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Abstract. Largeness of the core is sufficient for stability of the core. In general
the necessity is not known. In this paper we answer affirmatively the necessity
for symmetric games. We also prove its equivalence to n specified vectors being
imputations and also to the convexity of the lower boundary of the set of all
acceptable pay-off vectors of the game. In this paper we establish the equiva-
lence of a condition given by Shapley to the newly evolved condition, thereby
give an alternate proof to Shapley’s condition.
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1. Introduction

In 1944 von Neumann and Morgenstern introduced a theory of solutions
for n-person games in characteristic function form in which cooperation and
coalition formation is a crucial aspect. The primary mathematical concern
regarding this model is the existence of solutions. In 1968 Lucas described a
ten person game which has no solution. However researchers have gone on to
identify properties of such solutions when they exist and their relationship
with other known concepts, in particular, the core. Muto (1978, 1982a, 1982b,
1983) and Heijmans (1986}, studied extensively these aspects of von Neumann
and Morgenstern solution concepts for symmetric games and also a special
class of symmetric games known as (n k) games. Sharkey (1982) defined and
studied the concept of largeness of the core which arose while he was studying
an economic problem involving cost allocation. He showed that largeness of
the core is a sufficient condition for the stability of the core.

The purpose of this paper is to identify a subclass where largeness of the
core turns out to be also necessary and leads to few other interesting and easy
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to check equivalent conditions for stability of the core in symmetric games.
The convexity of the set of all lower boundary points of the set of all accept-
able vectors is shown to play an important role in the largeness and stability of
the core in this subclass of games.

We need the following definitions in the sequel.

Definition 1. Given a finite and non-empiy playver set N, and a real valued
Sunction v on the set 2% of coalitions of N{v : 2V — R|, the ordered pair (N, v)
is called a cooperative game, which assigns O to the empty coalition ¢. The
Junction v is called the characteristic function of the game. For a coalition
S N the worth ol 8) is interpreted as the savings that can be obiained by
Pavers in § in case they decide to cooperate.

Definition 2. The (-1 normalization
For a game (N, v) the O-normalization vy of v iy defined by

gl 8) = v(8) — Z vi{j}) forcach S = N.
=8

For a game v with vg(N) >0, ie. o(N) =}, o({j}), we call the game vy
with

_ ()

g1 (8] (V) Joreach § = N

the 0 — 1 normalization of v.

If v is a 0—1 normalized game then o({i}) =10 for each ie N and
o(N) = 1.

Definition 3. { i called the set of all impuwtations x if

I= {.t& R":x =z o({i}),Y xi= a{m}_

i=1
Definition 4. 4 iy called the set of all acceptable vectors y if

A={yeR": y(8) =z v[8) forall § = N}, where

w8 = Z vy Joreach § = N.
=8

Definition 5. The lower boundary L{A) of A is defined by

Lidy={yed:if yedand y' < y then y' = y}.
Alternatively call x a lower boundary point of A, if @, n A4 = {x}, where
O.={yeR":y=x, foralli=12,... n} Then L{A) is precisely the set
of all lower boundary points of A.
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Definition 6. C iy called the core of the game and is given by
C={xeR":x(8) = v(8) forall § = N; x(N)=v(N)};

When the core of a game is non-empty the game is called balanced.

Definition 7. Let x and v be two impuiations, and let 8 be a coalition. We say
that x dominates y via 8 [notation: x = y| if

l. xy =y, forallie§.
2. x(8) = v(8).

Definition 8. 4 set K is called internally siable i for any x, ve K x # ».

Definition 9. 4 set K is called externally siable if for all v ¢ K| there exists x e
K such that x = y.

Definition 10. A set is called stable i it is internally stable and externally stable.
Definition 11. The core of a game (N, v) is large if for every

ve A, there exists x € C such that x; < y; for all i

Definition 12. 4 game v is called symmetric i the characieristic fimetion depends
only on the cardinality of the coalitions. In other words, v iy simply a real valued

Sunction defined on {0,1,2...n}. Worth of any coalition § with cardinality s is
simply the value of v(s).

Definition 13. The totally balanced cover of a symmetric game (N v) is denoted

k
by (N. ), and is given by B(k) = Maxo,<cv(s) - ( ) Jorallk=12. . n

¥

Organisation of the paper is as follows: In section 1 we introduce the
problem and define the necessary concepts. In section 2 we state the theorems
and the lemmas required to prove the theorems. In section 3 we prove the
theorems and in section 4 we conclude the paper with some topics for further
studies.

2. Main theorems

Apart from the main theorems we also state a few useful lemmas and remarks.
Unless otherwise specified we assume the game to be in a 0 — | normalized
form.

Since we are concerned with symmetric games throughout this paper, we
now introduce some notations which will be useful for our discussions. First
we note that set W = R" is called symmerric if xe W implies that all »-
dimensional vectors obtained from x by permuting its coordinates are also
contained in W. Let R" = {xeR":xy = x» < --- =x,}, and for any xe
R, let m{x) be the set of all » dimensional vectors obtained from x by per-
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muting its coordinates. For any W. = R, let n(W.) =] _, =(x). For
simplicity denote ¥ x; by x(s,¢) for any xe R", and use x(f) to denote
x{1,#). Let I. = {xe R :x(n) = 1,x; =0}. Then we have [ ==(f.). .
is called an ordered imputation sei. For any x, yefl. and nonempty S =
iy P i(s)} = N with (1) = --- = i(s) we say x dominates y via 8, de-
noted by x = y via §if x5 > y, forall j=1,...5 and 3__, vy < o(s).
The core Cis given by C = a{C.) where C. = {xe [ : x(s) = v{s) for all
s=1,....,n—1}. In what follows, our discussions will be proceeded ex-
clusively on ordered imputation set 1., and thus, to simplify notations, we will
eliminate . and use J 4. C LA ) forf. A C. . L{A.)
The following is a well known result, refer to Owen(1982) for a proof.

Lemma 1. An n-person 0 — | normalized symmetric game (N v) with charac-
teristic fimetion v has a nonempty corve i and ondy i v(s) < = for all & such
i

that 1 =5 =n.
Definition 14. For y € A define %, = {SS N: y(8) =v(S)}.

Lemma 2. Let (N, v) be a symmetric game with nonempity core. Then ve L A)
if and only if | ) ¢_ S =N. I ye L{ANC then y

(R Rl

Remark I: In general it is simple to prove that for any ye L{A)\C, the
coordinates of y will be as follows: y| = < --- <= =y =---= ¥,

Remark 2: From the definition of 4 and it is easy to see that C = L{4) if
and only if C is large. (Refer to Sharkey (1982) for a proof.)

Theorem 1. For an n-person (00 — 1) normalized symmetric game the core is the
unigue stable set i and only i the core is large.

Shapley (1973), and Menshikova (1977) have given an equivalent condi-
tion in terms of the characteristic function of the game for stability of the core
for symmetric games. We state Shapley’s theorem below. Menshikova's con-
ditions are the same, and the authors version of an equivalent condition which
is simpler and easy to check is available in Theorem 5.

Theorem 2 [Shapley(1973)]. Suppose C 2 ¢ in an n-person symmetric game.

Then C is a stable set i and only g.u{nj : :{H = . !:: : ;{H

0 <k < ¢ < n where © denotes the totally halanced cover of v

for all ¢, &k with

This theorem is known to many researchers through private communica-
tions to Shapley, and a proof is available in Shapley( 1973).

In the following remark we characterize the largeness of the core of a
symmetric game by the convexity of the set of lower boundary vectors.

Remark 30 For an n-person (0 — 1) normalized symmetric game with non-
empty core, L{4) is convex if and only if the core is large.
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The above is easy to prove by taking any y e L{4)\C so that y(n) = 1.
Consider y* the convex comhbination of all the permutations of y with equal

weights. Observe that for all i, yf = {n - 1 Sl r= % }%
11 |
This contradicts the fact that y* e L{4) as (E"E""‘E) e .

Remark 4 The core of a symmetric game when exists is the maximal sym-
metric convex set within L{4) i.e., If C is the core and if D is another sym-
metric convex set in L{A) then D = C.

Remark 5 The core of a symmetric game, when nonempty, either has a non-
empty interior or has only one element. Further a single point core can not be
large in a symmetric game.

Theorem 3. fn the subclass of balanced games the following statements are
equivalent:

i) v has a large core.
(i) © has a large core.

Note: This is true for general cooperative games and to prove, observe that the
definition of large core depends on two concepts; namely, C and L{4). It is
easy to prove that these two are equal for v and # using balanced collections
and Shapley-Bondareva type conditions.

Lemma 3. For an n-person (00 — 1) normalized symmetric game (N, v), the fol-
lowing vector v* for any given k, 1 <k < n is a lower boundary point of the set

of all acceptable vectors, ie., y* e L(A). For | =i <k, y* = ? and forn =
i >k, y¥ = Max{s(i) — y*(i — 1), 95, }.

Lemma 4, If y" e L(A) is such that Mut.,.:;_[.,-, An) = ¥¥(n), then y(n) =
vE(n) for some k, 1 <k < n where y* is as in lemma 3.

Theorem 4. For the symmetric game (N, v), the core of the game (N v) is large
if and only i the following n vectors are imputations. For each k, 1 =k

b(k)

< n, we define y* as follows: for | =i <k, yF = — and forn =i =k, y* =

Max{s(i) — y*(i— 1), ¥f |}

Note: The above s vectors will be referred to in the rest of this paper as “The
Specified Vectors for a Symmetric Game’.

An Example: Consider the following 6 person symmetric game, where it can
be checked that »', y?, »°, »* are imputations and y* and y* are not. Conse-
quently the game does not have a large core. This example depicts that
defining n vectors as has been done is a necessity. Given k < n, examples can
be constructed so that y* fails to be an imputation, as long as the game does
not have a large core.
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i I 2 3 4 5 (i
vis) | 0| 012 [ 022 0.28 LIRS
elg) | 0| 002 [ 022 | 02933 | 065 | L0

(0,.12,.12,.12, 29, 35)
(06,.06,.10,.10,.33,.35)
(.0733,.0733, 0733, 0733, 3567, .3567)
(.0733,.0733, 0733, 0733, 3567, .3567)
(1313, 13,13, 13, .35)
(.1667,.1667, 1667, .1667, .1667, .1667)

Theorem 5. The specified vectors of a symmetric game are extreme points of the
ordered core of the game, when the core is large.

Remark 6: All extreme points of the (unordered)core are not necessarily
‘specified vectors’.

Remark 7: Consider a symmetric game (N, v) and the corresponding (N, ©).
The set of specified vectors for (N, v) coincides with the set of specified vectors
for (N, ).

This is trivial as the vector is defined in terms of the totally balanced cover
of the game ¢ and not v which need not be totally balanced.

Corollary 1. For a symmetric game (N, v) if v*'s are as defined in Theorem 4,
vin) — ols vt —
o 20) = 85 (0) = 8(5)

n—2x t—s
an imputation for all k 01 = k < n, where © denotes the totally balanced cover

of v

Alternate proof to Shapley’s Condition: Theorems 1.4 and Corollary 1 put
together can be regarded as an alternate proof to Theorem 2.
The following Theorem sums up the new results of this paper.

forall t, s withQ < s < t < n, if and only if y*

Theorem 6. fn a symmetric game (N, o) i the core is nonempty then the fol-
lowing are equivalent.
(a) The core iy large.

(b) The core is stable.
ic) The lower boundary of the set of all accepiable vectors is convex.
} —blk W) —
id) L{Hj ;_{ ) = L :I_;{ :I_,.I‘a'.uI all thkwith=k<t<n
e} T."w_fuffun ing vectors are all imputations.
) ¢ _ Blk) - i B
Fori<k, yf= Tnmf_fm" i =k, yF=Max{a(i) — yp*(i — 1), 55, }

Weber Vector: Consider a permutation 7 = (z(1),....%{#)) . The marginal
worth vector defined below for each permutation of the player set N is known
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as a Weber Vector. [Refer to Weber (1988)] I:UJ =o({z(l),=(2),..., a(f)h)—
p({m(1),7(2),....7(i —1)}).

Note: A symmetric game has only one Weber vector, and if the game is con-
vex then the Weber vector is an ordered core element, i.e. (0, 0{2), 0(3) — v{2),
v(d) —v(3), ..., vin) —e(n — 1)) is an imputation and the core is large.

3. Proofs of the Theorems

Proofof Lemma 2: if part: Let y e L{A4). If ¢(N) = o[ N, then U.'i‘-:--r. S=N.
Suppose y(N) = o[ N). '
Letmax{i: y{i)=v(i)} =k <n

Claim: yp = Y1 = - = ¥y

Proof® Suppose not. Without loss of generality(w.Lg.) let y, = y,.
Find ¢ such that 0 < & < min.¢{ y(i) — o(i)}

Define y, = y, —eand y; = y, for all j # n. Then y' € 4.

This contradicts the fact that y € L{A). Thus the claim holds.
Now from the definition of &, p{k) = v{k). Therefore we obtain

Yot Vi = v(k)

Vit Yiya = vlk)

<1

i1

k—1
> vt 3u = v(k)
i—1

Hence | );_ .S =N.

only if part: Let | Jo_ »3 = N. Suppose there is an x € 4 such that x < y and
x; < y; for some i. Then for this i, there exists an §; such that »(5) = v(§;).
Thus x(8;) < v{&)), which implies x ¢ 4 and this leads to a contradiction. The
last part is clear. Hence the lermma holds.

Proof of Lemma 3: From the definition of y* it is clear that y* € 4. So we
need to prove that | | e S=N.I y¥(n) = v(n), then we are done. Assume

¥ (n) = v(n), and let / ="max{i : y*(i) = &(i)}.
Claim {:1 = k

i( k
Proof If1 =k, yF = L'E,{—:' for i < k. If y§ | > ¢, then by definition y{ , =

o(k + 1) — y*(k). Hence y*(k+1)=#(k+1). This contradicts the max-
imality of { Thus the claim holds.
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Claim 2: yf = yf | =---=yt

FProofs This also follows from the maximality of /.

From claim 2, we know YA yF =6l = pf -+ yE b ete
This shows that Uge w3 = N with respﬁc:t to v. Here we use the fact that ¢ is
symmetric since v is ﬁ}mmetrvz That is, y* € L(4,) where 4, = {y: y(S) =

v{S) for all S = N} and L{A4,) is the lower bounrjaryofﬂl._ Since 4, = A, the
lemma holds.

Prm.{qulmmm 4: Suppose " € L(A4) is such that Max{ y(n) : y e L{4)} =
Wi(n). As y" e L(A) and L (A) = L{4,), there is an i such thal »yU(i) = 6(i).

]"m-:i j=Max{i: i) = 6(i)}. From Lemma 2 we have yWe=ryh=-=

A

Ya-

MNow consider

[j—l-ﬂ-:nns
To avoid some confusion later, let us rename the vector y/~! as y by dropping
the superscript j— 1. Note y*(j) = () = 6(j) — (i — 1) + 6(j — 1) =¥+
6(j—1). That is, yo(j— 1:|+_;’P <y +o(j—1) or v“ < y+o(j—1)—

P(f—1) < y;. Since yP =y, =--- = »%, we have ) < y, for all k >,
Therefore
i
0 N 0
Yy =e)+ > n

k=i+1

=#(j—1)+o(j)—(i—1) Z T

k=i+1

= Y+t Vo B0 — B — 1) + z e

k=i+1

< ¥+t |+;+Z ¥y

k=j+1

Since ' e L(4), we obtain y"(n) = y(n). This completes the proof of
Lemma 4.

Before embarking on the proof of Theorem 1 we will explain the following
procedure which is crucially required to prove the theorem.

FProcedure: Given ye L{A)\C, y can be reduced to an imputation y' such that
for l<i<k yl=ypand y <y, =---=y.
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From lemma 2 and Remark 1 we know that y e L({4)C is of the form:

m=E=n=s--- = Yo ooy SV = S Yuks
; An)—1
Step 1: Check if y,,, — ¥, = Hn)
—p
: % i vin) — 1 .
If the answer is 'yes', define y, =y, —- forl =i=n— pand
=g

yi=yforl =i<p Then y'(n) is the required imputation.

If the answer is 'no’ define y, =y, for 0<i<n—pand y/ =y, for

l=i=<p—1. Then y'(n) =1
Step 20 Rename y'(defined above) as y and repeat Step 1.

It is easy to see that this is a finite procedure and will terminate with an
imputation.

FProofof Theorem 1: if part: 1t follows from Sharkey (1982).

only if part: Assume the core of the game v is the unique stable set. We will
show that for any y € A there is x € C such that x < y. For any y e 4, take
¥ e L{A) such that y] < y, for all i = 1,....n. For convenience, let us call
any such vector in L{ 4) by the same name y.

Suppose v ¢ C. Then wp(n) = vin) = 1. Then from the Procedure above,
there exists an imputation x such that x; = y; for i=1,....k, x; < y; for
i=k+1,...onand xp < x4 =--- =X,

Observe x ¢ Cfor ye L{4) and x < y x # y.

Mow we prove that x is an undominated imputation.

Suppose x is dominated by some member = £ C, w.l.g. via the minimal set
11,2, ... k. k + 1} such that v(s) = x(s). This implies z; > x;, forall i < k+ 1
and z{k + 1) = vik + 1.

Letzy=x;+gfori=12 ..  khk+landz = xpp )+ sy, fori = k+ 1

where 2..... g1 >0 It follows Y0z = 3 x+e>1, where &=

g + -+ &+ (m— ke = 0. This contradicts the fact that z is an imputa-
tion. This completes the proof of theorem 1.

Proof of Theorem 4: As has been observed already, the vectors y* € L{4) for
all k,1 =k =< n. So the only if part is obvious by Sharkey (1982) as C = L{4)
when the core is large.

if part: By Lemma 4 it is clear that Max{ y(n) : y € L(4)} = y*(n) for some k.
As all the y*’s are imputations L{4) = C and hence the core is large. Re-
call Remark 2.

Proof of Theorem 5: Take y* and suppose x' and x? are two ordered core
vectors such that y* = ix' + (1 —A)x?, x' £y  £x?and0 < A< L.
If x! < %‘:' then 12 > L‘kﬁ Consequently x2(k) > 6(k), and x' (k) = (k)

as x' € C(v). Hence a contradiction to the definition of y*. Similarly we can

show that x} ;g_”{kﬁ_ Sox! =xl = % for all i < k.
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Bl k Bk

_rﬁH = Max{é{k + 11— é{k}l,L{k—j}. Since x is ordered, .r;cr+| = % by
the conclusion above. Further .r;'H =d(k+1)— (k) as x/e C. Hence
)=k for fi= 1.2 Therefore ). ‘=&, for j =1,2;

The equality of other rf s to the corresponding y* follows sequentially in a
similar manner. Hence the theorem holds.

Though Corollary | follows from Theorems 1, 2 and 4, a direct proof is
interesting. In the following we give the simple direct proof.

Proof of Corollary 1- Let us first observe that because of Remark 3, Shapley’s
condition is true with v{¢) replacing &(¢) in the right hand side of the inequal-
ity. In the following we make use of this fact and hence &#(f) appears in place
of o).

if part: Let 0 <k <t <n and consider y*. Observe that y*(1) = &(s) for
k<t<n
vln) — o(k)
n—Kk

yH(e) — o(k)
i—k

is the average of y{ ..., ¥ Gwwa (1)

is the average of yy ..., o (2)

Because of the ordered nature of the vector y* it is easy to see that (1) is
greater than or equal to (2).

i) —B(k) _ y*(0)—8(k) _ #() —elk) _ o(6)—8(k)
=l T el o e b

This is the end of if part.
only if pare:

vin) —o(k) _ o(t) — #lk)
3=k = =

O=k<t=n . (3

Observe that Shapley’s condition above is also equivalent to the following two
conditions. |Refer Kikuta and Shapley (1986)]

o) — o) _ o(t) — (k)

et = ik O<k<t<n e (4)
3 — i _-1;{
ole) LHEL{”) k) O=k<t<n - . (5)
n—t n—Kk

Suppose if possible that a vector y* defined in Theorem 4 is such that y*(n) >
p(n). This implies that there exists { such that yf = yf, =--- = yF and &(]) =
), e yf = (1) — yH(I-1).
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MNow put ¢ =7 and k =17 — 1 in (4) above, we get

o(m) — o(1) _ o(l) —s( 1)

S — e 1Y — ek
e —1 = 1 =o(f) —y (I =1) =y

Hence #(n) = o(l) + (n — D)y} = y*(n).
This is contrary to the hypothesis that y*(n) = &(n).
This completes the proof of only if part.

4. Concluding remarks

The primary interest in Game Theory has always been the question of exis-
tence of a solution or a stable set. Lucas [1968) showed that there are games
for which a solution may not exist. Search is still on for subclasses where
solution may always exist. Do Symmetric games form one such subclass? —
remains the question! However Rabie (1985) showed that a solution need not
necessarily exhibit the symmetry of the game. In view of these the question
assumes greater significance. Do symmetric games always have a solution? —
not necessarily a symmetric one! Sharkey has proved that a convex/subconvex
zame has a large core, but the authors had a feeling that these conditions are
still too strict as sufficient conditions. One can ask whether exactness is suffi-
cient. Biswas et al (1998) have answered this question in the affirmative for
symmetric games.
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