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Abstract

Let Xip= X2 s o0 £ Xy denote the order statistics of a random sample of size n from a probability distribution with
distribution function F. Similarly, let Vie = Yen= o = Faow denote the order statistics of an independent random sample
of size m from another distribution with distribution function . We assume that F and ¢ are absolutely continuous with
common support (0,20}, The corresponding normalized spacings are defined by Uy, = (n— 1§ + 10X, — X4y ) and
Vie=(t=j+ INY, .= Yok for i=1... .0 and j=1,...,m, where X, =Yy, = 0. It iz proved that if X' is
smaller than ¥ in the hazard rate order sense and if either F or 7 is a decreasing failure rate (DFR) distribution, then
Uy, is stochastically smaller than V., for i=j and 1 — {Zm — j. If instead, we assume that X is smaller than ¥ in the
likelihood ratio order and if either ¥ or & is DFR, then this result can be strengthened from stochastic ovdering to hazard
rate ordering. Finally, under a stronger assumption on the shapes of the distributions that either F or @ has log-convex
density, it is proved that X being smaller than ¥ in the likelihood ratio order implies that L. is smaller than V. in
the sense of likelihood ratio ordering for i</ and #n — i=m — j.

MEC: primary 62N05; secondary 62E10
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1. Introduction

In this note we study the connections between various types of stochastic orderings between two probability
distributions and ther normalized spacings when random samples of possibly different sizes are drawn from
them. There are several notions of stochastic ordermgs of varying degree of strength and they have been
discussed in detail in Shaked and Shanthikumar (1994). We briefly review some of these here.

Let X and ¥ be two mndom variables with distribution functions £ and @, survival finctions F =1 — F
and G =1 — ; and density functions § and g, respectively. We say that X is stochastically smaller than ¥
{(denoted by X <, ¥)if Fix)< Gix) for all x. This is equivalent to E{(X ))<= E($(¥)) for all nondecreasing
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functions ¢ - # — # for which the expectations exist. X is said to be smaller than ¥ in the sense of hazard
rate ordering (denoted by X =3, ¥ ) if Gx)/Fix) is nondecreasing in x for all x such that F{ﬂ =0 In case
F and (7 are absolutely continuous, this is equivalent to rg(x) <rp(x) for all x, where rp = f/F and rg=g/G
are the hazard (or fallure) rates of & and G, respectively. I gix )/ f{x) 5 nondecreasing in x, then we say
that X is smaller than ¥ in the sense of likelihood ratio ordering (X =), ¥). We have the followmg chain
of implications among the above ordenngs,

XEp Y= X=Xl

The above notions of stochastic dominance among univarnate random variables can be extended to the
multivariate case. A random vector X = (.. .. X)) 1s smaller than another mndom vector ¥ =(¥,. ... F, ) in

31
the multivanate stochastic order (and written as X = ¥ if E[ X )] < E[ ¥)]. for all nondecreasing functions
b for which the expectations exist.

We shall be assuming throughout this paper that all diswibutions under study are absolutely continuous
with common support ((Loc). Let Xy, =4, = --- =X, denote the order statistics of a random sample
XA LA from a life distobution with distobution function F. Similady, let ¥y, ¥, - € Yo de-
note the order statistics of an independent mandom sample ¥y, ¥a, ... ¥, from another hife distobution with
distnbution function . The corresponding normalized spacings are defined by U, = (n — i + 1), —
Xk i=L2, . onand Vi =(m—f+ 10 Y — ¥Yimtim) j=L2....m Here Xy, = ¥p.e = 0. Under
certain shape restrictions and stochastic orderings between F oand &, Kochar (1998) considered the problem
of stochastically comparing the spacings of two samples in cave n = m. In particular, it was shown that if

31
X o=y ¥V oand of aither X or ¥ has decreasing failure rate (DFR) distoibution, then U = V. Comparatively
stronger results on spacings are obtained if one assumes that F and & are likelihood mtio ordered and at least
one of these distnbutions has log-convex density.

In this note we extend the above results to the case when the sample sizes are not necessarily equal. We
prove m Section 2 that of X =5y, ¥ oand if either X or ¥ has DFR distribution, then U, 15 stochasteally
smaller than V., for i< and 7 —izm — j. If instead, we assume that X is smaller than ¥ in the likelihood
ratio order and if cither F or & 15 DFR, then this result can be strengthened from stochastic ordering to
hazard rate ordering. Finally, if we make a stronger assumption on the shapes of the distributions that either
X or ¥ has logconvex density and X 15 smaller than ¥ in the hkelibood mtio order, then it s proved that
Us.y 15 smaller than Fj.,, i the sense of likelihood ratio ordenng for i<jand n —i=m—j .

2. Main results
We shall be using the following lemma for proving the vanous results in this section.

Lemma 2.1. (a) X =4 ¥ = X, sa Vi forisjand n—izm— j.

{_b} L‘H 'L'In.j:.ll ﬁl‘{{n_i"'l}{-‘fi:u _"YJ'—|:JI }EXJ'—I:u:u} IE!(!I l"I-n._.l':.l.ll dgll{{_m_.lf +1}{}._-.l':m_ }:-.l'—l:.l.lr}i }:J'—I:u|= H}.
Let either F oor G be DR Then

A % he Y= 'L'In.l':n S he Fu._.l':.ul

Jorn—izm—jand uz0.

Proof. (a) It is casy to prove (sece also Ragab and Amin, 1996) that for i< j and n —izm — j,
XJ':M =y *‘Y_.l':m- {2-1}
It 1s well known that X <4 ¥ implies X;., =4 ¥ . The required result follows from this and (2.1}
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(b} The survival function of U, ., at x is

Flxfin—i+1) + u}]“"‘*"

Fn.j:n{:r} i [ ?{H}

and that of ¥, ;. is

Glexfm —j +1) +u) "
Glu) '
We show that for n —izm — j, the hazard rate of U, ., 15 miformly greater than that of ¥, ;. for all
uz=0. Since F is DFR and re(x)=rpix), we have for n —izm — j and w20,

X
ri xX)=¥rp| —— +H
o ¥) jL(n—f+1 )

En‘.l' 3 J.lr{,-l-} -— [

for all x=0. That 1s,

Lllar,J' st Zxhr i"I-Jr‘.l' L for u =31)

Theorem 2.1. Led X =y Y and either F or G be DFR, then

UingsaVim forisj and n—izm—j. (22)

Proof. Let us assume that £ is DFR. As shown in Kochar and Kirmani (1995), the survival function of V.,
{denoted by E_:m,{.r}} 15

s e, oot for—i+1)
a_:-cm,{-‘f} = f |:Er'|;'|l-‘f,-ﬂ! __,r +1))+ H}:| g1 :mlu)du, (23)
[ Crlne)

where g . 15 the density of ¥, Since hazard mte ordenng implies stochastic ordenng, Lemma 2.1(b)
implies that for n —izm — f,

o 3 . {ar—it+1}
— Fllxin—i+ 1))+ u)
frJ-:”r{x} E I/ﬂ: |: F{‘u} ] ﬂ:ll-_ | :m{.H} du, {2.4}

for all x=0.
Now the function
Filxfn—i+ 1) +uw)]"""
Flu)
is nondeereasing in w since Fois assumed to be DFR. Also by Lemma 2.1(a), X, =4 ¥ for i) and
n—izm— j. Using these results, we get

=0 T {im—i+1}
E;:m{x} " /' [F{{-T,-n £{+}1 N+ H}] Fisid)du for x=0. (25)
S I
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The quantity on the RHS of the mequality (2.5) is the survival function of U;.,. This proves the required
result. [

In the next theorem we assume likelihood ratio orderng between X and ¥ mstead of hazard rate ordering
and establish that under the condition that either F or & is DFR, nommalized spacings from the two samples
are hazard rate ordered for the above choices of @ and j. To prove this result we shall need the following
lemma of Kochar and Kimmani (1995).

Lemma 2.2, Let nix, v) and Waix, v) be positive real-valued fimctions such that
(1) for yi < ya,

t;’z{-rv .VE } n mf i 2
=2 s nondecreasing in x,
i x, ¥1)

(i) for yi = ya,
M is nondecreasing i x
ol yi) R

(11} for cach fixed x,
M is nondecreasing in v,
thalx. v)

Then for funciions | and o satisfyving the above conditions, Z) =, 2 implies

Eltn(x, £)]

is nondecreaving in x, (2.6)

Eltfnlx. £1)]
provided that the expectations exist.
Theorem 2.2, Lef X = ¥V oand let either X or Y be DER. Then

'L'IJ':M = hr F_,l':m _Jlr'hr ng and n — izm —_f.
Proof. Assume that F 15 DFR. We have to show that for i</ and n —izm — J, E_:-‘:m{.t}..-':'-?;“{x} is nonde-
creasing in x. As i Kochar and Kirman (1995), this ratio can be expressed as

CCjsm) [3° [Glx/m — j+ 1) + )] a6 (w)

oo . 27
Cli:n) [, [Flxin—i+ ) +w)]" " dFi—Yu) e

which can be further wntten as
Elyn{x/(m — j+ 1), ¥;_1.51)] (2.8)
E[t,':fg{.fl-".{” —i+1 }-5 -‘Yj— lii—1 }I g -
where
Wi(xy) = C(j - m)Glx/(m —j + 1) + y)]" 7,
Wa(x, y) = Cli :m)F(x/(n —i + 1)+ y))" ™"
and

n!
C(i:n)= ——— {2.9)

It 15 shown below that the functions Wy and e satisty all the conditons of Lemma 2.2,
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{a) The mtio
[’I"@{_\; _1'3} L F{_T{_n —i+ ]_} + ¥ }]JI—J'+I
I:,Llfg{.T, Fi } F{_T_."{n e ]_} g Vi }IJI—I+I

is nondecreasing in x for vy < ya, since F s DFR. Thus the condition (1) of Lemma 2.2 is satisfied.
{b) We show that for v £ va,

rilx, va ) = C(j : m)G(xf(m —j + 1)+ y)"
da(x3)  ClnF(/n—i+ 1)+ yor "

15 nondecreasing in x. Now forn—izm — J,

dlog [ vy(x, va) — x y x .
el PV e e o s R e g g

X X
2| ————4p)—re| ——— 4+
*(m—f+1 'J ‘(m—f+1 'J

(since FisDFRand n —i+12m—j+1)

=0

since X =, Y.
Thus the condition (1) of Lemma 2.2 15 satisfied.
{c) One can show on the same lines that under the stated assumptions, condition (1) of the above lemma
is satisfied for n—izm — j.
It s casy to verify that X =y ¥ implics
XJ'—I -1 &g }.-_,l'—l i—1 for Fﬂj

The required result now follows from Lemma 220 [C
By taking F = & in the above theorem, we get the following result on spacings from a DFR diswribution.

Corollary 2.1. In case of random samples from o DFR distribution

UJ':J|+ | "\-{-Jur 'L'IJ' n g]u‘ 'L'IJ'+I:.I|+I ﬁJr }I -— ]-7- -

This comollary implics that the successive nomalized spacings of a modom sample from a DFR distribution
are increasing according to hazard mte ordering, a result proved carlier by Kochar and Kirmani (1995).

One of the basic criteria for companng vanability in two probability distributions is that of dispersive
ordering.

Definition 2.1, X is less dispersed than ¥V (X < g ¥ ) i
F Y o)y-F w6 (w) -G w), Yo<usv<l, (2.10)

This means that the difference between any two quantiles of F is smaller than the difference between the
corresponding quantiles of G. A consequence of X = g ¥ is that X — X5 =4 |¥ — Y5 and which in turn
implies var(X )= var( ¥ ) as well as E[|X) —X3| )< E[|¥) —Ya|], where X, X5 (V)L ¥2) are two independent copies
of X(¥). For details see Shaked and Shanthikumar (1994, Section 2.B).

The nomalized spacings from a DFR distribution have DFR distributions (ef. Barlow and Proschan, 1966).
Bagai and Kochar (1986) proved that if X =y, ¥ and either F or 7 1s DFR, then X = 43, Y. Combining these
results with the above theorem we get the followmg comllanes.
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Corollary 2.2, et X =, Y and either ¥ or G be DFR, then

Usiw Sdip Vi forisj and n—izm— j.

Corollary 2.3, In case of random samples from a DFR divtribution
Lt "\-{-di:qr U = diap Uit _.III":”' i=1...m
and ay a conseguence
l"‘lﬂ-r'[_'["li:.l1+ | } = var| 'L'IJ':M} = "I'HI{_L'I,'+|:“+| } Jﬁ-u i= ]-:- ces B
Kochar (1998) proved that of X =, ¥ and either F or & has a log-convex density, then U}, =y V., for

1 =i=n. The natural question 1s whether this result can be extended to the case when the sample sizes are
not equal. However, we have only a partial result in this case as stated below.

Theorem 2.3, Let X = ¥V and let cither F or G have a log-convex density, then Ui, sy Vi forisj
provided n—i=m — j.

Proof. We have to prove that under the given conditions

™) CUME{G(/(m—j+ 1)+ Yooy )G (f(m —j+ D)+ Yy 1))
S iux) CURE{ff(n—i+ 1)+ X1 F O/ — i+ 1)+ X 1)}

is nondecreasing in x. Here C(i - n) is as defined in (2.9). Define

(2.11)

glx, y)=glxfim—j+ 1)+ _1‘}F'_'I{.t..-'{m —ji+ 114+ 7
and
W, v) = f/(n—i + 1)+ p)F (xfin—i+ 1)+ »).

Replacing the DFR property by the log-convexity of f and using the same kind of arguments as in the
proof of Theorem 2.2, we get the required result. [
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