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Abstract. In the competing fsks litermure, one usually compares whether two risks are equal or whether one
i= “mome serious” In this paper, we propose tests for the equality of two competing fsks against an ordered
altemative specified by their sub-survival functions. These tests are naturlly developed as extensions of those
hased on hazamd mtes and cumulative incidence functions. We note that the interpretation of the new test results
is more direct compured to the situation when the hy potheses are fmmed in terms of their cumulative incidence
functions. The proposed tests ane of the Kolmogrov—Smimov type, hased on maximum differences between sub-
survival functions. Our simulation studies indicate that they are excellent competitors of the existing tests, that
are hased mainly on differences between cumul ative incidence functions. A numerical example will demonstrate
the advantages of the proposed tests.

Keywords: Competing risks, cumulative incidence function, cause specific hazand rate, ondered alternatives,
Melson—Aalen estimator of cumulative harand

1. Introduction

The competing nsks problem involves subjects or experimental units exposed W multiple
rsks, but where the actual Failure (or death) is attributable o only one cause. In this paper,
we examine the case of exactly two risks. Let the notional lifetimes of a unit under these
two risks be denoted by random variables X and ¥, mespectively, that are nomegative. In
general, X and ¥ need not be independent. This structure yields observables (T, 8) where
T = min(X, ¥) 15 the time of failure and § = 2 — 7{X = ¥) is the cause of faillure. The
T A ) denotes the indicator func ion of the event A. We assume that PiX = ¥) = Oand that
lifetimes are continuous Lype mndom vanables. Thus, for each subject we observe (T.4).
The cause specific hazard rate corresponding o the i cause is defined by

hi(r) = him iP[rg Twt+AL 8=i]|T =1]
A= At
i = 1,2, The overall hazard rate is given by i () = h(t) 4+ halr). When the causes
of failure are independent, by (1) s the ordinary hazard rate corresponding o the marginal
distribution of failure times from the i*" canse. Prentice et al. (1978) emphasize that only
those quantities which can be expressed in terms of caose specific hazard mtes are estimable
and can be estimated from the competing nsks data even if the risks are dependent. In this
paper, all the gquantities we are interested in are functionals of caose specific haeard rates
and hence identifiability will not be a problem.
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For the competing risks problem, itis often of interest to distinguish between the following
altematives: (i) the two nsks are equal, and (i) one risk 1s greater than the other. In the
literature, such comparisons have been made in terms of cause specific hazard rates and

cumiative incidence (sub-distribution) functions, Fi{r) = P[T = r.d = i].i = 1, 2.
In this paper, we advocate the vse of sub-swrvival functions, Fi(t) = P[T = 1.4 = i].
i = 1,2 for making such comparisons. Using sub-survival functions allows for a more

direct interpretations of hypotheses than using cumulative incidence functions does.

Let Sy denote the survival functuon of T, Then the cumulative incidence functons and
the sub-survival functions can be expressed i terms of the cavse specific hazard rates by
the relations,

I = i
Fi(£) =f hilwsriw) du, Fi) = [ hilud Sy d, (1}
] Ji
fori =1.2.
Based on a random sample (T, 4;). j=1..... noon (T, 4), we consider the problem of

testing the null hypothesis given by,

Hy: Fi(t)= Faft). 120, (2)
against the allemative,

Hy: Fi(1) < B, 120, (3)

with stnct inequality for some ¢,
The alternative Hy can also be expressed as

Pl=1|T>t]=Pld=2|T =], t=0

In this form it has the following interpretation: Given that a unit has survived up to time r,
the conditional probability of its Failing in the future from cause 2 is wniformly greater than
that from cause 1. Thus H) indicates nsk ¥ being “more serious™ than nisk X in some sense.
Also we note that even though the sub-survival functions Fyand F muty not be expected a
priovtobe equal, except under some special situations (Aly, Kochar and Meleague, 1994),
it 1% the natural choice of null hypothesis for the ordered alternative &y Similarly, the null
hypothesis is that of equality in the two-sample survival analysis problem for testing the
altemative whether survival in one group s better than survival in another group.

Also note that Hy is equivalent to Hy: hyit) = hair) forall r as well as o Hy: Fi{1) =
Fa(r) for all r. Hy is implied by the more stingent altermative

Hy: hy(r) = halr), =1,

with strict inequality for some 1. However, it is possible that the cause specific haz ard rates
cross each other, but their survival functions are ordered. An example of this s when X
and ¥ are independent with X having exponential distobution with hazard rate 0.5 and ¥
having Weibull distribution with shape parameter 2 and scale parameter one.
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Aly, Kochar and MeKeague (1994) and Sun and Tiwari (1995) considered the problem
of testing the null hypothesis Hy against the alternative

Ha: Fiit)y = Fir), 1 =1,

and with stnet mequality for some ¢,

While H 15 alsoimplied by H,y, H) and B> are not necessarily equivalent. The allernative
Hy does not seem o have the same natural interpretation that the allemative Ay has. It
follows from the discossion below that the altemative Hy is also somewhat more stringent
than H.

Consider the case when X and ¥ oare independent with distribution functions F and
G, respectively. Let F and G be the corresponding survival functions. In this case the
cause specilic hazard rates are wentical w the hazard rates comesponding to the marginal
distnbutions of the mndom variables X and ¥ and the cumulative incidence functions and
the sub-survival functions can be expressed as

Fiix) = f CondFG), Filx) = f F) G w);
4] 4]
Fix) = [ G dFw), Fix) = [ Flu)dGiu).

&1 — —
MNow suppose that X is stochastically greater than ¥ (X = ¥ Thatis, Fix) = Gix) for
all x = 0. This implies

I

Fi(x)= f E{u}d.‘?{u}s[ Flu)dF(u) gf Flu)dGiu) = Falx),

] wih ]

for x = 0. The last mequality follows because the function F{n}l IO = u = x) s
noninereasing in poand X ; ¥. Thus in this case X E ¥ implies Hs. Bul, in general, the
allemative Hy may not be implied by this constraint as the function F{n}l Iix = n = o0)
is not monotone in n. However, as discussed above, a sufficient condition for A to hold is
that the haeard mte of X 15 smaller than that of ¥

Clearly there are situations where analysis based on sub-survival functions 1s more mean-
ingful and revealing than analysis based on cumulative incidence functions. The two ap-
proaches, however, address different aspects of the competing risks problem. 1tis plausible
that in some cases the cumulative incidence functions cross but their sub-survival functions
are ordered (as in the case of the data set considered later in this paper) and vice versa.

Several tests are available in the literature for testing the equality of competing risks and
the relevant references can be found in the review paper by Kochar (1995), Gray (1988)
proposed g class of c-sample tests for comparing the cumulative incidence function of
one risk over ¢ different populations. The corresponding two-sample problem has been
studied by Lin (1997). But to the best of our knowledge, we are not aware of any Lest
designed specifically for testing Hy against Hy in terms of sub-survival functions. In this
paper we propose new Kolmogrov-S5mirnoy type tests for this problem based on maximum
differences between the two estimated sub-survival functions. These tests are similar in
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spiril to the tests of Aly, Kochar and MeKeague (1994) which were based on the maximum
differences between the empirical cumulative incidence functions.

In the next section we inroduce the test statistic for the case of uncensored data and give
its exactand asymptote distributions. In Section 3, we extend our test to the case when the
data are randomly censored on the nght. Section 4 s devoted o power comparisons. In
Secton 5, we analyee a data set using the procedures developed in this paper. Concluding
remarks are given in the last section.

2. Tests for Uncensored Data

We test the null hypothesis By against the alternative H on the uncensored competing risks
data {(T;, 80, 7j=1,....n} for n independent and identical units.
Let

y(r) = Falt) — Fi(1). (4)

Note that y(t) = 0 under the null hypothesis, but under Hy, p(t) =0, forr = (and with
a strict inequality for some ¢, We base our test on the statistic

'DT.'I = _Sup }{,,{f_:l,

[ -

where y,(r) = .E'_:,,{fj - .E'“,U}l and .Ej"{r} =n! F=| i{d; =i, T; = t} is the empincal
sub-survival function for cause i, i = 1. 2. Positive large values of D, provide evidence
in favor of Hy. The statistic D 1s similar to the statistic
DL’I = &sup [F_’n{f} = F|JI{'r::|i
r<as

proposed by Aly, Kochar and MeKeagoe (1994) for testing against the altermative H>. Here
Fiy (1) 18 the empineal sub-distnbution function of the i cause.

Let Ty, = ... = Ty, be the ordered failure tmes and let &, j = 1...., n be the
corresponding causes of failures. Then the statistic DY) can be expressed as

1 : L
DTJI = (E__-"'i:i'il ’_! {{” _J} =2 Z vj.: ] =(E;|f‘:il zJ'f'rf!
k=j+1
wherne

1 af & comesponding to T, s 1,
Vk = & f
0 otherwise;

Zi=nmp+--+gZy=0andm =1—-2V, fork=1,.... n. As under Hy, T and
4 are independent (ef. Kochar and Proschan, 1991) and Z; is a symmetne random walk. Tt
follows that the null distnbution of D, is the same as Dy, and 15 given by

I 1 n
PlnDy, =k] =  \ pazty ) k=0,1,..., n.
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Its asymptotic null distribution is

Pl/nD}, = x]— P [ sup Wir) = .r] =2(1 — ®(x)), x =0,
O=i<1
where { Wiy, r = 0} s a standard Brownian motion and 90 15 the standard nomal distnbuo-
tion function.
An allemative approach would be o base a west on an estimator of the following average
value of pi{.),

= 1
Ya = [ y()dFy(t)=Pls =2, T} > T3] - 5,
o (b 5

where (T3 4;), j = 1. 2 are two independent copies of (T, 4) and Fy 1s the distnbution
function of T. A [M-statistic estimator of this parameter y, leads o the test stabsace

Uy =Y (R — 1)I{5; =2},
=l

where R is the rank of T; among Ty, .., T,. This statistic L7 was initially proposed and
studied by Bagai, Deshpandé and RKochar (198%a) for comparing the haeard mtes of two
competing risks. They also proposed another statistic L' = Z};, (n— R; + 1)1{& = 2)
for westing against stochastic ordenng between two independent competing nisks ( 1989h).
It can be shown that L7 1 equivalent o the U-statistic estamator of

=
,. [Falx) — Filx)|dFrix)=Pl&,=2.T) = T3] — é
Jo ©
an average difference between the sub-distnbution functions.

¥ip and Lam {1992, 1993) proposed a class of asymptotically distribution-free tests for
testing the equality of the haeard rates of independent competing nisks. Lam ( 1998) subse-
quently proved that the asymptotic null distnbutions of these statistes remain unchanged
even when the risks are dependent. They vsed the counting processes approach to study
the asymptotc propertics of their tests. Their elass imclodes the asymptotically equivalent
versions of the U7 and L tests as special cases.

When an ordered altemative 1s unsuitable, itcan be of interest to test Hy against the general
altemative: F'.U]l = AE'; (1) For some t. Inthatease itis natural to vse the Kolmogrov-Smirnoy
Lest statistic

Dy = sup|yuir)].
=0
Under Hy, ﬁf),, converges in distnobution to supg.., - | Wix )l This gives an omnibus test,
consistent against arbitrary departures from Hy,.

3. Tests f'or Censored Dala

We now modify the new test for the censored data. An item is censored, if its actual
observation i unavailable before failure due to X or ¥. Denote the censoring time by C
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and its survival function by 8. Assume that S-(t) = 0 forall t, and that C 1§ independent
of X and ¥. Under right-censonng we observe n Lid. copies, {f},ﬁj}l, F=L., n, of
T =min{T,C) and § = §& where ¢ = I(T < C).

The product limit {PL) estimator of 5y 15 given by

- il }1| E ”'f:“‘-'”
Selt) = l_[,-=. (1 o 1)

wherne f', [y B oeee = f',,,:. are the ordered f] vilues and £ 15 the concomitant of the ith
order statistic, that 1s, &) = & if ]'h'},_a = f'_, If the largest observation 15 uncensored, the PL
estimator at that point equals zero. I the largest observation is censored, the PL estimator
can never equal zero and is undefined beyond the largest observation.

We see from Eg (1) that in the case of censored data, a natural estimator of .Ej-, 1%

~ =
F,{r}:f Srl{u—hd(Ai(u)),
I
wherne ﬁ'r- is the product-limit estimator of Sy and .ﬂ;;LJ' 15 the Aalen estmator (1978) of the
cumulative cause specific hazard mte function A; (1) = _,IT, R (u) du, given by

A=Y I =0/R;.

i =i

Here R; = #{k: T o f:,} 15 the size of the nsk set al time '?: —i

A suitable modification of the function y (1) = .E'_:- (ry— .E] (1) for the censored case is

yHir) [ Se(u—)"2d(Fs — Fi)(u)

[ © Sru—)Sc(u—)"d(As — Ay ),

which coincides with p when there is no censoring. For a justification of this, sce Aly,
Kochar and MeKeague (1994). An obvious choice of p,', an estimator of p*it) is

yalt) = f  Sr—)8c—)2d(A; — A,

when ﬁ':-- 15 the PL estimator of S-. Note that the quantity Sy () S () /2 vanishes at f},,_ﬁ,
the largest observation. Positive large values of the test statistic

Dy, = sup y,(1), (5
[ e
are significant for testing By against .
The D3, test is asymptotically distobution-free with the same limiting null distnibution
as in the uncensored case. The proof follows on the lines of Aly, Kochar and MeKeague
(1994 and s omitted.
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Table {. Estimated sizes and powers of the tests for
the LIFR distribution at asymptotic levels of 53%.

Test 2]
LIRN] 0.5 L5 25 is

Uncensomed
Iy 467 1981 5823 R2al G227
¥ 443 2578 TL04 904l Q689
Ly 492 3136 TIT W35 9834
Lightly censored (2631 %)
Iy 385 1174 B2 6015 7646
£y 4.13 1567 4705 7194 RSB0
[ 4.37 1794 5122 7566 BEE0
Heavily censored { 54-59%)
Ik 136 5.68 1573 2832 4250

14 4.10 753 41 344 5137
o 324 546 1796 3243 4709

The statistic LF) can also be easily modified to handle the case of mndomly censored data
as Up, = [, (1) d(1 — §¢(1)). The asymptotic null distribution of \/rIU, is N (0, 1/3)
and its large values are significant for testing against H.

It may be noted that in case the censoring distribution has support on a finite interval
[0, 7], then the null and alternatives are really regarding the guantity _,I:r hilmy Syl dn =
.Ej- (r)— .“?'J {7 ) rather than the sub-survival functions. While this would not affect the validity
of the tests, caution should be exercised in the interpretation of the results,

4. Efficiency and Power Comparisons

The alternative H,y implies both By and B> . However, we are not aware of any ests designed
specifically for comparing the sub-survival functions of competing risks in H,, while H,
has many tests available. For some alternatives belonging to Ay (and hence to By and Ay ),
we performed a simulation study 0 compare the powers of the DY, DY and U tests with
the Dy, Dy oand U7 tests.

In the first study we consider the case when X and ¥ are independent with X having
stundard exponential distribution and ¥ having lineardy mereasing failure mte (LIFR) dis-
tribution with hazard rate fs(x) = (1 4+ fx). The case # = 0 corresponds to the null
hypothesis Hy and valuesof @ = 0 comespond to the altemative H 4 (and hence H) and Ha ).

The censoring was taken to be exponential with pamameters 1 and 3, corresponding 1o
“light™ and “heavy™ censoring (about 28% and 56% censored). We used asymptotic eritical
vilues at 5% level. Table 1 gives the estimated powers of the various tests based on
1O samples, each of size 10O for this alternative. Although not reported in the Table,
the estimated powers of the Us and the sign tests in the mneensored case and at the above
& walues were found to be rather non-competitive.  These values for the two tests are
493, 11.92,2972, 5585, 62.60 and 4.39, 22.27, 63.52, 86.33, 9418, respectively.



92 CARRIERE AND KOCHAR

Aln = 100, the empincal sizes of all tests under consideration were a little wo conser-
vative compared to the nominal 5% with an exception of Iy and U7 for the uncensored
case. The U (U]) test that seemed to excel in the uncensored (light censored) case did
not do as well in the heavily censored case. The general finding in this case is that [F
(L7 1s the best in uncensored (lightly censored) case, while D7 improves the empincal
stze and power considerably in the heavily censored case. But the results using the new
tests D and D7 were generally improved from the previous tests Dy and Dy in all cases.
Power improvement was rather substantial in the uncensored and the hightly censored cases,
especially.

These simulations results are not surprising in the light of the findings of Yip and Lam
(1992, 1993). They observed that in this case, the differences in the upper tails of the
distributions are more relevant. The newly proposed tests put more weight on late failures.

Next we consider the case when (X, ¥) follows the absolutely continuous bivariate ex-
ponential (ACBVE) distribution of Block and Basu (1974) with density

J.|J_.I'J.¢ :";JI:'f—;_|.T—r;.J+;J|:|_\' ifly = v

. At =]
FARCPY =0 o g s

Aok o) ghay =1k +hghx if x = v

Atk

where (Ag. Ay, Az are parameters and & = Ay + 4 + Ao

In this case the cause specific hazard rates h(t) = A 000 + ) j = 1.2 are pro-
portional, and the allernative hypotheses H . By and H> are equivalent to &) = A The
parameter Agcontrols the degree of dependence between X and ¥, with independence if and
only if Ay = 0. We set &) = 1 and considered various higher values of Js corresponding
Lo mereasing departures from My, Again the censonng was taken o be exponential with
parameters | and 3, corresponding to “light™ and “heavy™ censoring (about 22% and 45%
censored). We vsed asymptotic eritical values at 5%. Again the simulation results reported
in Tuble 2 are based on 10000 samples each of size 100, Only the results for Ay = 1 are
reported as there 15 only marginal effect of this parameter on the power functions of the
tests. Note that the case &> = 1.0cormes ponds to the null hypothesis. We nsed the exact null
mean and vanance in the asymptotic nomal approximation of U7 . Improvements using the
new test in empirical sizes and powers are not evident. With an exception of the IF) test,
which was notably poor, the other tests performed quite similarly.

It is evident fronm these studies that for the LIFR altemative, the D7 (D7) test performs
better than the Dy (233 west, while for the ACBVE distribution, they perform almost equally
well. This shows that the D7 (D% ) and U7 (U7) tests are good competitors of the Dy (D) and
L tests. Whereas the wests based on cumulative distribution functions give more importance
to early failures, the newly proposed tests are more suitable when the differences in the upper
tails of the distiibutions are more prominent.

5. Hoel’s Data Revisited

We revisit the mortality data set given in Hoel (1972) and also analyzed earier by Aly,
Kochar and MeRKeague (1994). A rdiation dose of 300 mds were given o 99 RMF strain
male mice at 56 weeks of age and they were keptin a conventional laboratory environment.
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Table 2. Estimated sizes amd powers of
tests for the ACBVE distribution with
kg = 1 at asymptotic levels of 5%,

Test Az
10 1.5 0 25

Uncensoned
Iy 485 5959 9508 9966
fJ; 442 S807 9436 9954
Ly 4.8 5265 9047 9851
Lightly censored {1 8-25%)
Ihy 442 S016 Fa.6h DR
n 4.19 4794  ER23 9851
[ A 4.3 MO8 TR 9460
Heavily censared {40-50%)
Iy 307 3535 TaM 9451

oy 343 3Ro9p TROT O 93A)
/M Jos 23 5260 T59

The cause of death was recorded as one of thymic lymphoma, reticulum cell sarcoma, and
other causes. Similarly in Aly, Kochar and MeKeague (1994), we ook “other canses™ as
censoring (39% were in this category ), and used the two types of cancer mortality as the two
causes of Failure for comparison purposes. Thus £ and F; denote the sub-survival functions
of the rsks lymphoma and sarcoma, respectvely. (Note that Aly, Kochar and MeKeague
(1994 label the two risks the other way around ). We assume that the two diseases are lethal
and independent of other causes of death . We do not need 1o assume that the two diseases
are independent of cach other. In Figure 1 and Figure 2, we plot the cumulative incidence
functions and the sub-survival functions of the two risks. It is clear from these figures that
for this data set the two cumulative incidence functions cross at about 500 days, but ther
sub-survival functions are ordered.

Figure 3 plots the function /ry. Observe that /ry, (1) first increases and then de-
creases, but it remains ponnegative. This plot indicates that the two canse specific hazard
rates are not ordered: otherwise, it should have been monotone. The graph of /Ryt (r)
appears o favor the altemative H; that the two sub-survival functions are ordered. For
testing Hy against H) we obtained a highly significant value of /aD3, = 4.8058 with
a p-value of 1541 % 1077 (the value of L7 for this data is 26252 with a correspond-
g pevalue of (0086). Both I, and U tests meject By in favor of the alternative H)
that the sub-survival function of the risk of death from sarcoma 1s greater than that from
lymphoma.

Aly, Kochar and MeKeague (1994) reported that /nDsy, = 3.69 with p < 0003, It was
concluded that the cumulative incidence for lymphoma was larger than that for saeoma
before 500 days; this was reversed after 500 days. On the other hand, our test indicates
that the sub-survival function for sarcoma is always larger than that for lymphoma, sup-
porting H.
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Figure |, Cumulative incidence of lymphoma () and sareoma (- -- ).

6. Concluding Remarks

In this paper we have considered the competing risks problem and have shown that i is
cuasier o interpret hypotheses expressed in terms of sub-survival functions rather than in
terms of cumulatve incidence functions. We have proposed new Kolmogrov-Smimov Ly pe
tests for the problem of testing the equality of two competing risks against the allernative
that their sub-survival functions are ordered. These tests are similar to the ones proposed
by Aly, Kochar and MeKeague (1994) for comparing the cumulative incidence functions
of two competing nsks. The wsts proposed i this paper give more weight to late failures
which typically occur in the upper tails of the distributions and where the differences in
the distributions are more important. We conclude that the tests proposed in this paper
are good competitors of the existing ones. The new tests are expected to perform betler
in situations where the differences in the sub-survival functions are more prominent. The
two approdaches o the competing nsks problem based on the differences of the cumulative
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Figure 2. Sub-survival functions of lymphoma (....) and sareoma (-- -).

incidence functions and the differences of the sub-survival functions are complementary Lo
each other, addressing to different aspects of the problem.
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