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Abstract

For a smooth function " on the space of bounded operators in a Hilbert space. we
obtain formulas for the sth order commutator [[[f(4).X].X].....X] in terms of the
Fréchet derivatives 17 f'(4). We illustrate the use of these formulas in obtaining bounds
for norms of gereralised commutators (41X — X/(H) and their higher order ana-
logues.
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1. Introduction

Let #( %) be the space of bounded linear operators on a Hilbert space .#.
Let fbe a function mapping #{ %) into itself. If (s »n times (Fréchet) differ-
entiable, we write D" f{4) for the nth derivative of fat the point A. The first
derivative Df(4) is a linear operator on #{.#"). Its action is given as

(A+B)—fi4) d

e B Cd| .
Df(4)(B) = lim - = J_UJ’M +1B). (1.1)
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The second derivative D°f(4) can be identified with a linear map from
() B ) into B ). Its action 18 described as

D04 8, ) — g LA B2)(B) ~ DI A)B)

F] I
a8 (A + 6.8y +6:8:) (1.2)
= E‘f]afl ,I_-q_-uj G i -

Higher order derivatives are defined inductively. We have

DFf(A)(By,..., 8,)
" D”_]I:A + BB, ..., B, - D‘”_]fli.d:l{ﬂ] ..... B, 1)
] i
an
- -E'I] - - Oy a.-...-;.,—uf':-"i +4B)+ -+ 1,8,). (1.3)

Thus 0f(4) & a multilinear map from the »n fold product
A - S into B ). It s symmetric in the variables By, ..., 8,

A brief summary of basic properties of these derivatives may be found in [1].

Every element 4 of #(.#) induces a derivation on 28(.#). This is the linear
operator defined as

5(4)(X) = [4,X] = AX — XA. (1.4)
We will denote by 6°/(4) the (nonlinear) map on #(#) defined as

6P (4) (X) = [3(4)(X ), X] = [[4,x]. X). (1.5)
We define, inductively, 4"/(4) as

8y = [y, 1] (1.6)

In this paper we establish formulas that relate the quantities D"f{4) and
8( £{4)). These formulas should be of interest in the calculus of operator
functions.

In our earlier work [2-5], we have ideniified classes of functions fon R for
which the map induced on self-adjoint operators in . satisfies the relation
|2 = L™ A)|, where 1 is the (ordinary) nth derivative of the real
function {0 For such functions, our formulas lead to bounds for the norms

18" (|-
2. The first derivative

We will show that under some conditions on fwe have the formula

d(f(A)) = Df(A) 0 5(4). (2.1)
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In other words, we have
flA)X —Xf(A) =Df(A){AX — XA). 2.2)

Theorem 2.1. Let (he a holomorphic function on a complex domain £ and let A
he any operator whose spectrum is contained in Q. Then relation (2.2) holds for all
X,

Proof. By the Riesz functional calculus, we can write
1 "
fld) = — [.f{-'){:— A) 7 dz, (2.3)
m [,

where 7is a curve with winding number 1 around the spectrum of 4. Note that,
if g(A4) = A7, then Dg(A)(¥) = -4 ¥4 for all ¥. Hence, from (2.3) we get

Df(A)(Y) = .,i [ fEE-A)Yz—A4) & (2.4)
Put ¥ =AY — X4 in {1;.4], note that
(z —A) ' (AX — XA)(z— A)
=(z—A) ' (X(z—A)— (z —AX)(z—4) "
=(z—A)'X-X(z—4)".

This gives
Df(A)(AX — XA)

" %{ ( I[_f{_—;..;_— - Aj']d:)X i X( [_r{_—;u{_—— A]l"d:)}

= flA)X — Xf(4). 0O

We should remark that the argument we have used above works not just for
#(.#) but also for any Banach algebra. The identity (2.1) is, therefore, valid in
these more general situations whenever fis a holomorphic function.

Self-adjoint operators play an important roke in several applications. Here
we can prove the identity (2.1) under less restrictive conditions on f.

Let f be any open interval on the real line, and let /" be a funtion of class !
on {1 4 s a self-adjoint operator on # whose spectrum is contained in f, we
can define f{4) via the spectral theorem. The derivative Df(4) is then a linear
map on the real linear space consisting of all self-adjoint operators. Note that
AX — X4 is self-adjoint if X is skew-Hermitian.
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Theorem 2.2, Let (e a continuously differentiable function on an open inferval
1. Then relation (2.2) holds for all selfadioint operators A with thelr spectrain |,
and for all skew-Hermitian operators X.

Proof. We have
S - X4 = S| e flayes
i=il

- % g_“f{f—e.-'(‘deax:l

- fld +1[d,X] +0(r))
d.F =0 ?
d :

- ‘__u;{,i + 1[4, X])

= Df{A){[4.X]).

Mote that the continuous differentiability of /" was used in getting the fourth
equality in this chain. O

For finite-dimensional spaces, we have an interesting consequence of The-
orem 2.2,

Lei H be the space of all n x » Hermitian matrices. This is a real linear space
with an inner product {X. ¥) = tr XY Given any 4 in H consider the following
two subspaces of H:

Fy={YeH:[4,¥] =0},
%4={l4,X]: X" = -x}.

In other words, &, consists of all Hermitian matrices that commute with A
and %, consists of all commutators of 4 with skew-Hermitian matrices. We
then have a direct sum decomposition

{This is verified easily using the cyclicity of the trace) Now, iff ¥ € &, we can
choose an orthonormal basis in which both 4 and Y are diagonal. This shows
that Df(A)(Y) = "({A)Y, where ' is just the ordinary derivative of /. In the
complementary space % we have formula (2.2) for the action of Df(4).
This observation leads to a simple and insightful proof of an important

theorem in Loewner’s theory of matrix monotone functions. This is explained
below.
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Let £ = C'(f) and let f1V be the function on [ x I defined as

£ ) = @ T

a2 = £ ().

If 4 is a Hermitian matrix with eigenvalues 4, ..., J, contained in 7, let f1'{4)
denote the matrix whose i, j entries are f1'/{4;, 4;). Then we have the following
theorem.

Theorem 2.3. Let (e C'(I) and let A be a Hermitian matrix with all its ei-
genvalues in £ Then, for every Hermitian matrix H, we have

Df (A)(H) = f"(4) - H, (2.6)

where - denotes the Schur product (the entriwise product) of two matrices in an
orthonormal basis in which A is diagonal.

Proof. First consider the special case when H = [4, X for some skew-Her-
mitian X, In this case (2.6) follows from (2.2). Then consider the case when
commutes with 4. Combine the two cases to get the general case using the
decomposition (2.5). O

Other proofs of Theorem 2.3 may be found in [1, p.124] and the references
cited therein.

Remark 2.4. A third approach to formula (2.1) can be made via the exponential
function and the Fourter transform. For this we need the well-known formula
Eal.m‘ﬂl.ﬂ] . t,u‘

H fo A G T } [i—x1d xA -
!IILI& e [u e Be*ds. (2.7

See [16] for a history of this formula. For the reader’s convenience, we give a

short proof of it. Since

d s :
Eep j_lxej}' =eld j_lxl::}r_X:lej}1
g

we have

f ey — X)etfds =&t — e,
(1]
Hence,

il A+RE) _ ot
R

This gives (2.7).

i
[ ela—xu‘ﬂexl.m‘ +M'I'd..'|'.
L
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Let f'be any real integrable function on . Assume that the function tf (1),
where f denotes the Fourier transform of f) is integrable. From the Fourier
inversion formula

7= [ jweta
we get

fid) = j: :f (r)e" dr. (2.8)
Hence, from (2.7) and (2.8) we get

Df(A)(B) = i f i j{fj[ l ge’“"""'ﬂe“"d.-r] dr. (2.9)

—0o0

MNow note that

i[ t‘ila—xlf{ﬂ : mjﬁ:ﬂdﬁ'

i
- e‘”’f&‘“-"i{ﬂ —_ XA)e ds
i

— e:i.'.-\‘{_e—ufxe:i.i.fjlzl

= ey — yeit (2.10)
From (2.8)—2.10), we again obtain equality (2.2).
Remark 2.5. The operators Df{4) and 4(4) commute; we have

Df{A) o 8(4) = d(A) o DF{A). (2.11)

Let us show this for functions [ holomorphic on a complex domain. Using
{2.4) we have

DFAYAX) = 5 [ £ - Ay ax(e—a) ' e

1 Lyrs -1
=AE[I{::I{:—A:I_ Xz—d) d
= ADf(4)(X).

In the same way we can see that
Df(A)(XA) = Df(4)(X ).

Hence
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Df(A)([4,X]) = U, DF (A)(X)).

This is equality (2.11).

Remark 2.6. We should point out that formula (2.1) can be found in works by
other authors, sometimes implicitly and with a different emphasis. In several
important papers Birman and Solomyak [6,7] have studied commutators
[f(4).X] and also derivatives Df(4) in terms of Stieltjes double integral op-
erators. Formula (2.1) can easily be inferred from their results. In a recent
paper [18], Suzuki has proposed a scheme for “quantum analysis™ in which he
has found several relations expressing operator derivatives in terms of inner
derivations. Formula (3.15) in this paper reads, in our notation, as

d(f(4)) = d(4) o Df(A). (2.12)

This, in view of (2.11), is the same as (2.1). Brown and Vasudeva [9] have also
discovered the relation (2.1).

Qur approach is in line with our earlier work [1-5], and perhaps has some
simplicity, and economy of notations as well as of proofs.

We should also point out that Hansen and Pedersen [13] have used Fourier
transforms to study Fréchet derivatives of operator functions, as we did in
Remark 2.4.

3. Higher derivatives

In this section we derive a basic formula that expresses 8" £(4)) in terms of
DViA4) and d“'{.d], 1 = j= n. This is analogous to the chain rule for the higher
derivatives of a composite function ¢(x) = f{g{x)). We will first carry out the
computation for n=2 and 3 in detail.

In Section 2 we derived (2.1) with different assumptions on /. When talking
of O'f, we can either assume that " is holomorphic, or it belongs to the class
C*(f). In the first case our formulas are valid for all 4; and more generally they
are true in all Banach algebras. In the second case we resirict ourselves to self-
adjoint operators. If we were to follow the approach using Fourier transforms
in Remark 2.4, the requirement on f now would be the integrability of f(1).

In any case start with the relation

S (A)X ) = Df(A)(6(4)( X)), (3.1)
to get

3P (F(A))(X) = 3(DF(A)S(A)X)) (X)
= D(Df(A)(8(A)(X)))(3(A4)(X))- (3.2)
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We evaluate the operator D(Df(A)(d(A)(X))) from first principles. For any ¥
in #{.#), we have by definition,

D(Df{A)(a(A4)(X)))(¥)
1
= lim {Df (A + 1Y) (A + 1Y) (X)) — Df (4)(3(4)(X)]}

= lim %{Df{d + 1Y) (3(A) (X)) + iDf (A4 ¥ )(3(¥ (X))
— Df(4)(6(4)(X))}
= lim %{[DJ“{A +1Y) — DF(AN(S(A) (X)) +tDF(A +1¥)(3(Y (X))}

= D' f(A)(8(A)(X), Y) + DF(A)(3(Y) (X)) (3.3)
Putting ¥ = d(4)(X) and substituting (3.3) in (3.2), we obtain the following:
P (FA)X) = DF(A)B(ANX), 3(A)X)) + Df (4) (87 (4) (X)) (3.4)

This is the desired formula for n = 2.
From this one gets

P (fF(A))(X) = S(D*f (A)(S(A)(X), 6(4)(X))) (X)
+ 3(DF(4)(87(4)(X)))(X). (3.5)

We will use (2.1) to calculate, one by one, the two terms on the right hand side
of this equation. The first term can be written as

D(D°f(A)(S(4)(X), 8(A) (X)))(3(A)(X)). (3.6)
We evaluate this from first principles. For any ¥, we have
D{Df(A)S(A)NX). 6(4)(X)))(¥)
= lim %{sz{.d + ) (S(A + ¥ )X, 8{A + t¥){ X))
— Df(A)(3(4)(X), 5(4)(X))}
!IITI}I{ID‘}"I:A +1¥) — D?f{A)] (8
+ 2D (A + 1Y )(3(A)(X), 8(¥ )(X))
+ LD (A + 1Y) (3(Y)(X), 6(Y (X))}
= DPf{A)(S(A)X), (A)X), ¥) + 2D°f(4) (8(4)(X), 3(Y)(X)).

Hence, the quantity (3.6) is equal to

;8(4)(X))
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D (A)(S(A)X ), 5(A)(X), () (X)) +2D°F(A)(8(A4)(X), 6 (4)(X)).
(3.7)
The second term on the right hand side of (3.5) can be written, using (2.1), as
DDf (A) (87 (4)(X)))(8A)(X)). (3.8)
Once again, we evaluate this from first principles. We have for any Y
D(DF(A) S (A)X))(Y)

=!i_ﬂaé{ﬂf{ﬂ +1¥)(8F1(A +1¥))(X) = Df (4) (6% (4) (X)) }

= lim %{[Di"{fi +1¥) = Df(A)}(8F{(A4)(X)) + tDf (4 + 1¥)(87(¥) (X))}

= DAf{A)SPHA)X), ¥) +DF(A) (6 (¥)(X)).
Hence, the quantity (3.8) is equal to
D1 (A) (6P 4)(X), 8(A) (X)) + D (4)(87(4)(X)). (3.9)
Combining (3.50-(3.9) we get

AP (fF(A))X) = D f(A)(S(A)(X), 8(A)(X), 8(4)(X))
+ 3DPF(A)(8FI(A)(X), 8(4) (X))
+ DAY (87 (4)(x)). (3.10)

This is the desired formula for n= 3.

We can continue this process to obtain expressions for 5'"'{_}"{.4)){)[’), each
time using (2.1) and then evaluating the derivatives D" f{4). This requires some
intricate book-keeping. It is possible to reduce the problem to some familiar
combinatorial problems. The simplest method, and the most natural one,
seems to be the connection between the process of obtaining expressions like
{3.4) and (3.10) and the one of finding successive derivatives of composite
functions. Consider a composite of two functions of a single variahle

plx) = flglx)).

We have
o'(x) = f(g(x))g'(x), (3.11)
¢"(x) = fM(g(x))g (x)" + (glx))g" (x), (3.12)

0" (x) = " (g(x))g'(x) + 2/ (g(x))g" (x)g'(x)
+"(g(x))g (x)g"(x) + f'(glx) )" (x).



240 R Bhatia, KB Sinha ! Linear Algehra and its Applications 302-303 (/00 ] 231244
So,
" (x) = " (g(x))g (x) + 31" (g(x)g" ()& (x) + £ (glx))g" (%) (3.13)

We should first note a formal analogy between the expressions (3.11)-{3.13)
on the one hand and (2.1), (3.4), and (3.10) on the other. Formally, il we re-
place the expression ¢'"'(x) by 5'"'{ FlANX) and an expression of the form

£ (g(x))g" (x) g (x) g% (x) by D"f(4)(3"(4)(X), 8" (4) (X). 8"(4)(X)), we see
that the relations (3.11)43.13) are converted to (2.1).(3.4) and (3.10). We
should also note that the numerical coefficients in the two sets of relations arise
in exactly the same way.

This observation is the basis for the following theorem, a chain rule for
derivations.

Theorem 3.1. For all positive integers n,
3 (FA)Y)
= Z > elnrm DAY (AN, (A ™), (3.14)

r=1 mj

where for positive integers ron owith vr<n, m and | are multiindices,

m = (my,..., mg), i=1{jh.---, Bl k= 1 with positive integer entries satisfving
my -t m=r
fi>h=ge izl
miji+ -t mg = n,

for 1<isk, the symbol (8Y(A) (XY™ stands for 8*1(A)(X),.... SHICA) (X,

(repeated m; times), and
n!

“nn ) = G G G

Proof. The proof relies on the analogy pointed out before stating the theorem.
We have to figure out what the coefficients c(n, r,m. j) in the expansion (3.14)
ought to be. If @(x) = f{g(x)) is any composite function, we have a similar
expression for the nth derivative

e"(x) =3 eln rm ) (g(x)) (g ()™ - (g )™ (3.16)

r=]1 mj

It can be checked that performing a differentiation on each term in (3.16) has
the same effect as applying a derivation 8 f(4)) on the corresponding term in
{3.14) and then evaluating it using the relation (2.1). We leave the details of this
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to the reader. So, the coefficients c(n, r,m, j) in (3.14) and (3.16) are the same.
For the latter identity, these are known to be given by (3.15). See [12, p. 34; 17,
pp. 38-40).

4. Norms of commutators

An important application of the results in this paper, and the motivation for
our study, is the following question in perturbation theory: given a function f
on ##), how to find bounds for |[f{4) — f(B)| in terms of |4 — B||. More
generally, one may ask for bounds for the generalised commutator
| FlAX —XF(B)| in terms of |AY — XB|. See [1, Ch. 9; 6-8,10,11,14,15].

Formula (2.2) readily gives such a bound. We have

IFA)X — Xf(A)]| < [|DF(A)]| [|4Xx — XA, (4.1)
If '1s holomorphic on a complex domain €2 this inequality holds for all 4 with
spectra in @, and all X If £ e C'(1), this holds for all self-adjoint operators A
with spectra in [, and for all self-adjoint X.

There is a familiar device by which the inequality (4.1) can be extended.
Given operators 4, 8 and X on #°, consider the operators

(i 5)
)

on H oW,

and

Then note that

A 0 0 X 0 X A 0y [0 AY-XB
0 B o0/ Lo o 0 BJ) \O 0 ’
From this and (4.1) we get
IFl4)x —Xf(B)| < | Df(A @ B)| |4X — XB], (4.2)

where {'is any holomorphic function on a domain 2, 4, 8 are operators, with
their spectra in €2, X is any operator, and A & B stands for the operator

(6 &)

on # © W,
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With a slight modification, this argument can be applied to the situation
when f € C'(I) and A, B are self-adjoint operators with spectra in f. Note that
for any X, the operator

(x %)

is self-adjoint, and

A 0N/O X 0 X\{4 O

({} 3)(;{‘ {})_(X‘ {})({} 3)
0 AX — XB

=(EX‘—X‘A 0 )

If X is also self-adjoint then the norm of the operator on the right hand side is
|4X — XB|. So, inequality (4.2) follows in this case too from (4.1).

This still leaves the problem of finding the norm ||Df(4)]. In our earlier
work [2-5], we have found interesting examples of functions on the interval
[0, 2c) and on the real line, for which

1R = 1 (A, (4.3)

where [ is the ordinary derivative of fon [R.
The class of functions satisfying (4.3) is denoted by 2. From the inequality
(4.2) we see that for all f € & we have

If )X —Xf (B < |17l ll4x — xB], (4.4)

where || /'] .. stands for the supremum norm of the function f*. In particular,
we have for all f £ &,

If () =B <171 14— 8] (4.5)

Inequalities like these are much sought afier in perturbation theory. Some
comments are, therefore, in order.

Farforovskaya [10] and Mclntosh [15] constructed examples of functions [
on an interval f, with a bounded derivative (7, and self-adjoint operators 4, B
with spectra in /, such that an estimate of the form

£ () —f(Bl <clfll« 4 - B8] (4.6)

can not be true for any constant ¢. It was shown by Birman and Solomyak [7]
that an inequality of the form (4.6) does hold under some smoothness re-
quirements on f'. See [11] for a recent exposition of such results. Explicit
constants that make the inequality (4.6) work are rarely known. Our inequality
{4.4) 15 of some interest in this context.
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We should also point out that an interesting estimate can be derived from
the formula (29). Since ' is unitary for all ¢ and self-adjoint 4, we get from
{2.2) and (2.9) the estimate

If ()X —Xf(B) < llef (), l4x — B

If /' is an integrable function, then using the above inequality for functions in
the Schwartz class and a standard approximation argument, we can derive the
inequality

If()x — xfBI <IN, |l4x — XB|. (4.7)

This inequality has been obtained earlier by Boyadzhiev [8).
In the same way we can obtain estimates for higher order commutators from

the results in this paper using our characterisation of functions of class %,
defined by the property

12" Ayl = 1A ()l

See [3]. Thus, for example, if f € %9 M %, then from (3.4) we obtain the in-
equality

1FCAEANON < 11 NSCA) COI + 11 N85 )] (4.8)

Similar inequalities can be written down for higher order derivations using our
results.
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