2) in # with the
property that the degroe of each term of P (2) is odd or even according as j
is odd or even. Thus Theorem 1(b) of Chandra and Ghosh can be regarded as
a special case of the above theorem. The present derivation can be used as
an alternative to the involved arguments given in Remark 2.5 of our earlier
paper.

The proof of the Theorem is given in Soction 2. In Section 3, we con-
sider applications to the likelihood ratio and other related statistios. In
Section 4, expansions under a fixed alternative of these statistios have been
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obtained () when tho null hypothesis is simple and (b) when the null hypo-
thesis is composite and the observations are coming from an exponential
family of distributions.

2. PRoOF OF THE THEOREM
We assume throughout this section that the assumptions of the Theorem
hold. Wo may then assume without loss of generality that
V, =1, &Lz = ||| o (20)
and that Ag(iv) holds with A =1, where I is the kX k identity mairiz (soe
Remark 2.4 of Chandra and Ghosh). Let
9a(2) = 20[H(p(8o) +n1%2)—H(p(6,))]
and hy_, be a Taylor expansion around () of g, ie.,

-1 p-(-)/2

haa(z) = z’g.‘ By, PR . (2.2)

J! !

(see (1.2)). Let gv denote the density of the normal distribution on R¥ with
the mean vector 0 and the dispersion matrix V. Let C,(t) be the characteristic
function of W, under 6,,
0,(t) = E (exp(itW,)) teR! . (23)
Write
M,={zeRF: |z <(s—Dlogn} n> 1
It is well-known that for any @ ¢ R¥ and any integer ¢ > 0

[ e oxp { — le—alt} ds = ofa--41%) )
s

where Mg is the complement of M,. Throughout this section, T will stand
[

for summation over finitely many i, not necessarily over the same set of values of
i in each appearance.

Before we start proving our Theorem, we shall state and prove three
auxiliary propositions.

Proposition 1: Let p (a), (b) and (c) of the Theorem hold.
Then there exist constants {ry,¢}, not depending on =, t20andj=12..,
s—3) such that the following holds uniformly in ue[%y00], % > 0 if p>1
and %,>0 if p=1,

Py(Wa < u) =’5: 198 | yy(u)do fo(u=e-1) . (25)
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where

¥1= B daforie S22
(2.6)
'ﬁ'n = »s
Thus once this proposition is established, the Theorem would follow if
one could show that yy given by (2.6) can as well be expressed in the form
(1.9). Proposition 1 will be used here to show essentially the existence of
a valid expansion for I, which is needed for the proof of Proposition 3 below.

Proof of Proposition 1 : Let A, be defined by
1(0,) = p(0) +n (A +A,)
The Edgeworth expansion of
WDy —p(Ba) = n42(By—p(00))—A—A,

under O, can be written as

rannl?) = by [1+ Ez WIS Ry

where {Ry} are polynomials in z with coefficients rational fumctions of
{pom : 1< |v| € 8—1} with nonvanishing demominators (at least for all
sufficiently large n). Because of the uniform Cramér’s condition and the
uniform boundedness of {s,m} (guaranteed by condition (c)), we get, setting
Eran(2) = Eramn(2)s

Py (W< u) = I Erem(z—A—A,)dz+o(n~6-31%)
{ga < u}

uniformly in ue R'. We use here Theorem 1.5 of Bhattacharya (1977) and
the first observation following its proof, page 11; one needs the following
estimate

sup ) ¢',n(z)dz = o(n-#-312), ¢, = exp(—dn)
U Ign—ul<en

(for any d > 0) which can be proved by first approximating g, by hg_y, and
then using arguments similar to those used in (2.16) through (2.19) of Bhatta-
charys and Ghosh (1978), their (2.8) is to be replaced by the third equality
in the proof of Theorem 1(b) of Chandra and Ghosh (1979).



VALID EXPANSIONS UNDER CONTIGUOUS ALTERNATIVES 177
We now make use of assumption (c) and expand Ry's and ¢y, (2), getting

uniformly in u € R},

Py (W, <w)= [ Epun(2)dzfo(n=to-21%) o (27)
" {on < u}
whero
-3 |
Zoan(z) = ¢(z—4) 120 n12Pyy(z) . (2.8)

P} (=) being suitable polynomials (free from ) in z (j > 1), Pio(z) =1 and
¢ = ¢r (recall that Vo= I; cf. (2.1)). The coefficients of the polynomials
Py are themselves polynomials in the constants appearing in the expansions

of {pton 1 1< |vl <51}
We now proceed as in the proof of Theorem 1 of Chandra and Ghosh.
Since
sup | ¢n(z)—he_1(z)| = U(€n)
2t My,

with €, = n=©-22 (log n)8/* and since

j’z”q&(zfA)dz = 0(Eq),

An

sup
ueR!

where A, = (z: | hs_y(z)—u| < en} () Mn, ono gets from (2.4) and (2.7),

Py (Wa < w)= i Zpum (2) Fo(n=6-¥7%) e (2.9)
® {hey < 4} 0 Ma

uniformly in we R}.

One now applies successively the following three one-to-one transforma-
tions Ty, Ty and Ty on B¥. The transformation Ty is an orthogonal trans-
formation on 2!= (20, ..., 2®) with the first transformed variable as
< AL, 2! > [||AY, keeping the ining z's hanged (if A' is null, then
the transformation T is not needed). The transformation T, sends 2! to
(r,8W, .. §®-1)) by means of the standard polar transformation with
21 = ysin 61, keeping the remaining z's I d. Finally, the trans-
formation 7, is defined by

Ty(r, 0,28).= (r', 6,2%)

whero
= (e y(TTL5 N, 0,2))
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0 = (6, ...,0%-1) and 28 = (Y ..., 2®). After some more computations
along the lines of Chandra and Ghosh (1979) (see the proof of their Theorem
1(a)), (2.9) reduces to

P <) = Koxp (—) [ expl=b003 (-t O d0

+o(n-u-972),
where K is a constant free from =,
B, ={",0): ("2 < u, (r)? < (s—3/2) log n}
and

-3
Yalr', 0) = [/Eo w2 Py, S 0)] oxp {Ar' sin OV},

P; 4(r', 6) being a finite sum of products of powers of »* and the trignometric
functionssin 1), cos §')(1 i € p—1)of 6. Onenow expands exp{Ar'sin6V}
in an infinite series and integrate term by term the resulting infinite series
which is permissible since the last series is uniformly convergent over the sct
{(',0) : (r")* < (s—3/2)log n}. The rest of the proofis easy.

To state the next result, let j,(v) denote the number of odd components of
v (see also (1.7)).

Proposition 2 :

O e T e éla}(A)_‘J:fm,j,,(v)dv, . (210)

where {}(A)} are suitable polynomials in A and
m = § (] i), ma = ] - @
(b) Let * be a nonnegative integer. Then
(1" { oxp (U9 2 oxp (— He—A) &z = 5 cllMprans O
R! Jmy-r¢

provided that [#1] > 2r*, where (a(A)} aro suitable polynomials in A and
my, my ave defined by (2.11).

1t follows from (2.7) and (2.8) that Proposition 2(s) establishes the speoial
case of the Theorem when
Wo = 202 —plO6))TL(Z . —(0s)-
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Proof of Proposition 2 : Without any loss of generality, wo may assumo
that p = k. Woe noed the following fact :

Fact (A): Let
g(x; b, r) = ar exp{— } (x—b)% zxeR', be B!

where 7 is a non-negative integer. Thon thore exist (numerical) constants
@y, @y ..., Gm Such that

(9(VZ; b,7) Hg(— VE; b, 1))2V/Z = 3 n;bW‘f (@) .. (212)
3=0 atof, 0%
wjere j, = 0 or 1 according as r is even or odd and
g =r+41+4j, m=}(r—j) . (2.13)

The fact (A) can be established as follows : the left side of (2.12) is
pH M L

oxp {— 4o+ § Gy

. . wi o N .
while the coefficient of 2 in the right side of (2.12) is,

B +0,(20) $0y(20) 26 —1) +-.. H S,
awen i 41) 05 4 L)

Ono therefore verifios, using the duplication formula for the gamma function,
that
Vary A |
22t r(z+1)r(;+ 2)
(2044,) !
is & polynomial (in ) of deSree (r—j;)/2. This completes tho proof of the
fact (A).

To prove Proposition 2, observe that the integral on the left side of (2.10)
can be written as

] ‘ﬁl {(ge(V20) g — Vz@)[2v20) dz

whoro

A ={z:20f  fzb Ly, 20> 0,..,2% > 0}
and

qi(z'D) = g(zt; AtD, i)
A34-6



180 TAPAS K. CHANDRA AND J. K. GHOSH

The fact (A), the fact that the family of noncentral x¥s is closed under convolu-
tion and relation (2.13) complete the proof of Proposition 2(a).

The part (b) with r* = 0 is equivalent to the part (8). The case of tho
general * follows from the part (a) and the following elementary fact :

Fact (B): If ¢> 2r°+1,
ik
@rfes 0= g B ()0 e 1o

Proposition 3: Suppose that tho assumotions of the Theorem hold.
Suppose that for each real ¢,

Colt) = C, 1 ()0 (n=18-978) o (2.14)

where C,, ,(t) is the Fourier-Sticltjes transform of
(=
S nIgy(v) veR ... (2.15)
=0

(with gy free from n). Then (2.15) is the valid expansion for W, under fy
up to o(n=#-37%). (For the definiticn of C,(), see (2.3)).

Proof of Proposition 3 : By Propositicn 1, there 'exists a valid expansion
for W, under 6, whi-h is of the form

-
5 0} e (2.16)
=0
(see (2.6)), ¥y being free from n. We shall first show that
. bl
Calt) = | oxp(itv) { s n"”;k,(v)] dv-o(n-0-913), . (217)
R =0
Now (vide Remark 2.7 of Chandra and Ghosh)
Cult) = ‘{ oXD(itgn(2))20s 01 n (2)dz-t o(n=0-313)

= AI’ oxp(iths_y(2))Es, s, n (2)dz+o0(n=0-313) .. (2.18)

= ,{1 exp(ilv) {é}: n-ﬂ‘.h(v)} dv+o(n-1e-3/8)
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(Egps.n is defined in (2.8)). The first equality follows by Theorem 20.1 of
Bhattacharya and Ranga Rao (1976) and the fact that P,n(M;) = o(n—1e-912),

The proof of the last equality is similar to the argument following (2.9).

From (2.17), (2.14) and the definition of C, , (¢), it follows that C,,, (¢)
is the Fourier-Stieltjos transform of (2.16). The unicity propérty of the
Fourier-Stieltjes transform then implies that the expressions (2.15) and (2.16)
must be identical. This completes the proof of Proposition 3.

Proof of the Theorem : We make here the convention that P(z) (with
or without suffixes) will stand for a polynomial in z with coefficients free from
n. Now

Ct) = A.f{ OXP(ithe-1(2))Es,s, (2)dz+o(n=16-2)12)

= R.L oxp(it|2H{*) Yra(z)dz+ o(n~6-2)18) e (2.19)
where

- oo .
v = {1 +E a ! A0 *Php®) G0l

The above equalities follow from (2.18) and from (2.1), (2.2) and (2.4) res-
pectively.

From (2.8) we can rewrite ya(z) as
= e
vie) = {ha a L2 D5, n(®)} B—A); . (2.20)

(P§,0(z) =1). The coofficients of the polynomials {Pf ; (2)} are themselves
r2

polynomials in the constants appearing in the expansions of {uy, , : 1

< |v| <s—1}. In view of the assumption d4(iv), note that if z? is any

term of some P,l ; (2), then [v!| > 2j,. Clearly this property is inherited
[T

by the polynomials {P; " (2)}.  Thus if we let C,,, y(t) denote the integral on the
1'72
right side of (2.19), then Proposition 2(b) and (2.20) imply that

=] Ey
_ /8
Ot = a0 5 Aoty dorn, o)
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for suitable nonnegative integors {k, l'! and suitable constants {ﬂ,l' ,z]; ky=0,
fo.o= 1. In other words,

Corlt) = ‘{‘exp(t'l»v){ E:n‘mqﬁ';(v) }ao . (221)

where {7} ato of the form (1.9). The doﬁmhon of 0,,4(t), relations
(2.19) and (2.21) and Proposition 3 tog plete the proof of the
Theorem.

3. APPLICATIONS

The Theorom (suitably modified as indicated in Remark 2) of Section 1
can be used to obtain asymptotic expansions of the distribution functions of
the likelihood ratio statistic, Wald's and Rao’s statistics (see Rao (1965), pages
347-352) under contiguous alternatives, provided that the assumptions (A,)-
(Ag) of Bhattacharya and Ghosh (1978) hold and that E’..(Zl)’ 1< |v] €81
are finite and admit asymptotic expansions in powers of n~'2 (for the
definition of Z,, see (2.35) of Bhattacharya and Ghosh, 1978, page 448).
should bo noted that the above assumptions are satisfied by the family of
exponential distributions with 6 as the natural parameter, provided the
assumptions made in Section 3 of Chandra and Ghosh (1979) hold.

To prove this one constructs a set 4, such that (i) P,'(A,‘,) = o(n~t8-312)
and (ii) on 4, the statistic under consideration can be sufficiently well approxi-
mated by a I¥, which is of tho form (1.1) and which satisfies condition (a) of
the Theorem. The A, used in Sections 4 and 5 of Chandra and Ghosh does
this job; in fact the only new thing to be proved is P (Ag) = o(n—18-3/2) which
follows ocasily. Note that the possxbnhty of the uniform Edgeworth expan
sion for maximum likelihood esti s (suitably normalised) is guarant
by Theorem 3(b) of Bhattacharya and Ghosh (1978).

Hayakawa (1977) obtained an oxpansion, up to o(n=2/3), for the likelihood
ratio statistic under contiguous alternatives by a formal inversion of charac-
teristic function. His formal expansion can be justified by suitably modify-
ing Proposition 3 of Section 2; for details, sce the last part of Section 4 of
Chandra and Ghosh (1979).
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4. EXPANSIONS UNDER A FIXED ALTERNATIVE

Suppose that {Zg); 51 is a sequence of i.i.d. random vectors with common
distribution either P,o or P,l. Let EPG‘(Z‘) = u(6). i =0, 1. Define W,
by (1.1). We want to find expansions for W, under P,l. To this end, assume
that 4 (i) and (ii) hold with I = grad H((0)) and that I = grad H(u(f,)) # 0
where grad H = (D'H, ..., DH). Then the distribution function under
Py, of

n VAW, — 20 H(p(01))— H(u(0,))]}

P an asymptotic expansion (in powers of n-1/2) with the leading term
a normal distribution with zero mean and variance V1, where

V = Bp, (@'~ u(6)R(@—u(0,)

(Vis d to be ingular). The result follows from Theorem 2(b)
of Bhattacharya and Ghosh (1978).

Consider now the problem of testing a simple null hypothesis. One can
apply the above result to get asymptotic expansions for the likelihood ratio
and other related statistics under a fixed alternative. In the last section
of his paper, Hayakawa has ovtained (formally) such a result for the case of
the likelihood ratio statistic. It can be shown that this formal expansion is
in fact a valid one.

We assumed above that the null hypothesis is simple. Similar expan-
sions are possible for the case of a composite null hypothesis provided the
observations are coming from an exponential family of distributions with
natural parameter space; one has to express the maximum likelihood esti-
mators under the null hypothesis (we assume that these estimators exist)
in terms of the sample mean. Since Wald’s statistic depends only on the
unrestricted maximum likelihood estimators, the asymptotic expansion for
this statistic can be obtained even if the null hypothesis is composite and
the parent population is not exp tial

For a fixed alternative, Siotani (1971) has obtained an expansion for
Hotolling’s generalized T§ whose terms are moncentral chi-squares. The
validity of his expansion can be justified by Theorem 1. For this, take
¥, = n-Y2Z; where {Z;} are as in Siotani (1971). Then our Z, a
(mp+p(p—1)/2) X1 vector, is (Y, ..., Ym, sy ¢ 2> j). Then Siotani’s statistic
satisfies our conditions. One now applies Remark 2.



184 TAPAS K. CHANDRA AND J. K. GHOSH

REFERENCES

BHATTACHARYA, R. N. (1977): of the idi ional central limit theorem and
applications. Ann. Prob., 5, 1-27.

BHATTACHARYA, R. N. and Gmosn, J. K. (1078): On the validity of the formal Edgeworth
expansion. Ann. Stat., 8, 434-451.

BHATTACHARYA, R. N. and Rao, R. Ranoa (1976): Normal Approzimations and Asymplotic
Ezxpansions, Wiley, New York.

CrANDRA, T. K. and Guos, J. K. (1979) :  Valid asymptotic oxpansions for the likeli ratio
statistic and other perturbed chi-square variables. Sunkhya, Sr. A, 41, Parts 1 & 2, 22-47.

Havarawa, TAkEst (1977): The likelihood ratio criterion and the asymptotic expansion of
its distribution. Ann. Inst. Statist. Math., 29, Part A, 359-378.

Rao, C. R. (1986): Linear Statistical Infe und sts Applications, Wiley, New York.
Srorant, M. (1971): An asymptotic expansion of the non-null distribution of Hotelling's gene-
ralized T§-statistio. Ann. Math. Stat., 42, 560-571.

Paper received : August, 1979,



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015

