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In this paper we study Banach spaces that admit weighted Chebyshev centres for
finite sels. Such spaces have been extensively studied recently by Vesely using the
approach of finitkely inkersecting balls. Following his approach we exhibit large
classes of Banach spaces that have this property. Certain stability resulis for spaces
of vector valued continueus and Bochner integrable lunclions are also oblained.
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Li-predual, proximinal subspace; Bochner L7 space.

L. INTRODUCTION

Let X be a Banach space. We will denote by By[x,r] (or B[ x,r], if
there is no scope for confusion) the closed ball of radius r = 0 around xe X,
We will identify an element xeX with its canonical image in X'**
Bye[x, r] will be denoted by 8%*[x, r]. All subspaces we consider
are norm closed. Our notations are otherwise standard. Any unexplained

terminology can be found in either [3] or [5].

In this paper, we study Banach spaces that admit weighted Chebyshev
centres for finite sets. Our motivation comes from the recent work of [20]
(We take this opportunity to thank Professor Vesely for sending us the
preprint in April, 1997). We state a key result from [20].

206



CENTRAL SUBSPACES OF BANACH SPACES 207

Let X be a Banach space. Let {a,. 4;, ... a,} =X Let /2 R, — R Mini
mizers of the function ¢: X' — [ defined by

dlx)=Mllx—al, |x—aalls oo |x —a,l) (1)

are called f-centres of {a,, a,. ... a,}. If [ is of the form

Jltta, wut,)= max ri,,
leiasn

with ry, ra, .., r, =0, the fcentres are called weighted Chebyshev centres.

Tueorem 1.1 [20, Theorem 2.7]. For a Banach space X and a,, a,, .,
a, € X, the following are equivalent:

(a) Ifriora, e be=0and (V7  B¥ ¥ 1] £ &0 then N2 Blagr] # &
(b} ay.aq. . a,) admits weighted Chebyshev centres for all weights
FioFay o P00

(€) i, aa. . a,) admits f~eentres for every continuous monotone coer-

cive 2 R" — R (See [20] for the definitions).

DeFiviTion 1.2 [ 20, Definition 28] A Banach space X s said to
belong to the class (GC), denoted X e(GO), if for every ne® and a,,
sy, . i, € X, the three equivalent conditions of Theorem 1.1 are satisfied.

The main aim of this paper is to exhibit several classes of Banach spaces
that belong to the class (GC) and to explore its connections with other
intersection properties of balls studied in the literature. For this reason
most often we work with condition (a) of Theorem 1.1. We note that mem-
bership of the class (GC) is a finite version of the finite intersection
property (FIP) studied by Godefroy in [4].

It is well known that several aspects of optimal estimation are connected
to the ball related geometry of the underlying space (see [6, Section 337).
This connection is explored in Section 3 where, using an intersection of
balls argument, we show that any compact subset of a Banach space whose
dual is isometric to a L'(y) space (u is a positive measure), is centrable
(see Definition 3.8).

In Section 4, we study the stahility of the class {(GC), which in turn gives
more examples of spaces that belong to this class. We also consider in this
section, quotient spaces and spaces of vector valued continuous and
Bochner integrable functions and study the stability aspect. This highlights
the strong interrelation between the approximation theoretic concepts and
purely functional analytic and measure theoretic concepts such as Radon—
Nikodym Property (RNP), universal measurability (see [2. Chapter7,
Section 8] ) etc.
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We now give a more detailed account of our results,

In Section 2, we consider some general result about the class (GC). To
facilitate this, we define a central subspace { C-subspace) of a Banach space
by a relative intersection property of balls (see Definition 2.1) and observe
that a Banach space X belongs to the class (GC) if and only if it is a
C-subspace of some dual space. We show that 1-complemented subspaces
and semi-L-summands are C-subspaces. We also obtain an intrinsic charac-
terization of the class (GC).

In Section 3, apart from the results mentioned above, we also show that
a Banach space whose dual is isometric to a L'{u) space belongs to the
class (GC). This follows as a consequence of our characterization of (GC)
spaces as those Banach spaces which are C-subspaces in some superspace
that is a dual.

In Section 4, we only consider Banach spaces over real scalars. Using the
equivalent condition (b} of Theorem 1.1, we show that membership of the
class (GC) is a separably determined property. An easy consequence of our
result on transitivity of C-subspaces is that if Ye(GC) and Y= X is a
reflexive subspace then X/ Ye (GC). For a compact Hausdorff space K and
a finite dimensional space X, we show that if the space C[ K, X) of X-valued
continuous functions on K belong to the class (GC), it has the intersection
property nk P (see Definition 2.10), for k =dim X +1 and any n=%&. As a
consequence of some recent work of Ehrhard Behrends, we observe that
membership of the class (GC) is not a 3-space property, i.e., for a subspace
YoX Ye(GO) and X/¥Ye(GCO) need not imply that Xe(GC). For the
class of Bochner integrable functions, we show that if ¥ is a separable
C-subspace of X, then for each l=sp<aoo, L#(u, ¥) is a C-subspace of
Lriy, X), and use this to show that if ¥ is a separable C-subspace of a dual
space with the RNP, then L%y, Y)e(GC). We also note that for a Banach
space X having the 32.IP, L'(y X) has Chebyshev centres for sets of 3
elements.

2. CENTRAL SUBSPACES AND THE CLASS (GC)

In this section and the next, we consider spaces over real or complex
scalars. We now base a definition on condition (a) of Theorem 1.1.

DeFivaTions 2.1, Let X be a Banach space. We say that a subspace
Y X is a central subspace { C-subspace) of X if every finite family of
closed balls with centres in ¥ that intersects in X also intersects in Y,

In particular, Xe(GC) if and only if X is a C-subspace of X**
We summarize in Proposition 2.2, certain observations regarding
C-subspaces.
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Prorosimion 2.2, (a) Y iy g Cwwbspace of X i and ondy if for any a,,
sy, oty € Y and x € X, there exists ye Y such that |y —a,| < |x—a,| for
alf i=1.2, .. 1

by l-complemented subspaces are C-subspaces.

ic) £ iva Csubspace of ¥ and Y is o C-subspace of X implies 2 is
a C-vubspace of X,

idy Xe(GO) if and only i X is a C-subspace of some dual space.

ie) the membership of the class | GC) i wherited by C-subspaces, in
particular, by l-complemented subspaces.

Froof. The first result that needs a proof is (d).

Let X be a C-subspace of some Z* Then Y= Z% implies Y** = Z%%*
If a finite family of balls centred at points of X intersect in X'* ¥ they inter-
sect in Z*** Since Z* is lcomplemented in Z***, by (b), these balls
intersect in Z% Since X is a C-subspace of Z*, they intersect in X too.

The proof of () follows from {c) and (d). |

Remark 23, The observation that membership of the class (GC) is
inherited by l-complemented subspaces allows one to simplify many of the
arguments in [ 20].

Since the membership of the class (GC) is inherited by C-subspaces, we
would like to identify C-subspaces beyond 1-complemented subspaces. In
this context, we recall the following definition due to Lima.

DeFiviTion 24 [ 5, paged3]. A subspace Y of a Banach space X is
called a semi-L-summand if there exists a (not necessarily linear) projection
P: X— ¥ such that

Plix+ Py)=iPx + Py, and
x| = || Px| + ||x — Px]

for all x, ye X, ield

ProrosiTion 2.5, A semi-L-summand is o C-subspace.

FProof. Let ¥ be a semi-L-summand in X Let yy, vy, .., ¥y, Y and
xe X Let P be as in the definition. Then

lyi— Px|| < |yi— Px|| + |x — Px| = [y — x|

for all i=1,2,..n Hence by Proposition22(a), we get that Y is a
C-subspace of X. |
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Another class of subspaces that it is natural to consider in this context
are M-ideals.

DeFiniTion 2.6 [5]. A subspace M < X is said to be a M-ideal if there
exists a subspace N = X'* such that Y*=M"* 3 N

Questions 2.7 fs an M-ideal a Csubspace? s the membership of the
class (GC) inherited by M-ideals?

ProrosiTion 28, I M X is a M-ideal and Me(GC), then M is a
Cavubspace of X

Proof. Let {m,, my, ... m;} M and xe X Since Y**=M'""1 g5 _N*
we can write x = y+z, where ye M~ and ze N*. Since M (G C), iden-
tifying M ** with M+, we get an me M such that |m—m,| < | y—m,|
for all i Mote that |x—m,| =max{|y—m,|, |z|}. Hence M is a C-sub-
space of X0 |

In the study of intersection properties of balls, sometimes one can only
prove that balls with slightly larger radii intersect. One standard trick in
such a case is to work in a suitable dual space, and use the weak® com-
pactness of closed balls to show that the original set of balls intersect. We
now obtain an intrinsic characterisation of the class (GC) that shows that
this class is a namral setting for similar “compaciness arguments”,

ProrosiTion 2.9, A Banach space X e GO) if and ondy if for all ne b,
s oy ty €X and 1y, Fay v, =0, (Vo Bla,ri+e] & for all e=10
implies (V_, Bla,, r;] # @

Proof. The “if” part follows from a simple form of the Principle of
Local Reflexivity as in [ 11, Lemma 5.87].

“Only if™ part: Suppose Xe(GC) and ket {B[x.r]:i=1,..n} be a
family of closed balls in X such that for every & =0,

(| Blx;r,+2] # &
f=1
Consider the family { B**[x,.r,+2]:i=1, .. n e =0} in X** Then any
finite subfamily intersects. Hence, by w*-compactness,

o

[ B**[x,.r] # &

1=
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and so

( Blxiril# 2. |
fe=]
And here is an application of the idea. We need the following definition.

DeFivaTion 2,10 [10]. A Banach space X has the ankIP if, for each
2= 0, and each family { B[ x,. r;]: i=1, .., n} of n closed balls such that any
k of them intersect, we have

fir] Blx,r,+e] 2.

de=]

If we can take £=1), we say that X has the nk IP.

CororLary 211, A Banach space X belonging to the class [ GC) has the
ank P for some n, ki and only i it has the n& 1P,

DeFiviTions 2,12, A Banach space X has the finite intersection property
(FIP)if every family of closed balls with centres in X that intersects in X**
also intersects in Y.

Thus the FIP is the infinite analog of the membership of the class (GC)
(see [4.15]). It is clear that a space with the FIP belongs to the class
(GC). It is easy to see that a Banach space X has the FIP if and only if
every finitely intersection family of closed balls in X has non-empty inter-
section. It follows from the results of [ 20] that ¢, the space of sequences

converging to zero, is in the class (GC). But it is well known that ¢, lacks
the FIP.

3. L-PREDUALS

We now exhibit a large class of Banach spaces that belong to the class
(GC). Since ¢, e(GC) and ¢F =/, it is natural to ask if every Banach
space whose dual is isometric to a L'(u) space is in this class.

DeFivaTions 3.1 [9]. A Banach space X whose dual X* is isometrically
isomorphic to L' () for some positive measure g is called an L'-predual.

We show that an L'-predual indeed belongs to the class (GC) by using
the characterizations of L'-preduals in terms of intersection properties of
balls as obtained in [7] and [ 11]. We need a definition from [7].
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Dermvirion 32, A family {B,[x,.r;]} of closed balls is said to have
the weak intersection property if for all x*e8,.[0 1], the fmily
{B[x*(x,). r,]} intersects in [

Tueorem 33. A Banach space X is an L'-predual if and only if whenever
X iv g subspace of a duad space, it is g C-subspace there.

Proof. Suppose whenever XY= Y*, X is a C-subspace of ¥*

It is well known that XY= /™ (") for some discrete set I". By hypothesis,
X is a C-subspace of /= ("), By [7, Theorem 497, X is an L'-predual if
and only if any finite family {B,[x.r,]} of closed balls with the weak
intersection property intersects in X'

If {B,[x,r]} is such a family, then considering the evaluation func-
tional at yel,

N Bl xA{y).r]+ .
=]

And hence

n Ez’-qrn[xh r] # @
=]

Since X is a C-subspace of #(1),

ﬁ Ex'[.fh f'_,l] ?E z

Conversely, suppose X is an L'-predual, and let Y= ¥* Let {x,eX.
r;z0for i=1,...n}, n=3 be such that

) Byalxnr] 2

de=

Hence this family of balls weakly intersects in ¥'*. Since the centres of the
balls are in X, we conclude that { B,[x,. r,]:i=1....n} has the weak inter-
section property. Therefore by [7] again,

rﬂ] Bx’[.f,:,, f'_,l] ?E ﬁ

For n=2, observe that two balls intersect if and only if the distance
between the centres is less than or equal to the sum of the radii. Therefore,
it is independent of the ambient space. ||
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CorowLary 3.4, Every L'-predual belongs to the class | GC).

Remark 35. It is well known that an L'-predual has the FIP if and
only if it is isometric to CIK) for some extremally disconnected compact
Hausdorff space K (see [9, Chapter 3]).

A proper M-ideal cannot have the FIP [ 153], but may belong to the class
(GC), as the following example shows,

Exampre 3.6. Let I={feC[0,1]: f([0.1/2])=0}. Then [is a proper
M-ideal [ 1, p. 13] and an L'-predual [9, p. 218, Exercise 7], and hence it
belongs to the class (GO,

Remark 3.7. In fact, L'-preduals are the proper domains to consider
even stronger forms of optimal estimations. Our next theorem illustrates
this and extends the corollary on p. 194 of [6], since a 24 -space is an
L'-predual. We also note that a Banach space X is an L'-predual if and
only if X*¥ is isometric to a 24 -space (see [ 10, Theorem 4.1 ] for the complex
case. The real case follows from [9] or [10]). In order to emphasize the
clear connection with the class (GC), we further note that a Banach space
is a @ space if and only if it is l-complemented in every superspace [6,
Section 33 (g)]. We also note the results that we will use from [ 6] are also
valid for spaces over .

Let X be a Banach space. For a bounded subset 4 = X, observe that

HA)Z" inf sup |x—a| = Ldiam 4. (2)

xeX asd

DerFrvaion 3.8 [6, Section 33 (g)]. A bounded subset 4 =X is said to
be centrable if equality holds in (2).

TueorEM 39. Let X be an L'-predual. Then any compact set A< X is
centrable,

Proaf. Let 4 =X be a compact set. Since X is an L'-predual, ¥** is a
@ -space and hence, by [6, p. 193], 4 is centrable in X**. Ohbserve that the
diameter of 4 in the two spaces X and X** is the same. Since X'** is a dual
space, arguing as in [ 20], there exists x** € X'** such that

r**(4)= inf sup |x**—a| =sup |x** —a| = 1 diam 4.

x*Sg X% ggd ae.d
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Then the family of balls | B,[a. |x**—a| ]: ae A} have the weak intersec-
tion property. Since X is an L'-predual, since the centres of the balls are
in a compact set A, by [10, Proposition 4.4,

(| Byla |x¥*—a|]# &

as A
If X € ﬂac.l 'BJL"[ i, "-T:* _H":lﬁ

rlA)=sup |x,—a| =sup |x** —a| = i diam 4.

ae A asd

Thus A is centrable. |

4. STABILITY RESULTS

In this section, we work only with real scalars. We begin our results on
stahility properties by proving that the class (GC) is separably determined.

ProrosiTion 4.1, Membership of the class (GO) is a separably deter-
mined property, Le, if for every separable subspace Y= X, Yel(GC), then
Xe (GO

Proaf.  Let every separable subspace of X belong to the class (GC). Let
la,ag, wna,) SX Let ry,ry, o0, =00 Let ¢ X — R be defined by

Plx)= max r,|x—a;|
leiagn

By Theorem 1.1{b). it suffices to show that ¢ attains its minimum in Y.

Let {x,,} be a minimizing sequence for ¢, ie. inf ¢(X) =lim,, ¢(x,,).

Let Y=3pan[{x,} v {41, a2, .. a,}]. Then Y is separable, {a;, a1, ...
a,} =¥ and inf¢ ¥)=inf¢(X) (since {x,} = ¥) Since Ye(GCO), by
Theorem 1.1{b). ¢ attains its minimum in ¥, Thus ¢ attains its minimum
in X as well |

If ¥ is an L'-predual and Z is a separable subspace of X, it is known [9,

227, Lemma 6] that then there exist a separable Y such that Z= Y= ¥
and ¥ is an L'-predual. Since L'-preduals belong to the class (GC). it is
natural to ask:

Question 4.2, Suppose X e(GC) ad 2 is a sepavable subspace of X
Does there exist a separable ¥ such that 2= Y= X and Ye (GO)?

Coming to quotient spaces, we have the following result.
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Derrvation 4.3, Let X be a Banach space. A subspace Y= X is called
proximinal if every xe X has a best approximant in ¥, ie, there exists
¥, € ¥ such that |x—y,[[=d(x, ¥)=inf,_; |x— y|.

ProrosiTion 44, Let Z2¥Yc X, 2 proximingl in X and Y is a
Cosubspace of X. Then Y/ Z iv a C-subspace of X/Z.

Proof. Let [ n]. [¥a]s o [¥,] € ¥/Z and [x] e X/Z. By proximinality
of Z in X, for every i=12 ..n |[¥y]—-[x]l=dy—x £)=
|¥;—x—z,| for some z; eZ. Since Y is a C-subspace of X, there exists
¥o€ Y such that |y;—z;— voll € | yi—x—2z4| for all i=1,2, . n Clearly
then [ y]—[x.]l <[y]—[x]| forall i=1.2,..n |

Since a reflexive subspace is proximinal, the following corollary is
immediate from Proposition 2.2,

CorotLary 4.5, Let Xe(GO) and let M =X be a reflexive subspace.
Then XM e (GO

CorolLary 4.6, Let 2= Yo X 2 proximing in Y and Y is a semi-
L-summand in X, Then, Y/ Z is a C-subspace of X/Z.

Proaf. From [16, Proposition 2], it follows that # is proximinal in X
The result now follows from Propositions 2.5 and 44. ||

Let us now consider the ¢, and ¢, sums.

Tueorem 4.7, Let I' be an index set. The ¢y or £, (1 = p< o) sum of
Y,'s is a C-subspace of the (resp.) ¢g or £, sum of X.'s if and only if ¥, is
a C-subspace of X, for all ae T

Proof. Let us denote by X and Y resp. the ¢y or 4, (1 = p=<oc) sum of
X sand ¥ s

Suppose Y is a C-subspace of X and let ool Let x, X, . v, ..
Fay2s s ¥apn € Yo . Define xe X and yy, ya, ... ¥o € Y, by putting 0 at every
other coordinate. Then there exists y€ ¥ such that | y— y. || = |x— y || for
allk =1,2, .. n Let y, be the ayth coordinate of y. Clearly, |y, — vo:l =
17— ¥ell € |x =yl = | Xs,— Fapell for all k=1,2,...n.

Let I be an index set and for each x eI, let ¥, be a C-subspace of X .
Let xe X and vy, y2, .., ¥ € ¥. For any a e I', there exists y, € ¥, such that
| ¥a— ¥ar | S X2 — va| for all k=1,2, .., n By taking 0 as an additional
centre we can also have |y, || < |x,.[. Clearly, y defined with these coor-
dinates belongs to ¥ and satisfies |y— ye| = |x— we| for all k=

L2, un |
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CorowLary 4.8, The class (GC) is stable under ¢, sums (1 = p < o).

Proaf. By Proposition 2.2{d), X, (GC) f and only if X, is a C-sub-
space of some Y?. Now the /, sum of Y }¥'s is a dual space, and hence, by
Proposition 2.2{d) again, XYe({GC). |

Remark 49 This has already been noted in [ 20] with a quite different
proof.

It is easy to see that the above proof alko works in the setting of
Section 4 of [20] and shows that: (&5 ¥,)p 58 a C-subspace of [P X, )p
isee [20] for the notation) if and only if ¥, is a C-subspace of X, for all
ae il

In [207], the author uses Theorem 1.1{b) to show that the class (GC) is
also stable under ¢, -sums. Here, in order to use the C-subspace argument,
one needs to show that the cy-sum of X.'s is a C-subspace of the ¢/ -sum
of X.’s. We do not have a proof of this yet.

In passing, we note

ProrosiTion 410, Led M, N = X be two M-ideals in the class (GO such
that M AN iy reflexive. Then M + N/M AN is in the class (GC).

Proaf. 1t follows from [ 1, Proposition 2.7] that M+ N is a closed sub-
space {in fact a M-ideal). From [l. Proposition2.8], we get that
M+ N/MnNis a /™ direct sum of M/M ~ N and N/M ~ N. Since M n N
is reflexive, both these component spaces are in the class (GC) by
Corollary 4.5, Hence M+ N/M n Ne(GC). by Corollary 4.8. |

In [20], the author has analysed in detail the spaces X for which the
space Ci( T, X)) of bounded X-valued continuous functions belongs to the
class (GC) for every topological space T. Here we concentrate on CiK, X,
where K is a compact Hausdorfl space. It is easy to see that for a topologi-
cal space T'and Y= X, if Cii T, ¥) is a Csubspace of Cp( T, X), then ¥ is
a C-subspace of X. In the next Proposition, we prove a partial converse
when ¥ is finite dimensional and K is extremally disconnected.

Tueorem 411, Let ¥ be a finite dimensional C-subspace of a Banach
space X, Then for any extremally disconnected compact Hausdor[f space K,

CIR, Y)Y iy a Csubspace of CLE, X).

Proof. Let K be homeomorphically embedded in the Stone-Cech com-
pactification 5 5) of a discrete set § and let ¢: §(5) — K be a continuous
retract (see [9]) Fix fi. fan o [LeCIK Y) and ge (K, X). Note that
since Y is finite dimensional any Y-valued bounded function on § has a
norm preserving extension in O #(5), ¥), by the defining property of §(5).
Thus C(f(S) YY) is onto sometric to P ¥ (direct sum taken over
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|§]-many copies of Y). In view of Theorem 4.7, this space is a C-subspace
of &, X. This latter space contains O[S S), X). Hence C(H(S), ¥) is a
C-subspace of C{H(S). X). Now gogpe CIHSLX) and fode CHS) Y)
for all i. Thus there isa e C(H8), ¥) such that |[h—fiod| < |god—fiod|
for all i Let f=h|,eC(K, ¥) Since ¢ is a retract, we conclude that
lHi=F = fi—gl Thus, C(K, ¥)is a C-subspace of C(K, X). |

Remark 412, Rao [ 13] proved that for a finite dimensional X and an
extremally disconnected compact Hausdorff space K, CIK, X) has the FIP,
and hence belongs to the class (GC).

ProrosiTion 413, Let X be a finite dimensional space. Let K be an
extremally disconnected compact Hausdor{l’ space. Any M-ideal in CI K, X)
helongs to the elass (GO,

Proof. We may assume that X has no nontrivial M-ideals (hence no
M-summands as X is finite dimensional). This is because if X" has nontrivial
M-summands, then since X is finite dimensional, there exist subspaces Y,
X, ., X, of X such that they have no nontrivial M-summands and X is the
£™ direct sum of these spaces (see [1, Chapter 3] ). Now, (K, X) is the /™
direct sum of C{ K, X,)'s. And the intersection of an M-deal of the sum to
each component space is an M-ideal there. Thus by Corollary 4.8, it is
enough to assume that X has no nontrivial M-ideals.

Let M = (K, X) be an M-ideal, then M = {fe C(K, X): f(E)=0} for a
closed set E= K [ 1. Corollary 10.27. As before, ket K be homeomorphically
embedded in the Stone-Cech compactification §(S) of a discrete set § and
let ¢: f(S)— K be a continuous retract. Note that via the composition
map, £ is also closed in §(5) (since K is closed) and C(K, X)) is embedded
into C({#(5),X) and this embedding maps { /e C(K. X): f(E)=0} onto
I feCIB(8)LX): fiE)=0}. So if we now show that |/ e (S 5L X):
JIE)y=0} e(GC), as in the proof of our earlier theorem, the desired conclu-
sion is obtained since ¢ is a retract.

So it is enough to prove that if M={ /e C(f( 5L X): f1E)=0} for a
closed set £= f(5), then M e(GC).

We will use Theorem 1.1(b). Let {fi. fo, ... fu} EM and let ry, ra, .
r,=0. As in the proof of [20, Corollary 4.7], for each s 8, choose a
pointwise weighted Chebyshev centre fis) that satisfies

Ia(s)] < (1+ )Z I fets)ls

where R=max{r.:k=1,2, ... n}. Then i admits a continuous extension to
the whole f(S); let us call it & again. Since [, fi, .. f, = M. he M by the

above inequality. & is thus a weighted Chebyshev centre. ||
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Using Corollary 2.11, one observes

ProrosiTion 414, Let K be o compact Hausdor(Y space. Let X be a
Jinite dimensional Banach space such that CIK, X)e(GC). Then CIK, X)) has
the nk AP jfor k =dim(X)+ | and for any n= k.

FProof. By Helly's Theorem [19], X has the nkIP. By [13]. CIK. X)
has the ankIP. Since CiK, X)e(GC), by Corollary 2.11, C{K, X) has the
nilP. |

Remark 415, See [20] for examples of spaces X satisfying the above
hypothesis. In particular, by [20, Theorem 5.10], for a 2-dimensional X,
CiK, X) has the n31P (n=3). Ehrhard Behrends has kindly informed us
that, as an application of the above proposition, he has an example of a
3-dimensional space X for which Ciaf, X) fails to be in the class (GC)
(here oM denotes the one point compactification of the set ® of natural
numbers). It follows from [20, Theorem4.7] that f={fe Claf, X):
flc)=0} e(GC). It is easy to see that the quotient space Claf, X)/J
is isometric to X and hence belongs to the class (GC). This shows that
membership of the class (GC) is not a 3-space property. We also note that
fis a M-ideal in Claf, X) and hence a C-subspace (see Proposition 2.8).

We now consider C-subspaces and membership of the class (GC) for
spaces of Bochner integrable functions.

As noted in [20], the second author has proved that Lf(g X)e(GC)
when X has the RNP and is l-complemented in its bidual. Here we
reproduce the argument for 1 <p< o,

ProrosiTion 416, Let (02, X p) be a probabilicy space. I X has the
RNF and is l-complemented in ¥Y* then for | =p< oo, LP(u, X) i L-com-
plemented in L9, Y* (1 p + Vg = 1), and hence belongs to the class (GO,

Proof. We argue as in the proof of [3, Theorem IV.1.1].

Let P: Y*— X be a projection of norm one.

Define P: [9(u, Y)* = LP{u, X) as follows. For Ae L9y ¥)* define
G- X — Y* by GIE) y)=A(yyg), where y g denotes the indicator function
of Ee X,

Then & is a countably additive, ¥*valued measure of bounded varia-
tion. And so, PG is a countably additive X-valued measure of bounded
variation and by the RNP, we obtain g: 2 — X = ¥*, the derivative of Po &
Wl g

MNow note that the rest of the proof of [3, Theorem [V.1.1] makes no use
of the fact that g takes values only in a subspace Y of ¥¥

Thus ge Ly, X) and |g| ,< | A|. Put £(A)= g Clearly £ isa norm 1
projection. |
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The following proposition describes another situation where a similar
result can be proved without the assumption of the RNP. See [2,
Chapter 7, Section 8] for more information on the measurability assump-
tions considered here.

ProrosiTion 417, Let (2, X ) be a probability space. Suppose X is
separable and 1-complemented in X*% by a projection P that i weak*-weak
universally measurable. Then for 1 < p<oo, LP(u, X) is L-complemenied in
L3, X*¥)* (U p+ /g =1), and hence, belongs to the elass (GO,

Proof. If Ae L(g, X*)*, then there is a X**valued w*-measurable g
that is a density for A (see [ 3, Section IV.6]). Moreover, the real-valued
function |gi )| eLf(g) (for ps£ 1, this is a representation theorem in [8,
p. 97] and for the case p = 1, one follows the approach of Levin as outlined
in [5, p.200]). Now since P is weak *-weak universally measurable, Po g is
weakly g-measurable, and since X is separable, by the Pettis Measurability
Theorem [3, Theorem 11127, it is strongly g-measurable. Since g is a den-
sity, Pog is an L? function with norm no greater than | A[. |

Remark 418, One familiar example of a space satisfying the above
hypothesis, but lacking the RNP, is L'([0, 1]) (see [2, p 375] for the
details).

ProrosiTion 419, Let (02 X p) be a probability space. Let ¥ be a sub-
space of X W for some | = p< oo, L ¥V iy a C-subspace of LP(u, X,
then Y s a Csubspace of X

Proaf. Let vy, ¥2, ... yo€ ¥ and xe X Put g;= yyygn, i=1,2, ., n and
S=xp0. Then g, gy, ., g e LP(p ¥) and feLP (g, X). Thus there exists
g, €L7(p, ¥) such that |g,— g, |, =g, —f|, for all i=1,2, .. s Let
Vo= jﬂ godu. Then

13— ¥l = H | gidu—| g,dn ‘ < llgi—gollp < &= Ao =1yi—xl
| 2 Y6

for all i=1.2,

A

Remark 420, It is clear that all we need in Proposition 4.19 is a set
AeX such that 0 <u{d) <.

We now prove the converse when Y is a separable subspace. We make
a few reductions.

(1) As the properties under consideration involve finitely many
elements of L7y, X) and any e L7y, X), being p-integrable, has o-finite
support, we may assume that y is g-finite.
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(2) Since the properties we are interested in are invariant under
isometries, a normalization trick similar to the one of [13, p. 1153] allows
us to pass from a g-finite measure to a probability measure.

(3) Since any two elements of L#{u X) are identified if they are
equal almost everywhere, we may assume g is complete.

i4) Theorem 4.7 covers the case when g is purely atomic.

i3} In general, by decomposing g into purely atomic and non-atomic
parts, we see that L7, X) is isometric to a #"-direct sum of discrete and
non-atomic parts, thus by Theorem 4.7 again, we may also assume g itself
is non-atomic,

i6) Since only finitely many functions are involved, and they are
Bochner p-integrable, they are almost separably valued. Therefore we may
assume X is countably generated.

By standard techniques in descriptive set theory (see eg. [18,
Section 3.3]). one can actually get a measurable selection as in the proof
below in this peneral set-up. But to avoid the technicalities, we will only
prove the result when Q=[0,1], X=the Lebesgue g-field and yu =the
Lebesgue measure.

Tueorem 421, Let g be the Lebesgue measwe on [0,1] I Y iy a
separable C-subspace of X, then for each l=p<oo, LPu Y) s a
Csubspace of L7 ([, X).

Proof. Let g, gy, . g, el®(p ¥) and fe LP(u, X). By completeness,
we may assume that the functions are defined everywhere and being
Bochner p-integrable, are Borel measurable.

For te[0, 1], consider the multifunction

An={ye¥:|y—ginl<|fin—ginl,i=12 ..n}

Then Fi¢) is a nonempty (since Y is a C-subspace of X, considering the
points g,(¢), galth ... g (00 Y and f{t)eX) closed convex set in a
separable Banach space Y. The graph of F, ie.,

{(t.y)yeR 0} ={(t ¥ ly—gt) <) —gdt).i=1,2, .., n}

is a Borel set (It is in this step that the technical difficulties arise). By
the von WNeumann selection theorem ([12, Theorem 7.2] or [18,
Corollary 5.5.8]), there is a Borel measurable function g: [0, 1] — ¥ such
that

Il —gdl <[ fi)—gd).  forall ¢e[0.1].  i=12...n (3)



CENTRAL SUBSPACES OF BANACH SPACES 221

By the Pettis Measurability Theorem, g is strongly measurable and by (3},
geLP(p, ¥). Also by (3), |g—gil, < |f— g, forall i=1.2, ... n |

CororLary 422 Let p be the Lebesgue measure on [0, 1], Let X*
have the RN P and let Y be a separable Cosubspace of X¥. Then for each | <
p<w, LP(u Y)e(GO).

FProof. By the above theorem, L7 (g, ¥) 15 a C-subspace of L7, X'*).
Under the hypothesis, for 1< p<oo, LP(g, X*) is a dual space, while
L'(u, X*) is 1complemented in its bidual [ 14] and hence belongs to the
class (GC) |

Question 423 If YelGCO) and has the RNP, does there exist a dual
space X* with the RNP such that ¥ is a C-subspace of X*7

CororLary 424 Let y be the Lebesgue measure on [0, 1], Suppose X'*
has the RNFP. Let Z= Y= X* be such that Z is w¥-closed in X* and Y is
a separable Csubspace of X%, Then for cach | < p < oo, L (p, Y/ Z)e(GO).

Proaf. Since Z is w¥-closed in X'*, it is proximinal and X*/Z is a dual
space with the RNP. By Proposition 4.4, ¥/Z is a separable C-subspace of
X*/Z MNow use the above corollary. |

Remark 425 I Zc ¥ < ¥V** then Z is w¥*-closed in ¥Y** if and only
if Z is reflexive. Thus the above corollary is in a larger framework.

Remark 426, The second author has recently succeeded in showing
that if L'(u, X*)e(GC) and M = X* is a weak* closed subspace having
the RNP then L'y, ¥*/M)e(GC). In particular if L' (g, X)e(GC) and
M < X is a reflexive subspace then L'(p, X/M)e(GC) (See [17]).

Remark 427, 1f Yis a semi-L-summand in X, then it is easy to see that
L'(u, ¥) is a semi-L-summand in L'(yu, X) (see [16]) and hence is a
C-subspace without any further assumptions.

We conclude with another instance where Chebyshev centres are
preserved by Bochner spaces.

If X has the 3.2.1P, then it has Chebyshev centre for 3 elements (see [20]
for a space with a 3 element set which has no Chebyshev centre). It is
proved in [11] that for any (2, X, u), L' (g, X) has the 32.1P, and hence
Chebyshev centre exists for all sets of 3 elements.
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