Robustness of the nonlinear filter
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Abstract

In the nonlinear filtering model with signal and observation noise independent, we show that
the filter depends continuously on the law of the signal. We do not assume that the signal process
is Markov and prove the result under minimal integrability conditions. The analysis is based on
expressing the nonlinear filter as a Wiener functional via the Kallianpur-Striebel Bayes formula.
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1. Introduction

In a recent paper (Bhatt et al., 1995), we had proved that the filier depends con-
tinuously on the law of the signal process (in the signal noise-independent case). The
approach in this paper was via the chamctenzation of the filter as the unique solution to
the Zakai (and FKK) equation and thus was applicable to the case of Markov signals.
Moreover, the prool required an exponential integrability condition to be sausfied by
the signal {see (8.5) in the paper cited above).

Here we will again restrict attention to the case when the signal and the observation
noise are independent. Using only the Kallianpur—Striebel Bayes formula we will show
continuows dependence of the filter on the signal. This allows us to consider signal
processes which may not be Markov. Also, we are able to do away with the exponential
integrability condition.

The Bayes formula allows us to view the filter as a functional on the Wiener space
evaluated at the observation path (see (2.8) below). Careful analysis of this functional
is the crucial step in deducing the robustness of the filter.

Recently, Goggin (1992,1993,1994) has looked at the rmbustness guestion from
the point of view of convergence of conditional expectations. This result requires
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assumptions such as equicontinuity of the Radon—Nikodym denvatives of the respective
reference probability measures. A result due o (di Masi and Runggaldier, 1982) on
robustness of filter for the case when observation noise includes Poisson noise 15 de-
duced by her. In the case of Wiener observation noise, she has also obtained a result
on robustness when the approximating sequence of signal process arises via a specific
approximation scheme and approximation of the Wiener noise is done via a Gaussian
random walk., Stetner (1989) and Kunita (1991) also show that the filter 15 a Feller
continuous Strong Markov process (under some suitable conditions) and thus contin-
uous dependence of the filter on the initial condition follows. In all the papers cited
above, the convergence of the filter is shown for each fixed r.

It should be noted that here we are considering a faidy general case. In particular,
the result is applicable when the state space s a complete separable metric space and
when the observation function i may be unbounded. The signal process is allowed to
be fairly general (only rell paths are assumed) and the only condition required is
(4.7). Also, we consider convergence of the filter in D [0, T'], 2 £)).

2. The filtering model
Consider the nonlinear filtering model

I
r;=f WX,y ds + W, 0<r<T, 2.1
[1]

where X is the signal process, assumed to take values in a complete separable metne
space £ and having rell. paths, the observation noise W is assumed to be an [
valued Brownian motion, f is a measurable function and ¥ 15 the observation process.
The optimal filter =, 15 given by

(e ) = ELAIXOIF') Yf € GE). (2.2)
Here Cu(£) 15 the class of bounded continuous functions on £, the processes X and
W are defined on a probability space ({3 #,P) and

FY =a{V: 0551}

is the observation o-field.
The function h is assumed to satisly

T
E= / [A(X )P ds <00 as [P). (2.3)

Jo
In this paper, we will restriet our attention to the case when the signal process X is
independent of the observation noise W In this case, there is an explicit expression for
the filter 7, given by the Kallianpur—Striebel Bayes formula which we describe below.
It 15 straight forward to verify that the measure Py defined by

dp, Lk L

(i : s, G 2

=0 o axp —f Y ) AW -2 f WG ds (2.4)
d'P { 1] i=1 2 =1 [1]

is a probability measure on (2,9 ). Further, under Py, ¥ is 8 Brownian motion inde-
pendent of X and the law of X under Py is same as the law of X under P.
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Let @' =C([0, T).R* ), #° be the Borel o-field on ©2° and O be the Wiener measure
on (", %), Let ¥ be the coordinate process on @°. Let X be a process defined on
some probability space (£2..%,P) where the law of X is same as the law of X. Let
(2, F.P)=(2.%.Py= (2, F°0).

MNote that the law of (X F) on (L# Py) 5 the same as the law of (X.Y)
on {ﬂ,.:f-‘,ﬁ‘}.

Define F by

{(F(o™), fi= f FIX (d)gld, ) dB(d), Y € CulE), (2.5)
where
oo : Lk
B =e f;f';‘r\ NdY (") — = fﬁ';‘r\ ANrdsy. (2.6)
gl e, 120 pr{; A (A () ) dY (es”) 2‘2:': “{ (. _{”}])2 5 {

Also let & be defined by

. Fie) -

{H(ew LIE—W- (2.7)
Then

ELFXGNFN = (). f) =H(Y) as P (2.8)

FAY)L
This is the Kallianpur-Strebel formula. See (Kallianpur and Karandikar, 1988,
appendix). In view of (2.8) we define the conditional distribution =, of X, given
#Y under P by

(70 £ )(er) = (H(Y (), £). (2.9)

Here is a simple result needed in the sequel.

Lemma 2.1. Led

p,{wﬂ] = f q,{u‘y,m“]dﬁ{fﬂ}, O=r=T
Then p, admits a continuous modification P (under Q) and fir ther

0 (;-j' t nf Bl"y = L‘r) =1. (2.10)

LLE £

Proof. MNote that (g, %) 15 a martingale on {ﬂ,.:f-‘,ﬁ‘] where
%, =a{(X,.¥,): 0<s<t).
This follows from the independence of X and ¥. See Kallianpur ( 1980).
As a consequence (p,..#,) is a martingale on (2°, #°. Q) where F,=a{¥,: 0<s<¢].
Since ¥ is a Brownman motion, this implies that g, admits a continuous modification.
The last part follows from the fact that Q{pr =0)=1. [l

This result along with a classical result due to Yor on path properties of the nonlinear
filter give us the following result.
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Theorem 2.2, (F,) admits a r.e Ll modification [under Q).

Proof. The classical result due to Yor (1977) implies that m(c) has re Ll modification
under £. Since the law of ¥ under £ is equivalent to the Wiener measure (2, it {ollows
from (2.9) that the process f, has re ll. modification under . Noting that {F,, 1) = p,
it now follows from the equation

H(w) = Fi®)
Py

and the ohservation that P, has continuous paths as. (), we conclude that F, has a
rc.ll. modification under Q. [

3. Robusmess of the flter

Let X".X be D0, TLE)-valued processes, defined respectively on (29, P")
and (€2, P) such that X" = X Here and in the sequel, = denotes convergence in
distribution of mndom variables as well as weak convergence of probability measures.

We take the observation models 1o be

I
Y= f XD ds + W D=rsT
0
and
I
r,=f hiX)ds + W, 0=i=T,
0

where for every n, X" and W are independent processes defined on (27, 5", P"). Also
X and W defined on (£, P) are independent. W" and W are R*-valued Brownian
motions and &', h are measurable functions from £ mto B*. Also, as in (2.3), we
assume that

T
g"=f [A"(X")Pds < oo as [P"). (3.1)
L]
Let us define
I
Z,=f h{X,)ds,
L]

I
z;l = [ h“{.X\“]d\'_
b
We will assume that
(X258 = (X ZE) (3.2)

in the sense of convergence in distribution as D{[0.T).E) = C([0. T).RE*) x R-valued
random variables.

Under this assumption, we will prove that the conditional distribution of X"
given a{ ¥ ¢ O=s=r} converges weakly to the conditional distribution of X] given
gl ¥V 0=s=t} as measure-valued processes.
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Before proceeding, we will give a set of sufficient conditions that imply (32).

Weonverges to b uniformly on compacts, (3.3)
h is g continuous function, (3.4)
A =X (3.5)
T T
lim E™ [f |A X2 d.\'] = [EF [f [ACX )P d.\-] . (3.6)
H—0o [i] ﬂ

It can be seen that conditions (3.3)—(3.6) mmply (3.2). Also (3.6) can be replaced
by the weaker condition

T
Jl"_Iirrl sup £ (f |h"{}(_:.'}izl{”,n‘xnﬂ}m d\'?ﬁ) =0, ¥Ye=0 (3.7)
ke 1] E

Let Py be defined by (2.4). Define Py similarly with X" in place of X, W in place
of W and A" in place of h.

1t should be noted that the law of ¥ under the reference probability measure Py 15
same as the law of the approximating sequence ¥ under the corresponding reference
probability measures £y (both the laws are Wiener measure). This Tact is crucially used
in the sequel. When this is not the case, the method given below needs to be modified
and would require additional assumptions. Work on I:hl‘-: a‘ip-l.:L[ is under progress.

Using Skorokhod's representation theorem, get X, LK. Z2E on {Q 2y
such that

X2 - (X.25H as [P (3.8)

and

S "JI "\”

A JE )= (20 Y, ...l'“{X ﬁ,g]—f{;’f Z.E) (3.9)
Lemma 3.1. _fﬂTgh*'{ijf; —WEPds =0 as [P]
Proof. It follows from the definitions of 2", 2" 2,5 and (3.9) that

X _f B(X))ds  as [P).
L1}

- T -~ i -]

¢ [ Idids as L
1]

Z = f MX,)ds as [P
1]

ik

T
=f WX ds  as. [P).
L1}

Thus, (3.8) and the observation that for g,.g € L*[0.T).

I
f guls)ds — —[ gls)ds, Wre[0,T)
0

L]
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and
T T
fl,ffu{-‘-'ll"d-"ﬁf lg()* ds
(1 0

implies

T
f lgu(s) — g(s)|*ds — 0
[

gives the required result.

Recall from Section 2 the definitions of @, @ and ¥. We will consider X" %
as processes on L2
Again let F.g, be defined by (2.5), (2.6) and similarly, F".g" by

(EXNw"), ) = f FOX(d)gh(d, ) dP(d). Y f € CGIE) (3.10)

and

k I ) & i
g (e ") =1.:xp{ Z f RX (N Y (e — é Zf (WX () d.\'} ;
= Jo Pty |
(3.11)

Then we have that like F. F' also admits a rell. modification. We will continue to
denote these roell. modifications by F,, F"

Let us note that if P is defined by dP" =g dP then the law of X" under " is the
same as the law of X" under P, Let us note that the law of (X", F) under P" equals
the law of (A", ¥") under the reference probability measure Py The Tact that we can
achieve this with the second component (in (X", ¥)) not depending upon n simplifies
lots of arguments that follow.

Let  be the Prohorov metric on . (£) — the set of positive finite measures on £,
We will also denote by 2(E) — the set of probability measures on £,

The following 1s our main result on robustness.

Theorem 3.2, Assume that X iv continwous in probability and that (3.2) holds.
Then for & =10,

e 1E[0.T]

lim Q( sup d(F",F,) > ;) =0. (3.12)
In pariicular, F" — F in Q-probability as ([0, T), & L(E) -valued random variables.

Proof. 1t suffices to prove that for 1, — & F! converges to F, in Q-probability,
e Ve =0

lim Q(d(F.F) > e)=0.
This in wrn is implied by

Jim O([FLg) — (Frgl| = 2)=0 (3.13)

for all bounded continuous functions g on £ and %e = 0.
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From Lemma 3.1 it follows that g{ — g, in P @ Q probability. Further note that

fﬂﬁﬁ®m=1
and I

fq,d{ﬁ':x; Q)= 1.

Hence (by Scheffe’s Lemma)

g, = q inLl'(PaQ) (3.14)
Since X (and hence X) is continuous in probability we get (using Ethier and Kurtz
{1986, Proposition 3.6.5)) that for g & Cy(£)

g(X, ) — g(X,) as [P]. (3.15)
Thus

9(X; g — 9(X)g n L'(PQ) (3.16)
Eg. (3.13) now follows from Egs. (3.16), (2.5). (3.10) and Fubini’s theorem. [

Let
F* F
= ﬁ H = {P;—Ilr
As seen n (2.9)

ELf(X)|#] = (HAY).f)
and similarly

ELFXMIF) = (HI(Y") £)

As seen n Lemma 2.1, (F(Y ).1) 15 a martingale and

inf{F(¥).1)>0 as-P. (3.17)
Similarly, we have

inf(F(Y").1) >0 as-P". (3.18)

An immediate consequence of the above theorem s the following.
Theorem 3.3, (a) /" —  H in Q-probability ax D0, TL#(E) Fealued  random

variahies.
(b) P*o(n*)~! = Po(n)~.

Proof. The first part follows immediately from Theorem 3.2 and (3.17), (3.18). For
(b) note that for any ¢ & Gyl IN[0. T 22(E))):

" [G(n")] = E" [G(H"(¥"))]
= E[G(H")q})
— E'[G(H )qr)
= E[G(H(Y )]

= E* [G(m)]. O
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