Linear estimation in models based on a graph
R.B. Bapat *

Indian Statitical Institute, New Delli 110 016, India
Received 2 Seplember 1998; accepted 15 April 1999
Submitted by B. Datla

Dredicated to Hans Schneider

Abstract

Two natural linear models associated with a graph are considered. The Gauss—
Markov theorem is used in one of the models to derive a combinatorial formula for the
Moore-Penrose inverse of the incidence matrix of a tree. An inequality involving the
Moore-Penrose inverse of the Laplacian matrix of a graph and its distance matrix is
obtained. The case of equality is discussed. Again the main tool used in the proof is the
theory of linear estimation.
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1. Preliminaries

A graph G = [V, E) consists of a finite set of vertices, V, and a set of edges,
E_Each edge is a pair of distinct vertices. We consider graphs which have no
loops or multiple edges. For basic graph-theoretic notions we refer o [4].

A divected graph is a graph in which each edge has been assigned an ori-
entation. Let & be a directed graph with ¥ ={1,..., n}l, E={e,...,en}. The
incidence matrix of 7, denoted by (2, is the n x m matrix defined as follows.
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The (i, f1-entry of @ is 0 if vertex { and edge e; are not incident and otherwise it
is 1 or —1 according as ¢; originates or lerminates at i, respectively.

For a directed graph 7, the mawrix L = Q0" is called the Laplacian matrix
{or the Kirchhoff matrix) of . MNote that the Laplacian matrix does not
depend on the orientation of & and hence is essentially defined for an un-
directed graph. The matrix K = 0"() has been called the edee version of the
Laplacian matrix.

If G=(F,E)is a connected graph (directed or otherwise) and if i, j € V,
then the distance between i, j, denoted by d;, is defined as the length (i.e., the
number of edges) in a shortest path between 7 and J. (When we talk of a path or
a cycle in &, we mean a path or a cycle in the underlying undirected graph.
These notions of path and cycle differ from the standard digraph notions,
where, for example, in a path from i to j, the arcs must be oriented from i to j.)
The distance matrix D = |d;] has been considered in the literature as well. In
particular, when the graph is a tree, the distance matrix is closely related to the
Laplacian and its edge version. For several properties of the Laplacian matrix,
the edge version of the Laplacian and the distance matrix we refer to the papers
by Merris [12,13), and the references contained therein.

We now recall some basic aspects of the theory of linear models. Suppose
¥y,..., ¥, are random variables such that the expectation of each ¥, is a linear
combination of certain parameters i, ..., .- We can expressthis information as
a linear model E(Y) = Xfi, where E(Y) denotes the expectation of the vector
¥ =(¥-iuy lr;,j_'_. X is an rxp mawrix of (known) coefficients and
B=1{B..: ﬂpjl'. We also assume that ¥y,. .., ¥, are uncorrelated with a com-
mon unknown variance o°. Thus the dispersion matrix of ¥, denoted by D{ ¥, s
given by D(Y) = o1, where I, is the n x n identity matrix. For a discussion of
linear models, including concepis such as estimability and best linear unbiased
estimate (BLUE) see [15.1].

If 4 is ann » m matrix, then an m » n matrix 8 is called a generalized inverse
of Aif ABA = A. The Moore—Penrose inverse of A, denoted by A", is an m x n
matrix satisfying the equations AB84 = A, BAB =8, (4B)" = AB and
(BA)" = BA. It is well-known that any real or complex matrix admits a unigue
Moore-Penrose inverse. We refer to [3,5] for basic properties of the Moore-
Penrose inverse. For some recent resulis concerning the Moore-Penrose in-
verse of a Laplacian, see [6-8].

2. The Moore—Penrose inverse of the incidence matrix of a tree

A graph-theoretic description of the Moore-Penrose inverse of the incidence
matrix of a directed tree was recently given in [2]. The formula was used to
obtain an expression for the inverse of the edge version of the Laplacian, K,
derived earlier by Moon [14] and by Merris [12].
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In this section we consider a linear model where the coefficient matrix is the
incidence matrix of a tree. The standard Gauss-Markov theorem is then used
to derive a graph-theoretic description of the Moore—Penrose inverse of the
incidence matrix (.

Our underlying graph is assumed to be a directed tree. Let T = (I, E) be a
directed tree with ¥ = {1...., n} and E = {ey,..., e,}. Note that m=n—1.
Let @ be the incidence matrix of T. It is well-known (see, for example [4]) that
the rank of @ ism = n — 1. Thus the linear model E(Y) = Of, D(Y) =a’f,isa
full rank model. In particular, each f§; is estimable, i.e., there exists ¢ such that
E(fTY)= 8.

If &; € £ then observe that the graph T {&] has two components, both
being trees. This observation is relevant in the statement of the next result.

Theorem 1. Let T = (V. E) be a directed tree with V ={1.... n} and
E=dei. 0 e} Let Q be the incidence matrix of T and let 7 = |g77| be the
Moore—Penrose inverse of 0. Then n|q;| equaly the number of vertices in the
component of T\ & not containing j. Furthermore, g is positive or negative
according as e; is divected away from jor towards j, respectively.

Proof. Consider the linear model E(Y) = Of, D{Y) = &*1,. As observed earlier,
this is a full rank model and hence each §, is estimable. Let f§ denote the BLUE
of §,i=1,..., n—1, and let fi=(f,..... f._.)". By the Gauss-Markov
theorem, fi=(0'0Q) '0"Y, and since 0" = (07Q) 0", we have §=(Q'Y.
Thusife, ¥y +---+ e,Y, is the BLUE of fi, then [cy,..., oy gives the ith row of
of, i=1,....n—1.

We now find the BLUE of fi. If ¢'F is unbiased for f,
E(e"Y) = c"Qf = B, for any fi, or equivalently,

c'0B = (0,...,0,1,0,...,0)8,

then

where the 1 occurs at the ith place. Since f is arbitrary, we conclude that
c'Q=(0,...,0,1,0,...,0).

Thus we have

C_C={1iuam=ﬂ, (1)
ko 0 if (k.)€ E, (k,F)+#e,.

Let us suppose that edge ; joins vertices p, g and that it is directed from pto g.
Let T;, Tz be the components of T {e;} and let ¥5, ¥ be the corresponding
vertex sets, respectively. We assume, without loss of generality, that
PEW, gl

From (1) we conclude that there exists « such that ¢, =1 4+ 2, ¢, = o and
c-—{lﬂ if je ¥, )

o if je ¥ B

4
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In order to find the BLUE of §,, we must minimize

A+t = (1 +a) W]+ L] Wl
Setting the derivative with respect to =z, equal to zero, we get

201 +2) || + 225 =0

and hence
L7 I L1

TAENT

Substituting in (2) we find the linear estimator 'Y which is the BLUE of ..
Thus if § € K, then ¢; = [F5]/n while if j € 15, then ¢; = —|Fi|/n. This estab-
lishes the result. O

We remark that Theorem 1 as well as the results in Section 3 continue to
hold for weighted graphs (i.e., graphs in which each edge is assigned a positive
weight). This only requires obvious modifications in the statements and the
proofs. We deal with the unweighted case for convenience.

3. The main result

In this section we consider graphs which are not necessarily trees. Let
G = (V,E) be adirected graph with ¥ = {1,.._,n}, E ={e,..., eu}. Suppose
# ig an (i, f)-path. The incidence vector u of 2 is an m x | vector defined as
follows. The kth entry of u is zero if ¢ is not in 2. Otherwise itis | or —1
according as e is directed towards j or away from j, respectively. The incidence
vector of a cycle is defined similarly. However, in the case of a cycle we must fix
an orientation for the cycle before defining its incidence vector. The choice of
the orientation is arbitrary as long as it is kept fixed throughout.

Let 7 be a directed graph with V¥ ={1,....n}, E={g,..., eyt and sup-
pose (7 has p connected components. Let O be the incidence matrix of & and
consider the linear model

EYy=0"f, D(¥)=d'l,.

Recall that a function ¢'Y is called an error function if £{(c"Y) = 0 for any f.
Thus ¢"Y is an error function if and only if Q¢ = 0. The null space of  has
dimension m — n + p. Furthermore, there exists a set of cycles, &, ..., B it
called fundamental cycles, whose incidence vectors form a basis for the null
space of (& (see [4, Ch. 12]).

We now turn to estimable functions in this model. A function 78 is esti-
mable if and only if 7 is in the row space of 07, or equivalently, ¢ is in the
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column space of 0. We will often use the fact that u"Y is the BLUE of the
estimable function 7 if and only if E(u"Y) = /T and cov{u"Y,e"Y) = 0 for
any error function ¢'Y.

The following is the main result of the paper. It is motivated by a result due
to Krafft and Schaefer [11], see the discussion given in the end of the paper. We
denote the cardinality of the set § by |§]. If § denotes a path, a cycle etc., then
|5] means the number of edges in §.

Theorem 2. Let & be g graph with V = {1, ..., nt, E={e,....e.}. Let L be
the Laplacian of G and let M = L7 Let i j € V be fixed § # [ and let 2 be an
(1. f1-path of length i; = 0. Suppose € is a cvele i G with L > 0 edges which
satisfies | P N%| = t;. Then

ff
mg +my — 2my < Ay — (3

A

Furthermore, eguality holds in (3) i and ondy i any (i, jl-path is contained in
FPUE.

Proof. Assign an orientation to ¢ and let O be the incidence mairix. As before,
consider the linear model £(Y) = ", D{Y) = &°1,. Let u, v be the incidence
vectors of 28, %, re*.-:pﬁcliuely. Then for any real o

E("Y +20"Y) = EW'Y) = §,— B,

and thus &'Y + 'Y is unbiased for fi; — f#,. Therefore
o (mg +my — 2my) < var(u'Y +oa' ¥) (4

for any real = The value o, of 3 which minimizes the right-hand side of (4) is
seen to be
coviu' ¥ o' Y) u'o

T T var(ey) ot

Setting o = 2 in (4) we get
(u" o)

o (my + my; — 2my) < var(u'Y) —
”

(3)
[
Since var(u'¥) = a7 4y, (u'e) = rﬁj and oo = 7 4, (3) follows from (5).

We now turn to the case of equality. First suppose (3) is strict. Then
(1 +ogp)" Y ua not the BLUE of 8, —f. Let the BLUE of fi —f;, be
(u+ a0 +c)' ¥, where 'Y is an error I‘um:tmn Then ¢ is in the span r.:ul‘ the
incidence vectors of fundamental cycles. Suppose ¢ is a linear combination of
the incidence vectors of the cycles €. ..., %, each of these appearing with a
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nonzero coefficient in the linear combination. If none of the cycles €, ..., e
meet # U %, then clearly,

var ((u + 20 + €)' ¥) = var((u + 20) ¥ ) + var(c" ¥) > var((u + ar)" ),

contradicting the fact that {u+ s + ¢)' ¥ is BLUE. Thus there must be a cycle
%; which meets 22 U % Also, we may assume that %; # % For, if €, =% and if
it is the only cycle among %,,...,%, that meets # U, then we get a con-
tradiction in view of the choice of oy. 1t follows that there is an (i, f)-path not
contained in 2 ¥,

Conversely, suppose there is an (i, j)-path, say %, not contained in 2 U %,
Then there exists a cyclke %" contained in 22U 2% such that ¥ N%’ %N #. Let
w be the incidence vector of %’'. We have

cov((u+ot) ¥, w'Y) =cov(u"¥ w'Y) + agcov("¥, wTY)

il o u'u..
= u"w——1v"w].
vle

Note that $nN® c¥nPcP and clarly, €n¥ c¥. Thus
EN%E C ¥ N Hence [$' N2 z|¥n%’|. Therefore [u"w| = [v"w]. Also,
|'€] = |# N €| and hence v"v > |u"v|. These two facts imply that
T
Tp— g
W= v'w # 0.
Thus we may find a linear combination of (u + %) ¥ and w'Y which is un-
biased for fi; — B, and has smaller variance than that of {u + agv)" ¥, (To see
this, just mn«:nder linear combination {u +og0)"Y +wT ¥ and minimize its
variance with respect to 7. The fact that w'a # 0 ensures that the minimum is
attained at 7 # 0.) Then (1 + 20) 'Y is not the BLUE of §, — fi; and (3) must be
strict. O
The following result has been obtained by Klein and Randic [10] using
concepts from electrical network theory.

Theorem 3. Let & be a connected graphwithV = {1,....n}, E= {e1,....eu}.
Let L be the Laplacian and lee M = LY. Alvo let D = [du] he the n’n‘!mw mm: ix
of &G, Then

mg+my—2mysd; Lj=1,...,n (6]

Furthermore, eguality holdys in (6) if and only if there @ o wigue (0, f-path in G.

Proof. Consider the graph obtained by taking the disgjoint union of & and a
cycle ®. Let 22 be an (i, f)-path of minimum length. Then, using the notation of
Theorem 2, i; =d; and 1; = 0. Now the result follows immediately from
Theorem 2. O
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We remark that if H is any generalized inverse of L, then

my 4+ my — 2my; = hy + by — by — Ry
To see this, set z¥ to be the vector
LI S 6 P ) N 8 e )

where the 1 and the —1 occur at the ith place and the jth place, respectively.
Then =¥ is in the column space of L and hence =YL = is invariant under the
choice of generalized inverse. However, we use the Moore-Penrose inverse for
convenience.

The following special case of Theorem 3 was observed in [2].

Corollary 4. Let T be a tree with Laplacian matrix L and distance matrix D Let
M =LY Then for all i j

my + my; — 2my; = dy.
The Wiener index, W{ ), of a graph G has been defined as
W(G) =Y dy,
(L]

and it has important applications in biochemistry, see [9,12]. Summing (6) with
respect to 1, f and keeping in mind that the row and column sums of M are zero,
we get the following well-known fact — For any connected graph & with »
vertices, W((G) = n trace(L), and equality holds if and only if @ is a tree.
Recall that trace (L1) is precisely the sum of the reciprocals of the nonzero
eigenvalues of L.

Consider a block design in which v treatments are allocated in b blocks.
We may associate a bipartite graph with v+ b vertices with the design, in
which there are v vertices corresponding to the treatments and b vertices
corresponding to the blocks. Two wvertices are joined if one represents a
treatment which appears in the block represented by the other vertex. Let n
be the number of observations. Clearly, in order that the design be con-
nected, the corresponding graph must be connected and this is true if and
only if n = v+ b — 1. Krafft and Schaefer [11] consider the situation, where
n=rv+4h (so the graph is unicyclic) and identify the designs which are A4-
optimal. In the course of their proof they obtain a special case of Theorem 2,
see [11, Theorem 1, p. 377). We have generalized their result to arbitrary (not
necessarily bipartite) graphs. It appears from this connection that the linear
model based on a graph as considered in the present section (see the proof of
Theorem 2) can be a very useful tool in the area of optimality of block
designs.
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