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In this paper we give a structure theorem for an A--fibration over a one-
dimensional noetherian seminormal semilocal domain and show that, in this
situation, any A--fibration whose spectrum occurs as an affine open subscheme of
the spectrum of an A*-fibration [equivalently, an affine line A%) is actually A, The
structure theorem provides examples of A -fibrations over one-dimensional noethe-
rian seminormal semilocal domains whose spectra are not affine open subschemes
of any affine line A* over the base ring. We also construct examples of nontriv-
ial A*-fibrations over one-dimensional noetherian non-seminormal local domains
whose spectra are open subschemes of A°-fibrations over the base ring.
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1. INTRODUCTION

Let R be a noetherian domain. A finitely generated flat R-algebra A is
said to be an Al-fibration (respectively, an A*-fibration) over R if, at each

561



562 BHATWADEKAR AND DUTTA

point P of Spec R, the fibre ring k(F) @y A is a polynomial ring k(P)[T]
(respectively, a Laurent polynomial ring k(P)[T, T~ 1]).

From results of Asanuma and Hamann it can be deduced easily (see
[3, 3.3]) that if R is a noetherian seminormal semilocal domain, then any A -
fibration over R is Al over R (i.e., a polynomial ringin one variable over R).
From [4, 3.11], it follows that if R is a noetherian normal semilocal domain,
then any A*-fibration over R is A* over R (i.e., a Laurent polynomial ring
in one variable over R). Thus, if 4 is an A*-fibration over a noetherian
normal semilocal domain R, then, as 4 = R[T, T~1], Spec A is isomorphic
to an open affine subscheme of Spec R[T).

Mow, in view of the similarity observed between Al-fibration and A*-
fibration over a noetherian normal semilocal domain, one would ask:

QuesTiIoN.  Are A*-fibrations over noetherian seminormal semilocal do-
mains necessanly A*?

I n this paper we investigate this question. We first give an explicit descrip-
tion of any A*-fibration 4 over a noetherian seminormal one-dimensional
semilocal domain R as a two-generated R-algebra satisfying a certain re-
lation (see 3.4). The structure theorem provides examples of nontrivial
A*fibrations over a noetherian one-dimensional seminormal local domain
thereby answering the above question in the negative (see 3.9). M oreover,
we show ( 3.8) that an A*-fibration over a one-dimensional noetherian semi-
normal semilocal domain R is trivial if and only if its spectrum occurs as
an affine open subscheme of an affine line Al over Spec R. Finally we
construct examples (3.10, 3.11) of nontdvial A*-fibrations over arbitrary
one-dimensional noetherian local domains such that the spectra of the A*-
fibrations occur as affine open subschemes of the spectra of Al-fibrations
over the base rings.

In Section 2, we recall relevant definitions and results. In Section 3, we
prove our main results and construct the examples.

2. PRELIMINARIES

I n thissection we set up the notations, define the terms used in the paper,
recall a few well-known results, and prove a few lemmas and a result on
retracts of A*-fibrations. Throughout the paper we will assume the rings to
be commutative.

Netations

For a ring R, R* denotes the multiplicative group of units of R. For a
prime ideal P of R, k(P) denotes the residue field R, /PR,. The notation
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A = R would mean that .4 is a polynomial ring in » variables over R.
For an R-algebra A, (1, denotes the universal module of R-differentials
of 4.

Definitions

An R-algebra A is said to be A* if A = R[T, T-!] for some invertible
glement T in .4 which is algebraically independent over R.

A finitely generated flat R-algebra 4 is said to be an A*-fibration if, at
each point P of Spec R, the fibre ring k(P) @, A is A* over k(P). We shall
call an A*-fibration nontrdvial if it is not A*.

A finitely generated flat R-algebra £ is said to be an Al-fibration over R
if k(P)®@yB= k(P! vP e SpecR.

An integral domain R with quotient field K is said to be seminormal if
it satisfies the condition: an element ¢ € K will belong to R if 2, € R.
Equivalently, R is seminormal if it satisfies the condition: for b, ¢ £ R with
b= ¢! thereisanae Rsuchthat e = b, o =¢.

Let 4 be an R-algebra. R is said to be a retract of A if there exists an
R-algebra homomorphism from 4 to R.

We now quote a few results which would be needed in the paper. The
following result is well-known— it follows easily from [7, 1.3].

Prorosimion 2.1, Let R be a noetherdan seminormal one-dimensional
semilocal domain and Ry a finite birational extension of R. Then the Jacob-
son radical of Ry is also the Jacobson radical of R and hence contained in
the conductor of Ry in R. Therefore, if Ry (and hence R) is local and the
residue fields of Ry and R are same, then Ry = R.

The following result is due to Chevalley (see [5, p. 222]).

TueoreM 2.2, Let - X — Y be a finite surjective momphism of noethe-
ran separated schemes, with X an affine scheme. Then Y is an affine scheme.

A s a consequence, one can deduce the following result.

Corovrary 2.3, Let B € D) be affine domains over a field k such that D
is a finite extension of B. Suppose that P is a prime ideal in B of height one
such that J/(PDY i principal. Then U = Spec B\ V(P) is an affine scheme.
Infact, if P=(fi. ..., f,)B and Ais the ring of regular functions on U, then
A=B;n---NB;.

Proaf. Since [} is a finite extension of B, the map = SpecD} — Spech
is a finite surjective morphism of noetherian separated schemes. M ore-
over, w YV (P)) = V(PD) = V(/(PD)).Since ./(PD) is a principal ideal,
say, generated by g, Spec D\ V(. /(PD)) is an affine scheme, namely,
Spec(D[1/g]). Thus, = H(U) = SpecD \ V(,/(PD)) = Spec(D[1/g]).
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Hence, the result follows from (2.2) by taking X = Spec(D[1/g]) and
y=u. 1

We now recall a few facts about Al-fibrations. The following result would
follow easily from results of Asanuma and H amann (see [3, 3.3]).

THeEoREM 2.4, Let R be a noetherdan seminormal semilocal domain and
B an Al-fibration over R. Then B = R,

The next result (essentially due to Yanik ([8, 3.4])) gives a recipe for
constructing Al-fibrations.

Prorosimion 25, Let R be a noetherian domain and let Ry be a finite
birational extension of R. Let C be an ideal in Ry contained in R. Let z &
B[ X ] be such that (R1/C)[Z] = (R /CN X ). where T denotes the image of z
in (Ry/C)X] Let B=R[z]+ CR,[X). Then B is an A'-fibration over R.

Proof. From [8, 3.4), it follows that B is a retract of RI"! for some n.
Hence B is a finitely generated flat R-algebra. Therefore, R, @5 B = R[X]
and B/CE = (R/C)[Z] = (R/C). Let P e Spec R. If P does not contain
C, then Rp = (Ry)p and hence Rp @p B = (R))p[X ] = Rp[X]. Now the
result follows, since B/CB = (R/C)Y. 1

Below we give an example of Yanik ([8, 41]) of a nontrivial Al-fibration
B over a noetherian local domain R containing the field of rationals.

ExampLE 2.6. Let k be a field of characteristic zero and R be a dis-
crete valuation ring with & as the coefficient field. Let ¢ be a uniformis-
ing parameter of R and let R =k + "R for some integer n = 2. Let
B = R[X + tX?] +"R[X]. Then B isan Al-fibration over R and B # RI!l.

We now state a few results on A*-fibrations. The following two results
are consequences of [4, 3.11] and [4, 3.13], respectively.

THeEorEM 2.7, Let § be a noetherian normal semilocal domain and A an
A*-fibration over 8. Then A is A* over R.

Tueorem 2.8, Let R be a noetherian semilocal domain and A an A*-
[fibration over R. Then there exisis a finite birational exension Ry of R such
that By @5 A is A* over R;.

Arguing as in the proof of ([1, 5.1]), one can prove the following lemma.

Lemma 29, La A be an A*-fibration over a noetherian domain R. Then
024 is a projective A-module of rank one.

We shall conclude this section with a result on the existence of retracts of
A*-fibrations over one-dimensional noetherian semilocal domains. We first
prove a lemma.
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Lemma 210, Let R be a noetherian zero-dimensional ring and let A be
an A*-fibration over R. Then A s A* over R.

Proof. Let N denote the nilradical of R. Then R/N is a direct product
of fields and hence A/NA = (R/N)[Y, Y !].Let z, w be liftsof ¥ and Y1,
respectively. Then zw =1+ f, where [ € NA. Since N4 isnilpotent, 1 + f
isaunitin A.Letv = (14 f) 'z Since v, w are lifts of ¥, Y1, respectively,
and N is a nilpotent ideal of R, therefore, 4 = R[v, w] + NA = R[v, w].
Mow as v = 1 and A is R-flat, it follows that 4 is A* over . |

Mote that if B is an Al-fibration over a noetherian domain R, then, from
Asanuma’s theorem ([2, 3.4]), it follows that & is a retract of B. If R is
normal and semilocal and .4 is an A*-fibration over R, then, as A is A*
over R by (2.7), R is a retract of 4. On the other hand, the result [4,
3.5] shows that A*-fibrations over a non-semilocal noetherian domain R
need not have any retraction map to R, even when R is normal. In this
connection we prove the following result.

Prorosimion 2,11, Let R be a noetherian one-dimensional semilocal do-
main and let A be an A*-fibration over R. Then R is a retract of A.

Proof. By (2.8), there exists a finite birational extension R, of R such
that R, ®z A = Ry[T. T1]. Let C denote the conductor of R; in R and
let J denote the | acobson radical of R,. Let / = Jn C. Then [ is an ideal
of R. T herefore, we have the cartesian square of rings

R = Rl
v }
R/T — Ry/I

where the vertical maps are surjective. Since A is flat over R, the above
square induces the cartesian sguare of rings

A = R ®pA=R|T.T!]
4 +
AfIA — (Ry/DIT.T

By (2.10), A/14 = (R/1)[Y, Y~ !]. We identify 4,//4 as an R/I-subalgebra
of (Ry/I)[T.T'). Let z;,z; be lifts of ¥ and Y-, respectively, in
Ry T, T1). Since the second diagram is cartesian, it follows that A =
R[z, 23] + IRy [T, T~']. Since (Ry/D)[T, T~ = (Ry/T)[Y, Y '], there ex-
ists a (surjective) R,/I-algebra homomorphism yr: (Ry/D[T, T — Ry /1
such that (¥Y) = (Y1) = 1. Obviously, &(T) is a unit in Ry/1. Since
! is contained in the | acobson radical of Ry, +(T) can be lifted to a unit
Ain Ry Therefore, o can be lifted to a surjective R;-algebra homomor-
phism ¥: R,[T. T~'] — R, by defining W(T) = A. From the construction
of z;, z, and ¥, it follows that 1 — W¥(z;),1 — ¥(z;) € I. Therefore,
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W(z),¥(z;) € R. Since A = R[z, 2] +IRT.T!] and IR, C R, it
follows that ¥(A4) = R. Thus R is aretract of 4. 1

3. MAIN RESULTS AND EXAMPLES

We shall first prove the structure theorem for an A*-fibration over a
noetherian seminormal one-dimensional semilocal domain (3.4). We begin
with a few lemmas.

Lemma 3.1, Let S be a reduced zero-dimensional noetherian ring. Let D =
S|W, WY = S| Z, Z1] for some indeterminates W and Z. Then there exists
A€ (8)* such that, putting T = AZ, we have W + W = T+ T and
W =eT + (1—e)T! for some idempotent e € §.

Proof. Let My, ..., M, denote the maximal ideals of § and let L, =
S/M,1<i=nThen LW, W)=L,[Z Z 1 vi1=<i= n Therefore
given any i, 1 < i < n, either W = A,Z (mod M,D), or W = A,1Z71
(mod M,D) for some unit A, € L;.

Suppose that, for each i, W = A,Z (mod M,D).SinceS =L, x---xL,,
by the Chinese Remainder theorem, there exists a unit A in S such that the
image of A in L(=S5/M)isA,1l<i<=n LetT =aZ Then W=T
{mod M,D), for every i, 1 = i = n, and hence W = T. Similarly, if W =
A7tz (mod M,D) for every i, 1 = i = n, then by choosing A and T as
before, W = T-1. In either case, the relations between W and T hold.

Mow, by reindexing if necessary, we may assume that W = A Z
(mod M\D)forl<i<sand W=a,1Z1(mod MD)fors+1=<i=n
and that the ideals J; = Myn---n M, and J, =M, n--- N M, are both
proper comaximal ideals with J, nJy; = 0. By the previous arguments,
W=uZ (mod ;D) and W = pu, ' Z7! (mod J,D), where p,, u, are
units in §/J; and §/J5, respectively. Now, using the Chinese Remain-
der thearem, choose a unit A in § such that its images in S/J; and §/J;
are uq and u,, respectively. Put T = AZ. Then W = T (mod J,D) and
W =T"1(mod JsD). Thus, W+ W1 =T+ T lasJ,nJ, =0 Since
S= 58/, = §/J,, there exists an idempotent e £ S whose image is Lin 5/J;
and 0 in S/J,. Then clearly W = eT + (1 — ¢)T~. Hence the result. 1

Lemma 32, La 8§ be a noetherian semilocal domain and let T be
the Jacobson madical of S. Let D = S|Z, Z7']. Suppose that D/ID{=
(S/NDZ, Z7Y) = (S/1[W, WL). Then there exist elements z,, z € D such
that

(i) ;=W +W1tand z, = W where bar denotes reduction mod-
wlo JD.
(i) D= 5[z, 2]
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(iii) 23 — z3z1 — b(b — 1)z} + (2b — 1)? = 0 for some b € § such that
b(h—1) .

Proof. LetS = S/J. Then, by (3.1), there exists A £ (S)* and an idem-
potent e = § such that

W4+ Wl=(QZ)+(xZ)" and
W =e(XAZ)+(1—e)}AZ)t in D/ID.

Let A and b be lifts of A and e, respectively. As J is the | acobson radical
of §, we have A = 5§* Since e is idempotent, (b — 1)  J and hence (2b —
12 =1+4b(b—1)e §* i.e, 2b—1e §*. Put

T=aZ,z1=T+T L2 =bT+(1-HTL.

Then, as A,2b — 1 € §*, clearly D{= S[Z, Z7'] = S[T. T71]) = $[z1. =]
and conditions (i) and (ii) hold. A routine verification shows that (iii) holds
aswell. 0

Lemma 33, Le R be a noetherdan seminormal one-dimensional semilocal
domain and § the normalisation of R. Then 8 is a finite module over R.

Proaf.  Clearly, it is enough to prove the result when R is local. 50 we
assume that & is non-normal and local with maximal ideal M. We show that
M5 c R Let a8 R Since R[a] is a finite birational extension of the
one-dimensional seminormal local domain &, from (2.1), it follows that M
is the conductor of R[a] in R. Thus aM — R ¥a € §, i.e, MS — R. Since
M # 0 and R is noetherian, it follows that § is a finite R-module. 1

We now prove the structure theorem.

TueoreMm 3.4, Let R be a noethedan seminormal one-dimensional
semilocal domain with Jacobson radical J and quotient field K. Then the
A*fibrations over R are precisely the algebras of the type R[X, Y]/ (Y? —
VX X A), where R[X, Y] = R"”, Ads a unit in R, and a is an element
of I for which there exisis b e K such that b(b — 1) = a. Moreover, such an
algebra would be A* if and only if b e R.

Proof. We first show that if 4’ = R[X,Y]/(¥2— YX —aX?— a) for
some A € R* and a € J for which there exists b € K suchthat b(h — 1) = a,
then A'isan A*-fibration over R. Let X and ¥ denote the images of X and
¥, respectively, in A'. A" isa finitely generated R-algebra and, being a free
module over R[X ] (= RI1), is R-flat. We now show that all the fibres of 4’
are A*. Each closed fibre k(P) @, A is of the form k(P)[X, Y]/ (Y (Y —
X)— Ap), where Ap isthe image of Ain k(P). Since Ap # 0, it follows that
k(P)®z A = k(P)[Y, Y!].
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Let § be the normalisation of R. We now show that §@, A" is A* over S.
Note thatbe Sand (2b — 1)’ =4da+1ecR*asac J, s0that 2b —1 € §*
Now let

U= Vb X W =Ty =YX

Then S[I/, V] = S[X,Y]since2b—1e 5§ and UV = ¥2 —YX —aX? w0
that

S@g A’ = S[X, Y]/(Y2—YX —aX?_))
= S[U, V]/(UV — &) = S[U, U1).

In particular, the generic fibre K @, A" is A* over K. Thus, 4" is an A*-
fibration over R.

MNow we show that A4’ is A* over R if and only if b e R. The "if" part
would follow from the preceding argument, since, if b R, then R[U, V] =
R[X, Y] so that A" = R[U, V]/(UV — A) = R[U, U!].

So now assume that A'(= R[X, Y]/(Y2 =YX —aX? - A)=R[T, T,
where @ and A are as above. We show that b & R. We have already seen
that S ®z A" = S[U, U], where U = Y — bX. Therefore, as S[T, T!] =
S®r A =S[U, U, wehave T = alU or T = alU~! for some a € §*.
Without loss of generality, we may assume that T = al/. Since A’ is a free
module over R[X] (= R!) with basis 1 and ¥, we have

T=f(X)+g(X)Y where f ge R
On the other hand, we have seen that
T = all = —abX + aY.

Comparing, we get ab e R and @ = R. Since o is a unit in § and 5 is
integral over R, it follows that « = R*. Hence b e R.

We now prove the converse part of the theorem. Let .4 be an A*-fibration
over K. We show that .4 has the structure described above.

Recall that, by (3.3), the normalisation § of Ris a finite R-module. M ore-
over, by (2.1), J (the | acobson radical of R) is also the | acobson radical of
S. Hence we have a cartesian square

R — 8
v +
RiT — S/I
where the vertical maps are surjective.

Let D=8 ®@, A Since 4 is R-flat, we may regard 4 to be a subring of
D by identifying 4 with its image under the map x — 1 ® x. Since D is
an A*-fibration over the semilocal PID §, by (27), we have D = §[Z, Z1]
for some indeterminate Z. Since A/J4 is an A*-fibration over R/J and



A F-FIBRATIONS 569

R/J isa direct product of fields, we have A/JA = (R/1)[W, W—1] for some
indeterminate W. Again, since R/J — &/J is injective and A is R-flat,
we regard A,/J4 as a subring of D/JD. Since DD = S@, (AfT4), we
have D/ID = (S/D[W, W-1] = (§/1)[Z, Z71]. Therefore, by (3.2), there
exist z;, z, € D, which are lifts of W + W1 and W, respectively, such that
D =S8[z,z;]and z3 — z52; —b(b—1)z§ + (2b — 1)? = O for some b € §
satisfying b(h — 1) = J. Now since A is R-flat, the cartesian square above
induces the cartesian square

A = D (=5[22

4 +
(RUINW, W] =) AjJA = DJID (= (S{INZ, Z71) = (S{DW, W),
where the vertical maps are surjective. Therefore, as z;, z; are lifts of a
system of generators of A4/JA4, and since J is contained in the conductor of
Sin R, it follows that

A= R[Zh Ezl +JD = R[Eh Zjl +..r.';[311 P_’zi = R[Zh Zjl.

Leta=bpb-1and A= —(2»p—12. ThenaeJand A= -1-da e
R*. Let RIX,Y] =R and 4" = R[X, ¥]/(¥? - ¥YX —aX?— ). Clearly
the R-algebra homomorphism R[X, Y] — A, defined by X — 2, ¥ —
z4, induces a surjective R-algebra homomorphism ¢: 4" — A. We have
shown earlier that 4" is an A*-fibration over R, in particular, A" is an
integral domain and dim 4' = 2 = dim 4. Therefore, ¢ is an isomorphism,
i.e, A4 = A" Hence the result.

CorovLary 3.5, Let R be a noethedan seminormal one-dimensional
semilocal domain with quotiend field K and residue field & such thai
1/2 & R. Then the A*-fibrations over R are precisely the algebras of the type
R[X, Y]/(Y2 = pX? — A). where RIX, Y] = R, A € R*, and w is an ele-
ment of R* 1(K*)? such that the image of w in k is in (k*). Moreover, such
an algebra would be A* over R if and only if p € (R* )

Proof. By (3.4), if A isan A*-fibration, then A = R[U, V]/(V2 - VU —
al? — A), where R[U, V] = R'%, A € R*, and a e J for which there exists
be K such that b(b—1) = a. Putting ¥ = ¥V — U2, X = U, and p =
(2b — 1) /4 = a + 1/4, we see that 4 has the desired form. Similarly the
converse. |

CoroLrary 3.6, Let A be an A*-fibration over a noetherian seminormal
one-dimensional semilocal domain R. Then (1 o is a free A-module of rank
OHE.

Proof. By (29), 1, is a finitely generated projective module of rank
one. Since, by (3.4), A = R[X, Y]/(F) (where R[X, Y] = RI2)), Qyr is
stably free of rank one and hence free. 1
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We shall next show (3.8) that the only A*-fibration over a one-
dimensional seminormal semilocal domain R, whose spectrum occurs
a an affine open subscheme of Spec( RIY), is the trivial A*-fibration. We
first prove a technical result below.

Prorosimion 3.7, Let R be a one-dimensional noetherian local domain
with residue field k and A an A*-fibration over R. Suppose that there exisis
an R-subalgebra B of A such that B is an A'-fibration over R and Spec A =
Spec B V(P), where P is a radical ideal of B. Then

(i) Pisa prime ideal of B of height one.
(i) PNR=0and B/P is a finite birational extension of R.
(iil)  B/P is local with k as the residue field.

Moreover, A is A* over R if and only if B = RY and B/P = R.

Proof.  We first show that P is a prime ideal of B of height one. Since
R is a one-dimensional domain, and B is an Al-fibration over R, it is easy
to see that B is a Cohen-M acaulay domain. Hence, as Spec B, I¥(P) isan
affine scheme, it follows that all the minimal prime ideals of P are of height
one.

Let R denote the normalisation of R. Let B = ff@;,,- Band A=R Bp A
From the K rull-A kizuki theorem [6, 11.7, p. 84] and the fact that R is local,
it follows that Risa semilocal PID. Therefore, by (2.4), Bl[ R @ B) =
R[Zi and, by (2.7), A(= R@R A) = R[T, T for some indeterminates Z
and T.

Since Spec A= Specﬁi\V{PE}, A= E[T, T-'1and Bisa UFD, we see
that the radical of PB is a principal prime ideal of B, say, generated by f.
It follows that P = fBN B and hence P is a prime ideal of height one.

Since [ becomes a unit in A f=AT™ for some A € (R)* and for some
non-zero integer . Without loss of generality we may assume that m = 0.
Then T isintegral over B and hence T € B(= R[ZI} MNow it is easy to see
that R[Z] = R[T] and TEn B = P. Therefore, PN R = 0 and we have
R = B/P= R. Thus, B/P is a finite birational extension of R.

Let M be the maximal ideal of R. Mote that Spec(d/MAd) =
Spec(B/MB)\ V((P + MB)/MB). Since B/MB = k[W] and A/MA =
k[Y, Y1, arguing as before, we may assume that W = Y and the radical
of (P + MB)/MB in BfMB is generated by W. T his shows that, since B/P
is a finite extension of R, B/P is a local ring with residue field &.

MNow assume that B = R[X] and B/P = R. Then, without loss of gener-
ality, we may assume that X = P. Since P is a prime ideal of height one,
P = XR[X]and hence A = R[X, X~!].

MNow assume that 4 = R[X, X~!]. Since B is Cohen-M acaulay and P
is a prime ideal of B of height one, it follows that B = B, n A. Let K
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denote the quotient field of R. Since B(= R@, B) = R[T], TBnB = P,
and PN R = 0, it follows that B, = K[T] ), a discrete valuation ring
Therefore, either X € B, or X~! e B,. Without loss of generality, we may
assume that X € B, and hence in B. Thus R[X] < B < R[X,X!]. In
particular, X e B. Since R[X, X"'|= A= R®, A= R[T. T"], it follows
that X e TBNB = P.As PN R =0, we have PN R[X] = XR[X]. Thus,
the local ring B, dominates the (birational) local ring R[ X, x, which is a
discrete valuation ring. Therefore, Bp = R[X ]y, and hence B= BN A =
R[X]xyNRIX,X '] =R[X].As X € P and P is a prime ideal of height
one, P = XR[X] Thus B/P=R. 1

TueorEM 3.8. Let R be a noethedan seminormal one-dimensional
semilocal domain and A an A*-fibration over R. Then A is A* over R if
and only if SpecA is an open subscheme of an Al-fibraiion over R (or
equivalently, Spec A is an open subscheme of Spec(RI).)

Proaf. The "only if" part follows trivially. For the "if" part, by [4, 3.3],
we may assume that R is local with residue field &, say. Let B be an A-
fibration over R such that Spec 4 = Spec B V(P) for some radical ideal
P of B. In view of (3.7), it is enough to show that B= RI! and B/P = R.
Since R is seminormal local, by (2.4), B = RI!. By (3.7), P is a prime ideal
of B of height one, B/P is a local domain with residue field & and B/P is
a finite birational extension of R. Therefore, by (21), B/P=R. 1

We now use the structure theorem (3.4) to construct an explicit example
of a nontrivial A*-fibration over a noetherian seminormal one-dimensional
local domain.

ExampLE 3.9. Let k be a field and let R be a semilocal noetherian
normal domain of dimension one with precisely two maximal ideals M; and
M such that R,!MI R/M; = k and k — R. (For instance, we may take
R = 57 1k[t], where k is a field and § = k[¢]" (JyU I5), where I} = tk[1]
and 5 = (¢t — k[ :i} LetJ =M NM; and let R =k +J. Then J is the
conductor ideal of R in R, R/J = k, and R1J(= k @ k) is a finite module
over R/J(= k). Therefore, R is a finite module over R. Hence, as R is
noetherian, by the Eakin-Nagata theorem [6, 3.7, p. 18], R is noetherian.
Now it is easy to see that R is a local domain with maximal ideal J and
residue field R/J = k. Moreover, R is the normalisation of R and R is
seminormal in R. Since My + M5 = R, there exists b & M;suchthatl—b e
M. Leta=bb—1).Thenb g Rbut B(b—1)=a € J c R. Now let
A=R[X, Y]/(YI—¥X —aX?—1). Then, by (3.4), A is a nontrivial A*
fibration over R and hence by (3.8), Spec 4 is not an open subscheme of
any affine line over R. Note that, by (3.6), 04k is free.
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In the following examples (3.10, 3.11), R will be a noetherian one-
dimensional (non-seminormal) local domain, .4 a nontrivial A*-fibration
over R, and B an Al-fibration over R such that Spec A = Spec B\ V(P)
for some P < Spec B. Note that, by (3.7), either B/P # R or B & Rl In
(3.10), B = R!l whereas in (3.11), B/P = R.

ExXAMPLE 3.10. Let k be a field, S = k[¢], and § = k[¢%, ¢*]. Consider
the 5-algebra surjectmn ¢: S[W] —— k[¢] defined by (W)= 1. Let 0=
ker(¢). Then @ = (W2 — 2, 2W — 2, W — Yy and J(OS[W]) = (W — ).
Let R = §,, where M is the maximal ideal (2, )S. Let B = R[W] and
P = QB.Then B/P = k[t];,,- Now Spec S[W] ' (Q) is an affine scheme by
(2.3) so that SpecR[W ] V(P) is also an affine scheme, say, Spec.4. Now
we show that 4 isan A*-fibration over R. Obviously, A isa finitely generated
flat algebra over R. Moreover, Spec(K @, A) = Spec(K[W]) V(W —1),
where K = k(t)is the quotient field of R. Thusthe generic fibre K @, A =
K[W,(W —1)71] is A* over K. Since MS[W ]+ P = MS[W]+ (W?), we
have k ®z A = k[W,W1]. Thus A is an A*fibration over R. Since
B/P # R, by (3.7), A is a nontrivial A*-fibration. Note that, since Spec 4 is
an affine open subscheme of Spec(R!'), 0, . is free.

ExampLe 3.11. Let k be a field of characteristic zero, - k[¢], and
8§ =k + t"k[t], where n = Z. The conductor of Sin § is the maximal ideal
M of S given by M = r"k[t]. Let z = X + tX? and y the i _image of z in
(S/M)[X]. Then (S/M)[y] = (S/M)[X].Let D = S[z]+ MS[X]. By (25),
D is an Al-fibration over S. It is easy to see that there exists ¢ € s11 such
that ¢(0) = 0 and X = ¢(z) (modulo MS[X]). Let w = X — ¢(z). Then
we MS[X]C Dand S[z, w] = E[X; It follows that D = §[z, w] and w =
MD. Let P = (z,w)D.Then D/P = 5 and hence P « Spec D). M oreover,
PS[X] = X5[X] so that, by (2.3), the open subscheme Spec D\ V'(P) isan
affine scheme. Now let R =S, and B= R ®; D. Then B isan Al-fibration
over the noetherian one-dimensional local domain R and SpecB ', V(PE)
is an affine open subscheme of Spec B, say, Spec.4. We show that A is an
A*-fibration over R. Clearly, A is finitely generated and flat over R. Let R
denote the normalisation of R and C the conductor of R in R. Then C is
the maximal ideal of R and R, = k[t]/(s"). Let e denote the image of
in R,!C N ote thatR@RB R[X]and Rz A = R[X X 1. In particular,
if K denotes the quotient field k(¢) of R, then K @, A = K[ X, X !]. Since
B/CB = k[y] and P+ CB = zB + CB, we have 4/CA = k[y, y~1]. Since
R®p Aand R/C @y A are both A* over R and R/ C, respectively, it follows
that .4 is an A*-fibration over R. Asin (2.6), B # R!. Hence, by (3.7), A
is not A* over R.

Mote that, as B # RI, by results of Asanuma and Hamann (see
(3, 3.4)), Qg is not free. We now show that 2 , . is free if and only if
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n = 2. The cartesian square of rings (with the vertical maps surjective)

A = RepA (=RX X
! i
(k[y,y1]1=) A/CA — R/C®y A (=(R/C)[X, X~ =(R/C)[y y™'])

induces the cartesian sguare of modules,

ﬂA;‘R — E[X, X_ll & 4 ﬂA;‘R |:= ﬂ{ﬁ|x_x-'.]];-ﬁ}
v v
Qs =) Car/ Apr = Qi ionx xpiiio

Since € v x-17y& @nd iy, 27 are free modules with bases 4.X and
dy, respectively, and dy = (1 + ZEX}dX Qg is free if and only if there
exist f e (k[w v P*andg e LR[X X 1])* such that fg = 1+ 2e X, where
¢ denotes the image of g in (R/C)[X, X~ 1.

If n =2, then taking f = y* and g = X 2, we see that (0, is free.

If # = 3, we show that 1 + 2 X cannot be split as above. Suppose that
f8=1+2eX, where f, g are as before. Then f = A and g = pX™ for
some A € k*, p € R* and I, m are integers. Since the images of v and
X are same in {R,:R}[X X1, it follows that [ + m = 0 and the image
of u in RitR(=k)is AL Thus 14 2eX = pA(y/ XY = uA(l+eX) in
(R,!C}[X X1 and hence in {R,!C}[XI One can easily check that this is
not possible as e? £ 0 and characteristic of k is 0. T hus Q4 is not free.
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