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Abstract

In this article, we consider positive subdefinite matrices (PSBD) recently studied by J-P
Crouzeix et al. [SLAM J. Matrix Anal. Appl. 22 (2000) 66| and show that linear complemen-
tarity problems with PSBED matrices of rank = 2 are processable by Lemke’s algorithm and
that a PSBD matrix of rank = 2 belongs to the class of sufficient matrices introduced by R.W.
Cottle et al. [Linear Algebra Appl. 114/115 (1989) 231]. We also show that if a matrix A is
a sum of a merely positive subdefinite copositive plus matrix and a copositive matrix, and a
feasibility condition is satisfied, then Lemke’s algorithm solves LCP{g. A). This supplements
the results of Jones and Evers.

Kevwardy:  Sufficient matrix: Pseudomonotone; Copositive star; Lembke's algorithm

1. Introduction

We say that a real square matrix A of order #n is positive subdefinite (PSBD) if for
allx e B"
'Ax =0 implies either A'x <0 or A'x Z0.
The class of PSBD matrices is 8 generalization of the class of positive semidefinite
matrices and is useful in the study of quadratic programming problem. The class of
m'pimding authaor,
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symmetne PSBD matrices has been introdoced by Martos [8] while charctenizing
4 pseudo-convex quadratic function. Cottle and Ferdand [3] also studied the elass of
FSBD matrices nearly at the same time in connection with the class of quadratic
pseudo-convex functions. Recently nonsymmetric PSBD matrices have been studied
by Crmouzeix et al. [4], in the context of generalized monotonicity and the linear
complementarity problem.
Given a real square matrix A of order 7 and a vector g £ [7, the linear comple-
mentarity problem is to find w £ B and z € " such that
w—Az=¢q, wzlzzl (1.1}

w'z = 0. (1.2}

This problem is denoted as LCP{g, A). It is well studied in the literature on Mathe-
matical Programming and arses ina number of applications in Operations Research,
Mathematical Economics and Engineenng. In particular, the problem of computing a
Karush-Kuhn-Tucker point of a convex guadratic programming problem with linear
constraints on the variables can be formulated as an LCP. For recent books on this
problem, see [1,9].

In this paper we use the following convention. Suppose a class of matnces 6
" is defined by specifying a property which is satisfied by cach square matrix of
order n in €. We then say that A 15 a % matnx. Thus the symbol % 15 used for the
class of matrices satisfying the specified property as well for the property itself. For
the definition of vanous classes of matrices see Section 2.

In this paper. we study PSBD matrices and related classes. In Section 2, we
present the required definitions, imtroduce the notations and state the relevant results
used in this paper. In Section 3, we prove our main results.

2. Preliminaries

We consider matrices and vectors with real entries. Any vector v € 2 15 a column
vector unless otherwise specified, and x' denotes the row tanspose of x. [ denotes
the nonnegative orthant in [, For any vector x € [, x™ and = are the vectors
whose components are x;7 (= max{x;. 0} and x; (= max{—x. 0}), respectvely, for
all . We say that a vector v € B is wnisigned if either x € B or —r € . For
any matrix A € ™™, a;; denotes its ith row and jth column entry. For any matrix
A g """, let A;. denote its ith row and A.; denote its jth column. For any positive
integer n, N denotes the set {1,2, ... .n}. Forany seto © {1,2,..., nt, @ denotes
its complementin{1,2, ..., nl.IfAsamatrixofordern x noe © {1,2,....n}and
# =112, ... nf then Age denotes the submatrix of A consisting of only the rows
and columns of A whose indices are in @ and £, respectively. Given a symmelric ma-
trix. § & [ let va (8), v_(5), vp(§) denote the number of positive, negative and
zero cigenvalues of §, respectively. Let A be a given m % n matnx, not necessarily
symmetric. We say that A is positive semidefinite (PSD) if x'Ax = 0¥x & " and
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A is positive definite (PD) if x'Ax = 0 ¥0 £ x & " A is said to be merely positive
subdefinite (MPSBD) if A 15 4 PSBD matrix but not a PSD matnx. A 15 said to be
a P{Fy) matric if all its principal minors are positive (nonnegative). A4 s said o be
column sufficient if for all x & [B" the following implication holds:

rp{Ax)y £ 0¥ amplies x{dx); =0 Vi
A is said to be row sufficient if A' is column sufficient. A is sufficient if A and A are
both column sufficient. For details see [1,2.11].

Given a matrix A € R"™" and a vector g € B" we define the feasible set
Filg. A)={z 2 0| Az + g = 0} and the solution set of LCP{g. A) by S{g. A) =
[z & Flg, A) |2 Az +g) = 0}. We say that A is a Qg marrix il Fig, A) % ¥ im-
plics S{g, A) # #. Given a matrix A € [B**" and a vector g £ ", an affine map
Fix)=Ax + g, where 4 € [ and q € 2", is said to be paendomonotone on
R if

(y—2'(Az+¢g)20, y20, 220 = (-2(Ay+q)=0.

A matrix A £ B"™ is said to be pseudomonotone if # (xr) = Ax is pseudo-
monotone on the nonnegative orthant. Crowezeix et al [4] proved that an affine map
Fix)=Ar + g, where A € R and g £ [B", is pseudomonotone if and only if
Alz =0 and z‘q =20 or

P b4
ceR, ZAz<0 =l 0 tg<0and 214z +¢) <O0.

A g B"™ is said to be copositive (Co) if x'Ax 2 0Vx = 0 and conegative if x'Ax <
0¥x = 0. Wesay that A € R"™ N Cy is copositive plus (C) if
[Ax=0,220] = (A+A =0
and copositive star {E':’]‘}l if
[fAx=0.Ax 20, x 20] = A'x<goO.

We require the following theorems in the next section. For proof of these results see
Crouzeix et al. [4].

Theorem 2.1 [4. Proposition 2.1]. Let A = ab', where a # b, a. b e 3", Ais PSBD
if and onlv if one of the following holds:
)3 ar = 0such that b = ra,
(u) forall t = 0, b 3£ ta and either b z Oor b £ ().
Further suppose that A € MPSBD. Then A € Cy if and only if either (a = 0 and
bZzMor(a=0and b= and A & Ct‘]‘ if and only if A is copositive and a; =0
whenever by = (L

Combining Theorem 2.1 and Proposition 2.5 i [4], we gel:
Theorem 2.2 [4, Theorem 2.1]. Suppose A € R"*" iy PSBD and rank(A) = 2. Then

A" is PSBD and at least one of the following conditions holds:
(i) A is P5D,
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(i) (A + A" =0,
(iii) A is C.

Theorem 2.3 [4, Proposition 2.2|. Assume that A € [ i3 MPSBD and rank(A) =
2. Then

Wyv_idA+AY =1,
by (A+ ANz =0 Az = Az =10

Theorem 2.4 [4, Theorem 3.3]. A matrix A € B is pseudomonotone if and onfy
if A is PSBD and copositive with the additional condition that in case A = ab',
b=0=a; =)

Theorem 2.5 [5, Comollary 4]. If A is psendomonotone, then A is a row sufficient
matrix.

Murthy and Parthasarathy [10] have proved the following resull on nonnegative
SOUATe malrices.

Theorem 2.6 [10, Theorem 2.5]. Let A = O be ann x n matrix. A is a Qg-matrix if
and onlvifforanyi, A;. £0 = a;; =,

3. PSBD and MPSBD matrices

Since a PSBD matrix 15 a natural generalization of a PSD matrix, it 15 of inlerest
to determine which of the properties of 4 PSD matnx also holds for a PSBD matnx.
In particular we may ask whether

(i) Ais PSBD if and only if (A + A") is PSBD and
(i) any PPT (Principal Pivot Transform [1, p. 79]) of a PSBD matrix is a PSBD
MmAlrix.
The following examples show that these statements are false.

Example 3.1. Let

0o 2
=3 3]

. , _|=x 14, — CERR T o are of S
Then for any ¥ = [li] XAy = xpx < 0 implies xp and 12 are of opposile sign.

Clearly A € PSBDsince x'Ax < Oand A'x = [ 712 | imply either A'x < 0 or A'x >
0.

Also il s easy Lo see that
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0 1
A4+ A=
+ [1 (}]
15 not a PSBD matnx.
Similarly let

L i £ 0 -1
A_[l {}] s0 that A+A_[_1 {}]'

Itis easy to verify that A + A" is PSBD but A is not a PSBD matrix.

Example 3.2, Let us consider the matrix

0 2
A [—1 {}]

in Example 3.1, Note that 4 € PSBD but it is casy to see that

1] —1
=] _
A e [{}.5 {}]
15 not 4 PSBD matnx.

Since A~' is a PPT of A therefore any PPT of a PSBD matrix is not a PSBD
malrix.

Theorem 3.1. Suppose A € R*™" is a PSBD matric. Then Ay, € PSBD, where

Proof. Let A € PSBDanda € {1, ..., n}. Let x, € R and

_ Apyer A

i [r’lau f‘-:..::] ’

Supposethat x!, Agexe < 0. Now define z € R" by taking 2z, = x and zz = 0. Then
T'Az = xl AggXg. Since A is a PSBD matnix z'Az = ! Agexy < 0= either A'z >
0 which implies that Aha.r,_, =0 or A'z = 0 (which implies Al..:.-ra = (}). Hence
Ay € PSBD. As o was arbitrary, it follows that every principal submatrix of A
is a PSBD matrix. [

Theorem 3.2, Suppose A € ™" iy a PSBD matirix. Let D e B"™" be a positive
diagonal matrix. Then A € PSBD if and only if DAD' € PSBD.

Proof. Let A € PSBD. Forany x € [ let v = D'x. Note that ' DAD s = v Ay =
0= Ay = A'"D'xr < Oor A'y = A'D'x = 0. This implies that either DA'D'x < 0
or DA'D'Y = 0, since [ is a positive diagonal matrix. Thus DAD' & PSBD. The
converse follows from the fact that D! is a positive diagonal matrix and A =
p=YpADY DY, O
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Theorem 33. PSBD matrices are invariant under principal warrangement,_ ie., if
A £ R"™ iy g PSBD matrix and P € R"™" iy any permutation matrix, then PAP' €
PSED.

Proof. Let A € PSBD and let P e "™ be any permutation matrix. For any x &
R", let y = P'x. Note that *'PAP'y = y'Ay <0 =2 Ay = APy <0or Aly =
A'P'x = 0. This implies that either PA'P'x < 0or PA'P'x =0, since P 15 just a
permutation matrix. It follows that P AP is 2 PSBD matrix. The converse follows
from the fact that P'P = Tand A = PH{PAPY(PY. O

We now settle the question whether PSBD C O and Lembe’ s algovithm possess-
es PSBD matrices. In this connection we rewrite Theorem 2.1 as follows.

Theorem 34. Let A=ab' e B"™", a, b e B", a, b £0, be a PSBD matrix. Sup-
pose eithera =2 O ora < 0 when b £ ta forany t = (L Then A € Oy if and only if
one or more of the following conditions hiold:

{i) Aix PSD,

(1) aand b have apposite signs,
(i) aand b has the same sign and

aj =0 whenever bj =0 ¥i ={1.2...., nt. (A1)

Proof.
Case 1. There exists at = O sothat b = ra. [Uis easy to see that A is PSD and hence

A€ Q.

Case 2. For all r = 0, b 5 ra. In this case it follows from Theorem 2.1 that either
& = Oor b < 0. Under our hypothesis about a, either A < Oor A = 0.IFA = 0, then
A€ Op. Butif A = (0, then from Theorem 2.6, it 15 casy 0 see that A4 € Op if and
only if

a;j =0 whenever b =0 ¥i ={1,2,..., nl. O

Remark 3.1. Note that any PSBD matrix A = ab' € "™, a. b e . a. b £ 01s
a sufficient matnix if a; = by =0 oraphy > 0. See [11, Corollary 4.2].

Lemma 3.1. Let A € B™™" be a PSBD matrix with rank(A) = 2 and let A + A' <
0. We have:

(1) Ifa;; =0, then the columndrow containing a;; is nonpositive.

(i) If A has a principal submatrix of the form

0 ag
sk 0
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with (apy + age) < 0, then the sth and kth rows as well as sth and kh columns of A
dre nonpositive,

Proof. By Theorem 2.2, A' is a PSBD matrix. By Theorem 3.1 every principal
submatrix of A as well as A' are also PSBD matrices. To prove (i) we proceed as fol-
lows. Suppose the diagonal entry a;; < (0. Let (assuming | = k) o = {i, k}. Consider
the 2 x 2 submalrix

ajp dig
o [ﬂu ﬂu]'
which is 4 PSBD matrix. Now for any x = (ti) e R?,

Mgax = aiixy + xixaai + au) + apexs <0

ifx 15 nonnegative with xy = (), since by hypothesis, age € Oand app + ag; = 0. Thus
{Age)'x i umsigned for any nonnegative x with x) = 0. Now by taking 12 = 1),
x; = 0 we conclude that a;; < 0. Applying the same argument for A and (A}, ) =
(A )t we conclude that A, x is also unisigned and hence ay; = 00 This completes
the proof of (i),

To prove (ii) we proceed as follows: Note that for any v & ",

M
.1?1 Ay = Z ﬂj.‘.}.‘_l iy Ziﬂu' +aji)yivj
i=1 i<

By our hypothesis a;; and a;; + aj; are nonpositive for all @ and j. Suppose now
apy = dyy = Oand (ag, + agp) < 0. In this case note that if z & B is any vector such
that z; = 0.7 # k.5, zp > Oand z; = 0, then 'Az = zyzplaps + ag) < O There-
fore it follows that for such a z, A'z is unisigned. Suppose now for some r, r =
5.k, agy = 0. Choose zp = 1. Let 4 bea positive number such that ag . + agd = 0.1
is easy 1o see that such a § exists. Define the vector Z by taking 23 =007 £ k5, I =
1.z, = 4. Note that A'Z is not unisigned, a contradiction. This contradiction shows
that ag, = 0 ¥r In a similar manner it can be shown that ag, 15 nonpositive for all r.
From the fact that A' is also a PSBD matrix, by a similar argument it follows that ae;
and a,; are also nonpositive for all «

This completes the proof. O

Lemma 3.2, Suppose A e R"™™ is a PSBD matrix with rank{A) =2 and
A+ A' < 0. JFA is not a skew-symmetric matrix, then A < (0

Proof. Letthe index sets L, Lz and L be defined as follows:

Ly=lilag <0} La={ilai; =0, 3k, with g = 0, aix +ar; < 0}.
Mote that if { € La, then Ly will also contain the index & that satisfies the defining
conditions of Lz for i. Let L = Ly U Lz, By the hypothesis of the lemma L is non-
emply, for otherwise, A 15 skew-symmetric. Consider the following partitioned form
of A induced by the index set L:
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PAP' = [""“— Ali] :
Arp.: Afs

where L denotes the set of indices 1,2, .., nihyLoand P is the appropriate permu-
tation matrix. (In what follows we will simply use the symbol A to denote PAPY)
By the carlier lemmas, Apg £ 0, A;; < 0and Aj; < 0. Also nole that by defini-
tion, Ajj 1% a skew-symmetric matrix. For any y € |, let y = (::) denote the
corresponding partition of v. Note that

Ay = ypAreye + Yy Arpi + ¥p(Ap + A pre
Since Ay is skew-symmetric it follows that forall y € ", _1;}._1-’1,-_,-__1;,-_ = (). It fol-
lows that for all vectors v such that vy is positive, ¥ Ay is negative and hence both Ay
and A'y are unisigned. To complete the proof we need to show that none of the entries
of Ajf s positive. Suppose to the contrary that for some s € Lor € L ag, = (L
Choose € such that

€ Eﬂ"y + g = (L
iel
Define the vector 7 by taking vy =e ¥i € Land y; =0Vi £ r e L and y, = 1.
Note that sinee each row and column of A;; contains at least one negative entry and
all the entries of Agy, and Aj, are nonpositive it follows that (A'v); = 0¥ & L.
Also by construction (Al ¥lp = 0. This 15 a contradiction! Hence Ajy < 0 and the
lemma follows. [

Theorem 3.5. Suppose A € "™ iy a PSBD matrix with rank(A) = 2. Then A is a
Oy matrix.

Proof. By Theorem 2.2, A' is 1 PSBD matrix. Also by the same theorem, either A €
PSDor (A+AY < 0or A e E:;' If A e C:;, then A & (g (see [1]). Now if (A 4+
A =0, and A is not shew-symmetric, then by Lemma 3.2 it follows that A < 0.
Inthiscase A € Oy [1]. However if A s skew-symmetric, then A € PSD. Therefore
Ae@p 0O

Corollary 3.1. Suppose A ix a PSBD matrix with rank{A) = 2. Then LCP{g, A)
is processable by Lemke’s algorithm. If mnk(A) = 1, (ie., A= ab'. a. b 0) and
A € Cp, then LCPlg . A) is processable by Lemke’ s algorithm whenever Iy =0 =
aj = (L

Proof. Suppose rank{A) = 2. From Theorem 2.2 and the proof of Theorem 3.5, it
follows that A 15 either a PSD marixor A << 0or A € Ct’]‘. Henee LCP{g, A) 15 pro-
cessiable by Lemke’s algorithm (see [1]). For PSBD N Cy matnees of rank{ 4) = 1,
e, ford =ab' a, b0, such that iy =0 = a; = 0. Note that A Ct‘]‘ by Theo-
rem 2.1. Hence LCPi{g, A) with such matrices are processable by Lemke s algorithm.

O
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Theorem 3.6. Suppose A iv a PSBD NMCy matrix with rank(A) = 2. Then A € R"*"
is a sufficient matix.

Prool. Note that by Theorem 2.2 A'is 2 PSBD N Cp matrix with rank(A') = 2. Now
by Theorem 2.4, A and A' are pseudomonotone. Hence A and A' are row sufficient
by Theorem 2.5. Therefore A is sufficient, [

The following example shows that in general PSBD matrices need not be a Fy
matrx.

Example 3.3. Let
0 -1
A= :
[—1 [}]
" X
Then for any x = [ ],
x2
Axr = —2xix = ()
implies ©; and 7 are of same sign. A € PSBD, since A'vr = [:tf] implies either
Ar £ 0or A'vr 20but A & Ry,

The following example shows that PSBD matdces need not be a @y matrix in
general.

Example 3.4. Let
10
a=lt 9

Then for any x = [xl],
x2

t._ |[*¥1+ X2
A.r_[ 0 ]

implies either A'x < Oor A'v = 0. Henee A € PSBD. Taking g = [:Il] W note
that LCPig, A} is feasible but has no soluton. Therefore A isnota (g matrix.

The following theorem provides a new sufficient condition to solve LCP(g, A) by
Lemke’s algorithm. (See [1] for a detailed discussion on Lemke’s algorithm. )

Theorem 3.7. Suppose A € B'™" can be written as M + N_where M € MPSBD N
Cn_, rank{ M) = 2 and N € Cp. If the system g + Mx — N vz 0, v 210, is feasi-
ble, then Lemke’s algorithm for LCPlg. A) with covering vector d = () terminates

with a selution.



284 SR Mohan et al. # Linear Algebra and its Applications 238 { 2000 ) 275285

Proof. Assume that the feasibility condition of the theore m holds so that there exists
anx" € B and a y? € B" such that g + Mx® — Ny = 0. First we shall show that
forany v € B", if Ax = 0 and xtAxr =0, then .ri.r,r 2 (). MNote that for given x = 0,
fAr=0= "M + N)x =0 and since M. N £ Cp, this implies that x'Mx = 0.
As Misa MPSBD matrix v*'Mxr =0 e M+ Mua=0s M+ Mix =0
My =0 < Mx =0 See Theorem 2.3, Also since Ax = 0, it follows that Nx =0
and hence .1'11\"1_1.":] z 0. Further since g + M — N1_1.'” 20 and x = 0, 1t follows

that x*(g + Mx” — N'y%) = 0. This implies that x'g = *'N'y? = 0.
Now from Corollary 4.4.12 and Theorem 4.4.13 of [1, p. 277] it follows that Lem-
ke's algonthm for LCP{g, A) with covering vector d = 0 terminates with a solution.
O

The following example shows that the class MPSBD 1 Cy is nonempty.

Example 3.5. Let

2 5 0
M=|1 4 0
0 0 0

Note that x' My = 2{x] 4+ =21 + 2xa). Using this expression it is easy o verify
that x'Mx < 0 = either M'x < D or M'x = 0. Also it is easy o see that M = CJ.

Remark 3.2. The above theorem cannot be extended to a PSBD matrix. Note that
the class PSBD matrices includes PSD matrices. In the example below, we consider
a matnx A which may be wntten as M 4+ N, where M € nonsymmetric PSD and
N & Cp and show that Theorem 3.7 does not hold.

Example 3.6. Let

11
""—[1 n]'

Taking g = [:é] we note that LCP{g. A) is feasible but the problem has no solution.

Therefore A 15 not a Qg matrix.
Let

1 -1 0 2
M= [1 {}] and N = [[} {}] .

Note that M 15 a nonsymmetric PSD matrix of rank 2 and N € Cp and il s casy
to cheek that the system g + Mx — N'y = 0, v = 0. is feasible. Lemke’s algorithm
for LCP{g, A) with covering vector d = () (for example d = ¢, where e 15 an di-
mensional column vector of all 1s) terminates with a secondary my for this g, as
LCPi{g. A) has no solution. Thus if M 15 a nonsymmetne PSD matrix, Theorem 3.7
does not hold. (See also [6] and [7].)
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