Incomplete block designs for slope
ratio assays

Aloke Dey®, K. Balasubramanian®, Sudhir Gupta™*

& Indian Statistical Institme, New Delli 110006, India
b Division of Statistics, Northern Minois University, DeKalh, IL 60115 USA

Abstract

Incomplete block designs for slope ratio assavs are investigated. These designs leave the
two important contrasts, viz., ‘blank” and “intersection’ unconfounded. Several families of such
designs are reported.

AMS classifications: 62K10

Keywords: Bioassay, Slope ratio assays; Block designs; Blank and intersection contrasts;
Switching

1. Introduction and preliminaries

Incomplete block designs have been used extensively i many areas of investiga-
tion. In bioassays also, incomplete block designs may be used profitably. Groups of
experimental units, such as litters of animals, adjacent tubes in an incubator, animals
kept in the same cage, cullures on a single plate or paper discs on an agar plate are
generally taken for providing homogeneous blocks of experimental units in bioassays.
If blocks of homogeneous experimental units of right sze are available, one can adopt
a randomized complete block design for the assay. Due to experimental limitations
however, 1t 1s not always possible to find homogeneous blocks that can accommodate
all the doses; for example, litlers may be too small, cage accommodation may be lim-
ited or the agar plate may be incapable of accommodating all the doses. The problem
becomes more acute with increasing number of doses. In such a situation, adoption of
a suitable incomplete block design becomes necessary.

Incomplete block designs for bioassays (i paricular for parallel line assays) with
some desirable properties have been investigated by several authors; see eg., Das and
Kulkarm (19667, Kyt Win and Dey (1980} and Gupta and Mukerjee (1990) and the
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references given therein. For an account of the recent developments on designs for
parallel line assays, a reference may be made to Gupta and Mukerjee (1996). The
literature on incomplete block designs for another mmportant class of assays, namely
the slope ratio assays is rather scanty. Das and Kulkarni (1966) obtained some designs
for slope ratio assays by augmenting cach block of a design for parallel line assays
with the *blank” dose. A similar approach was followed by Kulshreshtha (1972). How-
ever, this method is not very efficient in the sense that these designs do not always
permit the estimation of the major contrasts of slope mtio assays free from block
effects.

The purpose of this paper is to present general techniques of construction of incom-
plete block designs for slope ratio assays. All these designs pemmit the estimation of
the two important contrasts viz., “intersection’ and “blank” free from block effects, ic.,
these designs allow the estimation of these two major contrasts as if the block effects
were absent from the model. Several families of designs are reported.

To begin with we brefly describe some imporant aspects of bioassays and in par-
ticular, of slope ratio assays. In bioassays, two materials are compared by utilizing the
response that they produce in living organisms. The companson is made on the basis
of two sets of doses, one from standard preparation (material of known strength) and
the other from tfest preparation (matenal of unknown swrength) such that they produce
the same response. 1 =, and z; denote the doses of standard and test prepamations
producing the same response, then the parameter of mterest, called relative poiency,
15 p=z./5. If the two preparations involved in an assay contain the same effective
ingredient and all other substances that may be present in the prepamtons are totally
inert, the assay 15 called analytical dilunon assay. We consider only analytical dilution
assays; it 1s also assumed that the response s quantitative.

In most assays the dose producing a specific response is not directly measurable and,
recourse has to be taken to indirect methods to estimate the dose corresponding to a
given response vig a dose response relationship. 1f the dose-response relationship is not
linear, often a transformation of the dose is made so that the relationship between the
transfomed dose and response is neady linear. If = represents the dose in the original
scale, then the two imporant transformations that have been found useful in bioassay
work are (i) x= log,z and (ii) x =z*, where i=0 is a known constant. The first of
these gives rise to parallel line assays and assays based on the second transformation
are called slope mtio assays.

In symmetrical slope mtio assays, there are m doses of each preparation and the
doses are in arithmetic progression, e, i s and ¢ denote respectively the ith dose of
standard and test preparations, then for i = 1,2, m, 5; =1; = i/m. In slope mtio assays,
it 15 hypothesised that the regression lines of response on dose transfomm intersect on
the response axis, and therefore, it i1s necessary to include a Mank (control) dose in
the assay to test the validity of this assumption. Thus a symmetrical slope ratio assay
consists of (2m + 1) doses.

In slope ratio assays, the blank (Ly), the intersection (L)) (defined below) and the
two regression contrasts are of major imporance, as these contrasts are used for making
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validity tests and for the estimation of relative potency. For further details on these
aspects, a reference may be made to Ch. 7 of Finney (1978).

Throughout this paper we denote an m-component column vector of all ones by 1,
and an m-component null column vector by 0,. A prime over a matrix or a vector
denotes its transpose.

Let 1; and 7,4, i= 1,2,....m denote the effect of s; and f;, respectively, and 7., that
of the blank dose. Then the blank and intersection contrasts are given by

ar

Lg =gt + 3 {3(—1) — (7 + Twis b (1.1)
i=l
L|=Z{ﬁ_3{.}-_1"}{n_rm+1'L {1.2']
=1

where g =m(m—1), h=2{m—-1).
We can rewrile the contrasts Ly and L) as

lp=(g.a.a') (1.3)
Ly =(0, —z. 2 T, (1.4)

where

a=(2—2m,5—2m.....m—1),

]
T={TeaT15T2s-. -:r}.ur}-

Consider now an eguireplicaie, binary block design J with (2Zm+1) weatments
{doses) and b blocks, and let A,y be the incidence matrix of &, We may write N
s

",
Ny= | Nas | ()
N2

where #', = (#m., ... .1 ) 18 a row vector of b components, representing the incidence of
the blank dose o, Ny 18 the m = b meidence matrix for the m doses of the standard
preparation and Nys 1s the comresponding matnx for the test preparation. Note that it is
not necessary in general that each block of a design has doses from each of the two
preparations, standard and test. Using Lemma 3.1 of Gupta and Mukerjee {1996), one
can show that under a standard fixed effects model, the contrasts Lg and L can be
estimated free of block effects through the design & if and only 1f

(g2 2 Wy =0j, (1.6)
(0,—a', o/ )N, =0} (1.7)

Letf C{12,....h} such that n; =1 for je.J and.J C {1.2,....b} such that ;=0
for j £ J. The cardinalities of J and J need not be the same. Cleady JUJ ={1.2, ... b}
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Let B, (respectively, ) be the jth column of Ny (respectively, of Nya) for jeJ.
Then, from Egs. (1.6) and (1.7), we must have

LT 9)
a By + m'ﬁﬂ = —m{m—1). (1.9)

Similarly, let y,; (respectively, y.) be the jth column of Ny (respectively, of Nyz2)
for jeJ. Then, in order that the blank and intersection contrasts are estimated free
from block effects, we must have

ay =y, (1.10)
&y + &y, =0. (1.11)

Summarizing, we therefore have the following.

Lemma 1.1. The Mank and intersection contrasts can be estimated free from block
effects through a bingry equiveplicate design o i and only if

(1) mrﬁ” =m'ﬁ:-3 = —m(m—1)2, Wiel,
(ii) a'yy=da'ya=0, Viel.

In the next two sections we use Lemma 1.1 to armnve at equireplicate binary block
designs for slope ratio assays which leave the blank and intersection contrasts free
from block effects.

Remark 1.1. The designs constructed in this paper are necessarilly equireplicate. It
should be possible to construct non-equireplicate designs with the desired properties.
A general procedure for constructing incomplete block designs for slope ratio assays
that leave the blank and interscction contrasts free from block effects and are not
equireplicate 5 not available at the present moment and further work s necessary o
arrive at those designs.

2. A general method of construction of designs

In order o obtain designs satisfying the conditions of Lemma 1.1, we adopt the
following strategy. First, for n.; =1, we obtain a basic incidence vector for one of the
doses, say standard. Onee the basic incidence vector is obtained, several other vectors,
satisfying the conditions of Lemma 1.1 can be obtained by a procedure of switching,
explained below.

Observe that the entries in the vector & are in arithmetic progression, with common
difference 3. Consider any incidence vector, excluding its first entry (the one corre-
sponding to the blank dose). Then, such a vector is a sequence of zeros and unities.
Suppose there are two unities at positions §; and & and two zeros at positions ) +/ and
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ia —[. Then one can derive another vector with the same properties as the original one
by bringing the unity at 7jth position o (# + /) th position and that at i>th position to
{ia — {)th posinon. This is the procedure of switching. This procedure can be repeated
any number of times, and we still call the procedure as switching. 1t 15 clear that all
incidence vectors with the desired properties, mentioned earlier can be obtained from
the basic meidence vectors by the process of switching.

Suppose @ ={a. a2 ....@wm)s i=L24 6 ay="01 is a collection of incidence
vectors for the standard preparation doses, and smilarly, let ¢ ={ci.c0 o cim )
i=12... ..t ¢;=0.1 be a collection of incidence vectors for the test preparation
doses, satisfying (i) of Lemma 1.1. Further, let

(@ )=k, Yi=12...4, (2.1)
where k£ 15 a constant. The final incidence matrix of an equireplicate design for slope

ratio assays pennitting the estimation of blank and intersection contrasts free from
block effects 15 then given by

| | 1 ] L |
No=lagy @ - a b b --- Bl {2.2)
er o - oo di dh d,

where for i=1L2,.. .., b= 1, —a, and o; =1, — ;.
Observe that since for i=1,2, ...t a; satisfies (1) of Lemma 1.1, we have

Yoayu=—mim—1)2, foralli=12...¢
=l

where & = (o). 8, ..., %, ). Hence,
ar ar
3 obgay=3% (1 —ay )y =0,
=1 =

as Z:“:I ay= —m{m—1)/2. Here, for i = L2008 b= (b Boas oo oBi ). Arguing sim-
ilarly for the vectors ¢ and d;, it follows that the matrix Ny given by Eqg. (2.2) does
satisfy the conditions of Lemma 1.1 and the design d based on Ny permits the estima-
tion of the blank and intersection contrasts free from block effects. Cleady, Ny given
by Eg. (2.2) is the incidence matnx of a binary design with & =21 blocks, cach dose
being replicated ¢ umes. We thus have

Theorem 2.1. Suppose ay,....a, is a set of @ incidence vectors for the standard
preparvation doses and e, e, a set of incidence vectors for the fest preparation
doses, satisfving (1) of Lenwna 1.1 and (2.1). Then wsing these vectors, it is possi-
ble to construct a binary, equireplicate block design with cidence matix given by
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Eg (2.2) for slope ratio assays permitting the extimation of the blank and intersection
contrasts free from block effects.

Example 2.1. Let m=7 It can be verified that the following vector satisfies (1) of
Lemma 1.1:

(1,1, 1.0,0.0,1Y.

Two more vectors with the desired properties can be generated from this basie vector
by switching and are

(11,0, 1,01, 07, (L0011, 1, 0,0).
Taking these vectors for both the preparations and following the method of construction
just described, we have the incidence matrix of a design for slope ratio assays which
allows the estimation of the blank and intersection conrasts free from block effects.
The incidence matrix is displayed below:

11 1 0 0 0]
11 1 0 0 0
11 0 0 0 1
10 1 0 1 0
o 1 1 1 0 0
o o 1 1 1 0
o 1 0 1 0 1

My=Q)1 O 0 0 1 1
11 1 0 0 0
11 0 0 0 1
10 1 0 1 0
o 1 1 1 0 0
o o 1 1 1 0
o 1 0 1 0 1
L0 o o 1 1

In the above matrix, the first row represents the incidence of the blank dose, the
next seven rows indicate the incidence of the standard preparmtion doses and the rest,
that of the test doses. The design has b=6 blocks, each dose being replicated r=3
Limes.

If we follow the method of construction of designs described above, 1t 15 clear that
the final design has blocks of two sizes. Hencelorth, we denote by &y the block size of
those blocks for which n, =1, j=1.2.....¢ and by £, that of those blocks for which
fep =0, Clearly, by =2m +1—k;. Now, for n = 1, suppose ﬁ_’“ =(1.0 _.), lsu=<m.
Then

a'f = —u(4m—3u—1)/2. (2.3)
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If the right-hand side of Eq. (2.3) is larger than —m(m—1)/2, then clearly there is no
solution in the sense that in such a case, the conditions of Lemma 1.1 can never be
met, for, the sum of any w elements in & (which is an increasing sequence) is at least
equal to the sum of fisst w elements of 2. It follows that a necessary condition for a
possible solution is that

—uldm—3u—1)2= —m(m—1)/2, (2.4)
or, equivalently,
h{u‘]=3u3—u{4m—1] +mim—1)=1. (2.5)

Since the coefficient of o in h(w) is positive, h(w) =0, unless w lies between the
roots of the equanon A(w)=0. The roots of Alu) =10 are easily seen to be w=m and
u={(m—1)/3. The larger root is tnvial. Hence, we have (m—1)/3 <u<m. Repeating
the same argument for the test dose, we arrive at the following result.

Lemma 2.1. For a binary, equireplicate Block design permitting the estimation of
the Blank and intersection contrasts free from Mock effects, it is necessary that
by 22im—1)/3 + 1, where &y is av defined above.

We now prove the following

Lemma 22, Lot m=0{mod3). A necessary condition for an egquireplicate, bnary
design permitting the estimation of the blank and ntersection contrasts free from

hlock effects is that )y =1{mod 3).

Proof. If a design permitting the estimation of blank and mtersection contrasts exists,
then for this design, we must have n, =1 for at least one je{1.2,....b} Let ny =1,
for some je{1.2,... b} It is easy to see that if m=0({mod 3), then every element
in x 15 congruent to 2{mod 3). Also, —m(m—1)/2 is congruent to 0{mod 3). Define
Su=12-2m.5—2m,....m—1}. Now, il a design with the stated properties exists, then
there must exist an integer & such that the sum of some &' elements of S, should
be —m(m—1)/2. This means that 2k =0{mod3), implying that &' =0 (mod 3). This
argument is valid for one of the doses, say standard. Repeating the same argument for
the test doses, we find that &y must necessarily be congruent to 1 (mod3). L

On similar lines, we can prove the following

Lemma 23, Let m=2({mod3). A necessary condition for an equireplicate, bnary
design permitting the estimation of the blank and intersection contrasts free from

hlock effects is that )y =2(mod 3).

In the next section, we give specific procedures for constructing designs for different
values of m. We distinguish three cases, viz., (i) m = 1{mod 3), (ii) m=2{mod 3) and
() m=0({mod 3) and give designs for cach of the cases.
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3. Specific designs
31 m=1{mod3)

When m=1(mod3), ecach element in S, ={2—-2m.5—2m,....,—3,0,3,6,....m—1}
is congruent to zero (mod 3). Define

8, ={2-2m.5-2m,....,—2-m}; 8. ={l-md-m, ...  —3};
S, =1{3,6,....m—1}

Clearly, the cardinality of each of the sets §.5..5, is (m—1)/3 and §,, =5 US. U{0}
LS, Also, cach element m 8, has its negative in 8., and the sum of the elements in
8, is —m(m—1)/2.

Let n,; = 1. We define two functions f and g as follows:
S8, — 101} such that

(1) fx)=1¥xeS,,

() forxels,, fix)=1ls f(—x)=1,

(3) f(0)=0,

{4) Hx: fix)=1, x£8,} =5, where 5 15 2 nonnegative integer.
g8, — {0, 1} such that g(x) satisfies the conditions (1)—(3) of f(x) with f replaced
by g and

(5) [{x:glx) = Lxe 8, } =52, where 52 15 a nonnegative integer.

The basic incidence vectors are then given by

w, = f(Sa ) ={2-2m), F(5-2m), ..., (=3 F(0) F(3)..., fim=1 1.
Wy =gl S ) =(g(2—2m ). g(5—2m) .9l =3 Lg(0hg(3).. .glm—1)17,

for the standard and test preparation doses respectively. Note that these incidence vee-
tors satisly (1) of Lemma 1.1

Clearly, by =2(m—1)/3 + 2{s) + s2)+ 1. Also, 05,5 =(m—1)/3; (5,52)#(0,0)
Onee the basic incidence vectors are constructed, other incidence vectors can be ob-
tained by switching. We thus have the following

Theorem 3.1. For m=1(mod3), there exists an equireplicate mcomplete Bock de-
sign for slope ratio assays with k) =2(m—1)/3 + 2(s| + 50+ 1 which permiis the
extimation of the blank and intersection contrasts free from Mook effects, where 5,52
are integers, satisfving 0 <5 50 < (m—1)3, (5,5 )+ (0,0).

Example 3.1. Let m =7.5 =0, 5 = 1. This choice gives rise to a design with &) =7,
With n.;= 1, following are the basic incidence vectors, satisfying (1) of Lemma 1.1:
(11, 0.0,0,0,00 for standard; (1.1, 1L 0.0.0, 1) for test.

From the first of these, no more vectors can be obtained by switching. However, the
following two vectors can be obtained by switching from the basic vector for test
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prepambon:
(1,1,0,1,0,1,0), (1,0,1.1,1,0,0).

The roles of the standard and test preparations can of course be interchanged. Combin-
ing these vectors suitably and following the procedure of construction just described,
one can get the final design. The meidence matax of such a design is shown below:

(111 111 000 000
111 111 00 00
111 110 000 00l
000 101 111 Mo
000 011 111 100
000 o001 111 110
oo0 010 111 1M

Ny= 1000 100 111 01},

110 1110 000 00

11 111 001 00

1ot 0od 010 111

o1y o000 100 111

001 o000 1100 111

o o000 101 111

100 000 011 111

where the first row corresponds to the blank dose, the next seven rows correspond to
the standard preparation doses and the rest are for test preparation doses. This design
has b =12 blocks and each treatment is replicated » =6 tmes. The block sizes are
k=7 and k= 8.

Designs with fewer blocks can be obtamed by deleting one or more columns for
which n.; =1 of the incidence matrix and also deleting the complementary column(s).
For instance, deleting columns 1 and 7 of the above incidence matrix leaves a design
with b= 10 blocks.

32 m=0{mod3)

Let m=3u, where w is a positive integer. By Lemma 2.1, we have in this case,
ky 2 2u+1 and by Lemma 2.2, a necessary condition for a design with desired properties
is that £, =1 {mod 3).

Letn; =1 for some je{1.2,....b}. Suppose in the incidence vector for this § there
are v (respectively, ) unities comresponding to the standard (respectvely, test) prepa-
ration doses. Then &y =# + r + 1. Also, the sum of #(r:) entries in S, ={2—2m,
5-2m,....m—1} must be —m(m—1)2. But —m({m—1)2 =0{mod3), as m =0 (mod 3).
However, when m=0({mod3), each entry in 8, is congruent to 2{mod3). It fol-
lows therefore that each of r and # must be congruent to 0{mod 3). Note that with
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rra=0{mod3), i =1(mod3), which by Lemma 2.2 is a necessary condition for a
design with desired properties to exist.

Now, the sum of first # entries m S, is equal to #{ —12u+ 37 4+ 1)/2. In order that
there is a feasible solution w0 a basic vector (for the standard doses), this sum must
not exceed —m{m — 1)/2=(—9" + 3u)/2. Thus we must have

(=120 + 3 + 1)/2<(—9% + 3u)/2, (3.1)
or,
wir )=3r — r(12u— 1)+ 9° — 3u<0. (3.2

Clearly, wiry) is nonpositive only when # lies between the roots of wir )=0. The
roots of wir ) =0 are easily seen to be # =w — 1/3 and 3w The larger root is trvial,
and since ry 15 an integer, for a binary design we must have r = w. Repeating the same
argument for the test preparation doses, we must have m 2. We therefore have the
following

Lemma 3.1. Let m=0{mod3). Then a set of necessary conditions for a binary,
equireplicate bock design with ky=r) + m + 1, permitting the estimation of blank
and intersection confrasts free from block effecis to exise, iv that vy satisfy rem
=0{mod 3) and v, 2m/3.

The next question to ask is: can we construct a design with desired properties and &
attaining the lower bound given by Lemma 3.1, e, with &) = 2u+1 ? Such a design is
possible if and only if #) = =u. But by Lemma 3.1, we must have v, =0 (mod3).
This s achievable only when w=0(mod3) or, equivalently, m=0{mod9). When
m=0{mod9), one can indeed get a basic vector which yields a design with k) =2u+1.
This basic vector for both the preparation doses is given by

{1'”,_3 ,{}'ﬂ, 1,'[]"5ﬂ I
3 & [

From this basic vector, other vectors can be generated by the procedure of switching.
We thus have

Theorem 3.2. Lot m=0{mod9). Then there exists an equireplicate binary block
design permitting the estimation of Blank and intersection contrasis free from block
effects with by =2u+ 1 where u=m/3. Further, 2u+1 is the smallest value of &y for
a binary design with the desived properties.

Example 3.2. Let m = 18, so that = 6. Following the method of construction described
above, we get the following basic vector:

(11 L1 L0000 1,000, 0,0, 0,0, 0,0,0, 07
The following vector can be obtained from this vector by switching:

(L1 L L0011, 0,0,0,0,0,0,0, 0,00, 00,
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Takmg these vectors for both the standard and test preparation doses, one can build a
design with k= 13, The incidence matrix of such a design 15 shown below:

1 111110010 000000000 111110010 0000000007

N |-1 TII101100 - 000000000 111101100 {]{]ﬂﬂ{]ﬂ{]{}{}-‘
0 000001101 111111111 000001101 111111111 | 7

l{} Q00010011 111111111 000010011 111111111J

where the first row of Ny represents the incidence of the blank dose, the next 18 rows
that of the standard preparation doses and the rest, that of test prepamation doses. This
design has four blocks and each treatment is replicated twice.

Now let w=m/3=2(mod 3) or, equivalently, m=6(mod9) and n.,=1. For this
case, we cannot have vy, equal to w, as u=2{mod 3). Hence, we must have r,rm =
u+l. e =rm=u+1,then &) =2u+3. 1t 15 indeed possible to find a basic incidence
vector with the desired properties and &) = 2w + 3. The following vector may be used
as a basic incidence vector for both the preparations:

{.]'r'-'r r{}r-hlr—v.‘r 5 lvﬂr_’m—i ::'r-
i T8 N
From this basic vector, others can be generated by switching. We thus have

Theorem 3.3. Let m=6(mod 9). Then there exisis a binary, equireplicate hlock design
permitting the estimation of Mank and intersection contrasts free from block effects
with ky=2u 4+ 3 where u=m/3. Further, 2u + 3 is the smallest value of kb for a
hinary design with the desived properties.

Example 3.3, Let u=35, m= 15 The basic vector for one of the prepamtions 15 as
follows:

(1,1,1.1,1.0,0,0,0,0,0,1,0,0,0)".

The following are some of the vectors obtained from the above basic vector by the
process of switching:

(L1, 1,1,001,0,0,0,0, 1,0,0,0,0), (1,1,1.1,0.0,1,0,0, 1,0,0,0,0,0)".

Following is the incidence matrix of a design based on these incidence vectors:

- -

1 1111000000100 1111 1000000 1000
L 111101 000010000- 111 1OTOO00 OO
| Y 1 111 100100100000- 1111001001 00000
0 0O000L111110111  O00001111110111
0 000010111101111  000010111101111
0 000011011011111 000011011011111 |

There are b =6 blocks and each treatment is replicated thrce.
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Fially, let =1 (mod 3), or, m=3{mod 9). In this case, we can show that we must
have r.m =u+ 2, so that & =2u 4+ 5. With ry = =u + 2, a basic vector with the
desired properties is given by

{1';”7{}’ 3717{}:.lr—3=11'{}r3m—6 ]r'
3 Ta

ar—

3 L]

This basic vector can be used for both the preparation doses. Other vectors can be
obtained from this basic vector by switching. We thus have

Theorem 34, Let m=3(mod 9). Then there exists a binary equireplicate block design
permitting the estimation of Mlank and intersection contrasis free from block effects
with ky=2u + 5 where u=m/3. Further, 2u + 5 is the smallest value of kb for a
hinary design with the desived properties.

Example 34, Let m= 12, so that =4, Following the construction just desenbed, we
get the following basic incidence vector with r) = 6:

(L1 1L 100,00 1,0, 1, 0,0)
The following are some (but not all) incidence vectors, obtained by switching:
(1,1, 1,0,1,0, 1,0,0, 1, 0,0}, (1L L0, 1,0, 1,0, 1,0,0,0),

Combining these meidence vectors, an equireplicate design with the desired properties
can be obtained. The incidence matrix of such a design is shown below:

1 111100010100 1111000101007
1 111010100100 111010100100
1 110110101000 110110101000
0 000011101011 000011101011
0 000101011011 000101011011
0 001001010111 001001010111 ]

33 m=2(mod3)

Let m=3u + 2, where u is a positive integer. Arguing as in Section 3.2, we can
show that with n. ;= 1, riorm must satisly the conditions

(1) r.r2 =2(mod 3), and

(2) rrazu+ 1.

Thus the minimum values of r.r2 are as given below:

(1) n=rn=u+2 when u=0{mod3);
(2) n=rn=u+1, when u=1{mod3);

(3) n=rn=u+3, whenu=2({mod3).
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For each of the above values of w, one can get a soluton for the basic vector with
#1,ra attaining the lower bound. The basic vector when w=0{mod 3) is given by
(6 LN W W
3 9@ @
The above basic vector may be used for both the preparation doses. Other incidence
veetors with the desired properties can be obtained from the basic vector by the process
of switching. We thus have

Theorem 3.5. Let m=2(mod9). Then there exists a binary Bock design permii-
ting the estimation of Mank and intersection contrasis free from block effecis with
ki =2u+ 5 where u={(m — 2)/3. Further, 2u+ 5 is the smallest value of k.

Example 3.5. Let m= 11, so that = 3. Following the method of construction described
above, we get the following basic incidence vector:

(1.1, 1,1,0,0,0,0,0,1, 0.
The following are some of the vectors obtamed by switching:

(1110, 1,0,0,0,1,0,07, (111000, 1,001, 0,0,0)
(L1001, 10,0, 1,00, 07

Using these vectors for both the preparations, a design with & = 11 can be constructed.
The incidence matrix of such a design is shown below:

1 11110000010 111100000107

1 11101000100 11101000100

1 11100101000 11100101000
y,_ |1 11011001000 11011001000

0 00001111101 00001111101

0 00010111011 00010111011

0 00011010111 00011010111

|0 00100110111 00100110111 |

This design has b =8 blocks and cach dose s replicated four times.

Now let w=1(mod3). For this case, a basic vector with 7y =wu+ 1 is given below:
{.]'ra.lr—l 7{}r2.|.lr— 14 1, {}r-hlr—l ]r'
+ - s
This vector may be used as a basic vector for both the preparations. Other vectors can
be obtained by switching. We thus have

Theorem 3.6. Let m=35(mod 9). Then there exisis a binar v, equireplicate block design
permitting the estimation of Mlank and intersection contrasis free from block effects
with by =2u+ 3 where w=(m —2)3. Further, 2u+ 3 is the smallest value of k.
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Example 3.6. Let m= 14, so that w=4. Following the method just described, we get
the following basic incidence vector:

(11 1 1,000,001, 0,0, 0,0,0,07,
The following vector can be obtained by switching:
(1,1, 1,0, 1,0, 1,0,0,0,0,0,0,0)"

Combining these vectors we get a design with ) = 11, The ineidence matrix of such
a design is shown below:

|' 1 11110001000000- 111 I{HH}I{HHHH}{}'| r
N 1 11101010000000- 11101010000000

0 00001110111111  00001110111111

|_'Ifr 0001010111111 {}{I}l{}l{}lllllllJ

Finally, let u=2(mod 3). In this case, with | =u + 3, a basic vector 15 as given
below:

{.]'rm;l!' tla.lr— 14+ ]'Erﬂr_'-'m—? ']f.
E] @ @

Using this vector as a basic vector for both the preparations and obtaining other vectors

by switching, the final design with &) =2u + 7 can be obtained and we have the

following

Theorem 3.7. Let m=8(mod 9). Then there exisis a binar v, equireplicate block design
permitting the estimation of Mank and iniersection contrasts free from block effects
with k) =2u+ 7 where w=(m — 2)/3. Further, 2u+ 7 is the smallest value of k.

Example 3.7. Let m=28 so that w=2. The following basic incidence vector can be
obtained by following the above construction:

(1.1, 1,0.0,1. 1.0)"
The following vector is obtained by switching:

(1,1,0,1,1,0, 1,0

Combining these vectors, the incidence matrix of a design with &y = 11 is obtained and
is displayed below:

|'1 11100110 111{}{}11{}'| r
N L 11011010 11011010

0 00011001 00011001

|_'Ifr 00100101 ﬂﬂlﬂﬂl{}lJ

Remark 3.1. The designs constructed in this paper have in general blocks of two
different sizes. Therefore, these designs are applicable in situations where one can



A. Dey et al l Jouwrnal af Statistical Planning and Inference 78 (1990 160383 83

assume that the intra-block variance is independent of the block size, especially if
the two block sizes are widely different. As noted in pp. 201-202 of Finney (1978)
such an assumption is more likely to be comreet in expenments with animals (with
litters forming the blocks) than #t would be in agncultuml field expenments. 1 the
two block sizes are nearly equal, it is safer o make the assumption of equal intra-
block variance. 1t is possible o generate designs through the present method with block
sizes that are nearly equal, by choosing an appropriate value of &), For instance, with
m=0 or 2{mod3), we have presented solutions of designs with the least possible
value of k. From these, designs with larger values of & can be obtained. 1T kg is
the value of &y of a design deseribed in Sections 3.2 and 33, then staring from this
design, another one with block size £y + ¢ can be obtained, where 1= 0(mod3). This
is achieved by selecting ¢ clements from S, in such a manner that the sum of these
clements 15 zero and then putting unities at those places in the ineidence vector of
one of the preparations which correspond o these elements. The problem of obtaining
designs for slope ratio assays with the stated properties and blocks of equal sizes
remains open. Similarly, as mentioned in Remark 1.1, methods of constructing designs
with possibly unequal replicates of doses and permitting the estimation of the blank
and mtersection contrasts free from block effects are still to be explored.
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