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Abstract:  Various methods and criteria for comparing coherent systems are discussed. The-
oretical results are derived for comparing systems of a given order when components are
assumed to have independent and identically distributed lifetimes. All comparisons rely on the
representation of a system’s lifetime distribution as a function of the system’s “signature,” that
is, as a function of the vectorp = (p,. . .., p, ). where p, is the probability that the system fails
upon the occurrence of the ith component failure. Sufficient conditions are provided for the
lifetime of one system to be larger than that of another system in three different senses: stochastic
ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem
for hazard rate ordering is established. In the final section, the notion of system signature is used
to examine a recentlv published conjecture regarding componentwise and systemwise
redundancy.

Keywords: coherent system; stochastic ordering: hazard rate ordering: likelihood ratio order-
ing: redundancy

1. INTRODUCTION

An n-component system is said 1o be coherent if every component is relevant, ie., has an
effect on system performance, and if the system is monotone, ie., the improvement of
components cannot lead to a detedoration in system performance. The notion of coherence is
central in religbility analysis since any system without it would rightlly be judged 1o be
fundamentally flawed and subject to alteration. While the perdormance chamactenstics of
coherent systems have been the subject of considerable study, the development of comparisons
among them is at present quite incomplete. In this paper, we propose a new approach based on
a standardizing assumption that places the systems being compared on an equal footing. We will
show that our approach provides a framework under which rather strong conclusions can be
reached regarding the lifetime distributions of competing systems.

There are a vardety of ways o compare two coherent systems. Comparison methods which
induce a total ordering on the set of all coherent systems of a given size are typically based on
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comparing the values of a particular figure of merit for the systems (for example, the systems’
expected lifetimes). Among the limitations of such approaches are the inevitable analytical
difficulties in computing the desired figure of merit when a system is complex and the fact that
any single numerical measure of a system’s performance provides insight into just one aspect
of the guality of that system. Methods which induce partial orderings among coherent systems
tend w be based on structural comparisons which allow one o declare that a given system s
better than another in some uniform sense. Typically, when two systems are ordered in this
universal way, the corresponding ordering in erms of relevant figures of mert will hold as an
CASY CONSEqUEence.

Let us consider in more detail some varied approaches to the comparison of two coherent
systems of order n. Let x € {0, 1}" be the state vector of an n component system, where

o ] if component i works,
=10 otherwise, (1)
fori=1,...,n, and let ¢(x) be the structure function for system j, that is, let
. 1 if components are in state X and the jth system works,
&;(x) = e iz arer i et i ey faile (2)
L 0 if components are in state X and the jth system fails,
with j = 1 or 2. Now suppose
(X)) = hy(x) Yxe {0, 1} (3

Then the second system will work under any condition under which system 1 works, so that
system 2 is clearly a better system. For an interesting example of this mode of sysiem
comparison, see Block and Borges [2]. An example of two systems which are not comparable
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Figure 1. A consecutive 2-out-of-4 system.

(2)

LS54

£1°) A
OT—® 2

(1)

S

Figure 2. Two parallel systems in series.
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relative 1o this ordering appears in Figures 1 and 2. For the state vector (0, 0, 1, 1), the sysiem
in (4) works and the system in (5) fails, while, for the state vector (1, 0, 0, 1), the system in (4)
fails and the system in (3) works. We will return to the comparison of these two syslems using
the altemative method developed in Section 2.

To continue with our discussion of comparison methods, ket us assume that two systems of
order n have statistically independent components, and that the state X, of each component is
a Bernoulli random variable with parameter p;. Then the reliability function hi{p) of system j
15 given by

hip) = P($(X) =1).
I
hip) = hilp) Ype]|o, 1], (6)

we would properly assert that system 2 is better than system 1. The fact that (3) implies (6) is
obvious from the definition of the reliability function f. It is easy 1o show, in fact, that (3) and
(6) are equivalent. Suppose, however, that we wish o compare the two systems when their
components’ states are assumed to be identically distributed with common probability of
success p; = p. In that event, the reliability function depends on the single parameter p, and we
would consider system 2 better than system 1 if

hylp) = halp) Ype|[0, 1] (7)

While (3) still implies (7), the converse is false. 1t can be shown, for example, that the system
in (4) is better than the system in (3) in the sense of inequality (7) in spite of the fact that their
structure functions are not comparable via the partial ordering induced by (3).

We should perhaps mention, in passing, a notable altemative approach o the comparison of
systems. One might compare two systems, possibly of different orders n, and n,, with
components of varying reliability p, = (py..... py,) and p; = (psy. ..., pa,, ). The first
system would be judged better than the other if its reliability function & (p,) is larger than
fio(ps ). Such an approach 1s taken by Proschan and Tsaturyan [7], who compare senes-parallel
{and parallel-series) systems for which component reliabilities differ in a well-defined way.

The comparisons above are cast in terms of the state of the sysiem (as reflected by ¢ or )
at some fixed point in tme. [t s often of interest to compare system lifetime distributions,
judging one system o be better than another if it “ends 1o last longer” in some specific sense.
If the lifetimes of systems 1 and 2 are denoted by T and T, then one would certainly consider
system 2 better than system 1 if

P(T,>0=P(T,=1) Yir=0, (8)
that is, if T, is stochastically smaller than T (T, =" T:). For a system ¢ of order n having
statistically independent components whose lifetimes { T,} have distributions { F;}, i =1, ...,

n, the survival function Fi1) = P(T = 1) of the system lifetime T may be writlen as

F(t) = hy[F (1), Fyt), . ... F,(1)], (9)
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where Fift =1 — Fit)yfori= 1, ..., n.

In Section 3, the comparison of systems is restricted 1o the case where component lifetimes
are independent and identically distributed [as in the comparison in (7). While this would seem
o be quite a restrictive assumption, we wish o put forward the argument that, in a sense, this
is the most natural situation in which to compare systems, and that such a comparison constilutes
the truest test of a preference for one system over another.

While there are many situations in which we might wanl o compare two systems, these
situations tend 1o be characterized by the fact that the sysiems being compared are “similar.” For
example, we would probably not think of comparing the reliability functions of a television set
and an automobile. We might, on the other hand, be very interested n comparing Lwo
automobiles. This suggests that comparison of systems makes the most sense when the systems
being compared are of the same order and when the components of one system can be viewed
as being comparable to those of the second system. Beyond the restriction to “similar systems,”
we would argue that the comparison is most meaningful when the component lifetimes of both
systems are independent and identically distributed. We would cerainly prefer 1o use a
four-component series system each of whose components work with probability (0.9 than a four
component parallel system whose components each work with probability (0.1, We would not,
however, declare a series system (o be beller than a parallel system on that basis. When
component lifetimes are taken as iid., any remaining differences in system lifetime character-
istics must be attributed to differences in the systems themselves. While we recognize that in
particular applications, the lifetimes of the components actually employed might not reasonably
be assumed o be i.id., the relative performance of systems under an i.i.d. assumption can still
provide worthwhile information about system quality. We now tum o the development of our
approach to comparing systems of order n with i.i.d. components.

2. THE SIGNATURE OF A COHERENT SYSTEM

A comprehensive treatment of system comparisons would have to account for all of the
intricacies involved in a system’s design and the effects of the varying distibutions of
component lifetimes and the possible dependencies among them. Comparisons are simplified
substantially when component lifetimes are independent and have a common distribution F.
Interestingly, the simplification goes beyond replacing a complex joint distribution of X, . ..,
X, by asimple function of the single distribution F. The i.i.d. assumption also allows us 1o focus
on a particular, easily quantifiable aspect of a system’s design which contains all the information
that is relevant to the characteristics of system lifetime. In this section, we define the “signature™
of a coherent system and illustrate its computation.

Consider a coherent system whose n components have lifetimes that are i.id. according 1o a
continuous distribution F. Let X, ..., X, be the component lifetimes, and let T be the lifetime
of the system. We note first that the system lifetime T has an order statistic equivalent, that is,
that system failure always coincides with that of the ith component for some i € {1, ..., #n}.
Indeed, if X,;, represents the ith smallest component lifetime, i = 1, ..., 0, then we have T €
{Xos Xz oo 2 X b owith probability one. Thuos, we may identify the probability vector p,
where

pi= P(T = Xy), i=1,...,n, (1

corresponding 1o each fixed coherent system of order . It will shortly be shown that the lifetime
distribution of a coberent system with i.i.d. components depends on the system’s structural



Kochar, Mukerjee, and Samaniego: The “Signature” of a Coherent System 511

design solely through the vector p; we will thus refer o p as the systiem’s signature. In terms
of the orderings of the component lifetimes X,, X5, ..., X, one can define the signature p as
the probability vector with elements

# of orderings for which the ith failure causes system failure

= = : i=1,...,n.

The vector pis most easily obtained from the familiar cut set representation of system lifetime,
namely,

T=min max X, (11}
I=j=r iEK;
where K, ..., K are the minimal cut sets of the system under study. The following example

illustrates the computation of p for a particular system.
EXAMPLE: Consider the system displayed in Figure 3 below.

Fo
gy

—(Ij— — (12)
—(—

Figure 3. A series-parallel system in three components.

The minimal cut sets of this system are £, = {1} and K, = {2, 3}. From (11}, we may
identify the system lifetime as

T = min{X,, max(X, X}

The order statistic equivalent of T is shown below for each of the 3! orderings of the component

lifetimes:
Ordering T
Xi<X:<X; Xy
X <=X<X X
o< X <X Xy (13)
X=X, <X, Xz
Xa< X <X, Xz
<X <X Xz

Since each ordering is equally likely, we may identify the signature of the system above as p =
(143, 2/3, 0).
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We now establish a fundamental property of a system’s signature p, namely, that the
distribution of the system lifetime T, given iid. components lifetimes with c.df. F, can be
expressed as a function of p and F alone.

THEOREM 1: Let X, ..., X, be the i.i.d component lifetimes of a coherent system of order
n, and let T be the system lifetume. Then

i—1

] o . I
HT?IF=2pn2(jJWUw{HHT{ (14)
i=l J=n "
FPROOF: Let & be a permutation of the positive integers {1, 2, ..., n} and let A; be the
collection of permutations for which T = X,;,, that is, for which T = X_ where X_ < X_
< ccc= X Note that, given any penmultation 77, X = X wp. 1. We thus have

™,

L

PiT=1)= 2 P(T=1, wEA)

= X N PT s BoRygeeng)y)

i=1 wEA

=3 % PUX i, Kol Seve®, ),

i=1 wEA

=2 2 P> 6, X0 <X <00 < X)), (15)

i=1 weA
But the events {X,;, = t} and (X <X_ <---<X_}in(l5)are independent by Lemma
8.3.11 of Randles and Wollie [8], since the former depends solely on the order statistic X,;, and

the latter depends on the X's only through the mnks of the orginal observations X, X,, -+ -,
X, It thus follows that

"

PT=0=2 P(Xg=0) & PIX,<Xo<or o2 X)

i=1 mEA;

=¥ P(X, =0P(wEA,)

i=1

L

= 2 pPX = 1)

i=1

i-1

= S5 3 (1) F@Y Ewy,

i=1 J=0
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completing the proof. O

It is worth mentoning that the representation in (14) holds in contexts more general than the
one studied bhere. In particular, it holds under the less siringent assumption that the component
lifetimes X, ..., X, are exchangeable.

The representation in (14) is exploited in Samaniego [9] to obtain a useful representation of
a system’s failure rate when F is absolutely continuous. In that paper, necessary and sufficient
conditions are given for a coherent system in 1.i.d. IFR components to itself have an IFR lifetime
distribution. Our present inlerest is the comparison of two systems with 1i.d. components. As
is clear from Eq. (14), the lifetime of a coherent system with i.4.d. components depends on the
structure of the system only through the signature p. Indeed, if two systems have the same
signature, the stochastic behavior of their lifetimes is identical. It is natural w ask if two different
coherent systems can have the same signature. The answer is yes; it is casily verified that the
four-component system with minimal cut sets {1, 2}, {2, 4}, {3, 4} has the same signature as
the four-component system with minimal cut sets {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}.

The discussion above shows that a certain amount of simplification is possible in character-
izing the influence of system design on the distribution of system lifetime. The signature p of
a syslem serves as 4 compact but complete summary of the structure function ¢, and also
eliminates the duplication inherent in different siructure functions whose impact on the distri-
bution of system lifetime is identical. We develop below a further simplification, showing that
the signature of a given system can be obtained without further computation from the signature
of its dual.

Let ¢ be the structure function of a system of size n. The dual of ¢ is the structure function
" given by

d(x)=1— ¢(1 —x) ¥Yxe[0.1]" (16)

It follows that if y is a cut vector of ¢, ie., ¢iy) = 0, then $”(1 — y) = 1, thatis, 1 — y is
a path vector of ¢, Further, if A, ... . A, are the minimal path sets of ¢, then A, ..., A,
are the minimal cut sets of ¢”. Simple examples of duality include: the k-out-of-n system is the
dual of the (n — & + 1)-out-of-n system. For further discussion of duality, see Badow and
Proschan [1].

Since the number of coherent systems of order n can be large (growing exponentially in n),
results which demonstrate relationships between particular systems serve o reduce the compu-
tational burden of obtaining the signatures of all systems of a given order. The following result
cuts this burden in half.

THEOREM 2: Let p be the signature of a fixed system ¢ whose n components have i.id.
lifetimes, and let p” be the signature of its dual system ™. Then

n=pr for i=12 ...,n (17

PROOF: Given component lifetimes X |, ..., X, let T and T" be the lifetimes of systems ¢
and ¢", respectively. It suffices to show that

=X

i}

if and only if TP =X s
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Employing the notation introduced in Theorem 1, let o represent a given permutation of the
integers { 1,2, ..., n},and let A; = the set of permutations of {1, ..., n}suchthat T=X_,
where X, < X_ < ... <X_:thus, w € A;if and only if T = X ;. Now, assume that 4; is
nonemptly. For € A, letx_ € [0, 1}" be the state vector of the components at the ime of
system failure, that is, let x_ be defined as

1 if j =i,
tm =10 ifj=i.

Thus, x_ has exactly i 0's and (n — i) 1's. Moreover,

hing) =10
and
: 1 ify = x,,
bly) = !ﬂ ify =x,. (18)

Now, by its definition, 1 — x_has (n — i) 0"s and i 1's. Further

$%(1 —x,) =1— dix, =1

and
1 ify=1-x
ey — e
¢7(y) !u ify<1-—x, (19)
From the latter characteristic of &, we deduce that the (n — i + 17" failure causes the failure
of the dual sysiem ¢, ie, TP = X .- Since this holds true for every 7 € A, we have that
™=X,_.. 1y 1t follows that if p, = P(T = X ,.) and pP =PI = X)), then
I:.Ph PE: EREC Y P.'.l.r = I:Pf_:j: Pfjj--j: S sp-?}: fzﬂ}
that is, p; = p&_,,, fori = 1,2, ..., n, as claimed. O

We now proceed o our investigation of comparisons among coherent systems of a given
order based on the properies of the systems’ signatures.

3. COMPARING SYSTEM LIFETIMES

In this section, we develop three different scenarios for comparing the pedformance of
coherent systems. Our three resulis feature increasingly stringent requirements on syslem
signatures and demonstrate that these lead o correspondingly stronger conclusions regarding the
distributions of system lifetime. We begin with a result which examines the consequence of the
stochastic ordering of two signatures. For two discrete distributions p, and p, on the integers
{1...., n}, wewrite p, =" p, if and only if
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i for j=1,2,..0,m (21)
= i=y

It is obvious that ordered structure functions, ie., ¢ (X) = ¢ (X) as in (3), will imply ordered
signatures, ie., p, =% p.. The systems displayed in (4) and (3) consutute an example which
shows that the converse implication fails. The relation between stochastically ordered signatures
and system lifetimes is as follows:

THEOREM 3: Let p, and p, be the signatures of the two systems of order n, and let T, and
T, be their respective lifetimes. If p, =% p,, then T, =7 T,.

PROOF: We may rewrile the representation in (14) in a more convenient form:

PT=0=2p > (j') (FOY (1 — F(E)P
i=1 g=0

=% ( > p..) (7) Py (1 = Fleyy .

J=0 =i+l

We thus have, by virtue of the assumption that p; =" p.. that

a1 f

Pri=9=2| 2 P“) (7) FY (1= Fe)
J=0 =i+l !

=¥ | = pz,) (%) (F(y (1 = E(n))~
J=0 hi=j+l i

which is equivalent to T, =% T |

It is easy to verify that the five different systems of order 3 are totally ordered in the sense
of the theorem above. The 20 different coherent systems of order 4 cannot be totally ordered in
this way. For example, the systems in Figure 4 below are nol comparable by the method
developed in this paper. While short of providing a total ordering, Theorem 2 sheds considerable
light on the relative merts of various systems of order 4. Of the 190 possible pairwise
comparisons among the systems of order 4, Theorem 3 may be applied 1o 180 pairs, identifying
in each of these cases the system whose lifetime is stochastically larger when component
lifetimes are iid. Retuming to the comparison of the two systems of order 4 displayed in (4)
and (5), it can easily be verified that the signature of the system in (4) is p = (0, 1/2, /2, (),
while the signature of the system in (3)is (1/4, 1/4, 1/2,0). It follows from Theorem 2 that, given
ii.d. components, the system in (5) has a stochastically smaller hfetime.
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pi= (50 pz=(0,2,1,0)

Figure 4. Noncomparable systems of order 4.

We now examine the implications of a stronger form of ordering between two system
signatures. Let X, and X, be random vardables with survival functions F| and F,, respectively.
Then X, =" X, (ie, X, is smaller than X, in the hazard rate ordering) if and only if the mtio

Filx)
Fiix)

is nondecreasing for x < F, '(1). For two discrete distributions p, and p, on the set {1.. ... n}.

we say that p, =™ p, if and only if

is nondecreasing in i The following lemma is proved in Joag-dev, Kochar, and Proschan [5]:

LEMMA 1: Let o and B be real valued functions such that 3 is nonnegative and off3 and 3

are nondecreasing. If X; ~ F,, i = 1, 2, and X; =" X;, then

J . alx) dFylx) J alx) dFalx)

- (22)

— i

J Blx) dFiix) J Bix) dF:ix)

—

THEOREM 4: Let p, and p, be the signatures of two coherent systems, and let Ty and T, be

the coresponding system lifetimes. If p, =™ p, then T, =™ T5.

PROOF: The survival function of T, may be wrillen as
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P(T,>1) = 2 puP(X; > 1)

We must prove that

2.- PE:PI:X-;H = 13) 2; pP(X, =)
2; Pl Xy = 1) 2; PP Xy = 1)

v

v H = fa, E23}

or equivalently

2.- PP Xy = 1) E.. Pl Xy = 1)
2.- PI:FI:XHI = 1) 2 pP(X =)

I

Y o<t

To employ Lemma 1, we make the identification a(i) = P(X; = ;) and B(i) = P(X,;, = 1,).

and identify F; as the discrete distribution p; for j = 1, 2. First. we note that

(i) _PXy>t) (24
Bli)  P(Xy=>1) il

is an increasing funcuon of i, The monotonicity of the ratio in (24) follows from the fact that

P(Xy>1)  PX,

il = 'FE-' V
= = fa
PXuun=t) PlXy>=n) i

PXyn=t)  PlXgy =)
e Y=

F‘{ﬂ"']ll:'r} . . . .

e is an increasing function of t.
Fiylt)

The latter fact follows since X, =™X,. a result which holds as long as the X;'s are

independent, whether they are identically distributed or not (see, for example, Boland, El-

MNewehi, and Proschan [4]).

Secondly, we note that B(i) = P[X,;, = t] is increasing in § since the successive order
statistics are stochastically ordered. The required result, ie., meguality (23), thus follows from
(22) under the assumption that p, =" p.. O

Our next result studies the effect of likelihood ratio ordering between system signatures. Let
X, and X, be real valued random variables with respective densities f, and f5. Then X, =" X,
(ie., X, is smaller than X, in the likelihood ratio ordering) if and only if the mio

flx)
filx)
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is nondecreasing in x. For two discrete distributions p, and poon {1,2, ..., n},p =" p. if and
only if p,J/p,; is nondecreasing in i.

THEOREM 5: Let T, and T, denote the lifetimes of two coherent systems in ii.d. compo-
nents with signatures p, and p,. respectively. If p, =" p., then T, =" T2,

PROOF: For j = 1, 2, the survival function of T, is

a

Fit)= 2 pP(X,>1)

i=1

and the corresponding probability density function is

ft) = 2 pafule).

i=1
It is sufficient 1o prove that for any real number ¢, the function

L "

gl:-” = E Pl.lﬁ.'ll:f} — g z th-;all:f}

i=1 i=1

L

= 2 [Pll i ('P]_.]If:”(f}

i=1

has at most one change of sign from negative to positive as ¢ goes from 0 o . Since
P =" p2. pulpy; is nondecreasing in i and, as a result, the sequence | po; — cp,;} has at most
one change of sign from negative to positive as i goes from 1 o . Since in the iid. case,
X1, =" X, for any i, we have that f,,(r)/f,; _ (1) is nondecreasing in 1. That is, the function
Tl is Totally Positive of Order 2 (TP,) in (i, t). 1t follows from the variation diminishing
property of TP, functions (see Karlin [6]) that g(#) has at most one change of sign from negative
o posilive as f increases from — 1o =, This completes the proof. O

The results above show that the precise charactenstics of a coherent system’s signature have a
direct effect on 1ts lifetime distribution. As 15 well known (see Shaked and Shanthikumar [10]), the
orderings we have discussed are increasingly smingent, with p, =" p, = p, =" p, = p, =9p.
Examples of systems with signatures satisfying some but not all these order relations are displayed
in Figures 5 and 6.

There are a varety of other implications one may draw about the lifetime distribution of a
system based on the representation (14) of that distibution as a function of system signatures.
Forexample, it was shown in Samaniego [9] that a coherent system with n i.i.d. IFR components
was [FR if and only if the rational function o, given by

2”__] in— i]lpH,J(’:)uJ
) = -

s (s, (i)

: (25)
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Figure 5. Systems for which p, =" po. py 2" po. pr £ pa

2
(2)
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Figure 6. Systems for which p, = po. p; =" po. pr £ po.

is increasing for w € (0, =), Using the failure rate representation in that paper, namely,
0 = LT %
) = = *rif), 2
rolx 1), i1 (26)

which is valid when F is absolutely continuous with failure rate r, one may easily establish the
following ordering result.

THEOREM 6: Let b be a fixed system in i.i.d. components, and let F, F, be two absolutely
continuous lifetime dismbutions whose flure rates satsly

rilx) = riix) Y ox

Fori = 1,2, let T; be the lifetime of the sysiem ¢ when its components have ii.d. lifetimes
drawn from F, and suppose that the function o in (25) s increasing on ({), =) Then

rrlx) = rplx) Y x,

that is, hazard rate ordering of component lifetimes implies hazard rate ordering of sysiem
lifetimes.
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4. AN APPLICATION INVOLVING REDUNDANCY

As a final example demonstrating the utility of system signatures in the comparison of
particular systems, we consider a problem posed in the recent literature regarding the compar-
ative performance of system vs. component redundancy. [t is, of course, well known that
componentwise redundancy is more effective than system-wise redundancy. Theorem 2.4 in
Barlow and Proschan [1] states this domination in terms of the structure functions of the two
designs (¢, = b)), Assuming iid. component lifetimes, this then implies domination in terms
of signatures (p; =% p:) and thus in terms of system lifetimes (T, =" T3). But other questions of
mterest anse in this context. For example, in this same 1i.d. setting, 15 10 possible o conclude
that T, =" 7,7 Boland and El-Newehi [3] showed that this latter implication did not hold
general, but conjectured that hazard rate ordering of system lifetimes does hold when the two
types of redundancy are applied w0 a k-out-of-n system in iid. components.

The conjecture above has now been proven true; indeed, Singh and Singh [11] establish the
stronger implication T, =" T for componeniwise over systemwise redundancy of k-out-of-n sys-
tems. However, their proof involves a technical lemma establishing several delicate inequalities, and
requires the el assumption that the underlying component hfetime distmbuton F s absolutely
continuous. We provide an aliernative proof here that is both simpler (i.e., based on elementary
combinatorics) and more general than that given by Singh and Singh [11]. Our proofs of the
following two theorems hold for arbitrary continuous distributions F. A direct comparison of sysiem
signatures, together with an application of ow Theorem 5, then proves the conjecture.

A 2 out of 3 system with redundancy at the system level is pictured in Figure 7, while a
2-out-of-3 system with componentwise redundancy is pictured in Figure 8.

We first establish the general form of the signatures of these two types of systems.

THEOREM 7: The signawre p of a k-out-of-n system with systemwise redundancy is
w1 n
{k-l}{k-l -J
2n -1
{\Jk 2 J'.}

withp, =0forl =i<2n— 2k+ 2andfor2n — k+1<i=2n

Pra-thidir = forr=0,1,..., E—1 (27)
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Figure 7. Systemwise redundancy.
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Figure 8. Componentwise redundancy.

PROOF: For r = 0, ..., k — 1, we give a combinatorial proof which accounts for a mlio
composed of: (i) the number of orderings of the 2n component failures for which the system
fails upon the (2n — 2k + 2 + rith failure o (ii) the number of all possible orderings [that
is, (2n)!] of component failures. Since system failure is only possible when at least (n — & +
1) failures occur among the orginal and among the back up components, it is clear that p; =
0if i << 2n — k + 2. Funher, the maximal number of possible failures that can occur without
causing failure to the sysiem is 2n — & (e.g., n — & originals and n backups). It is thus clear
that p, = O fori > 2n — k + 1.

Now, consider orderings for which the (2n — 2k + 2 + r)jth component failure is fatal to
the system. The number of such orderings is the product of the following factors: there are 2
ways o select bawch #1, the baich of components (original or back up) from which the
component failure fatal o the system will be drawn; there are [ 4 - 1) ways to select the
(n — k + 1) components that fail among the nin batch #1; there are ( n- k% 140 ) ways to
select the (n — k + 1 + r) components that fail prior 1o system failure among the n in batch
#2, there are in — k + 1) ways o select the failed component which is fatal to the system;
there are (2n — 2k + r + 1)! orderings of the (2n — 2k + r + 1) component failures that
occur prior o the component failure fatal 1o the system; and there are (2k — r — 2)!
orderings of the remaining (hypothetical) component failures following system failure. It is
easy Lo show that the product of these terms, divided by (2n)!, reduces to the expression for
Papeapazer I (27). O

THEOREM 8&: The signature of a k-out-of-n system with redundancy at the component level
is given by

I | G s

Poag_s+24; ( Th — } ft}rr={}, ]., et ,.‘.' = ]., [23}
3k =2 =rs

withp, =0forl =i<<2n — 2k + 2andfor2n — k+ 1 <i=2n
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PROOF: As Figure 8§ suggests, it is helpful 1o think of the system of interest here as a
k-out-of-n system in n modules, each module being a small parallel system. For such a system
to fail, we must have precisely (n — & + 1) failed modules. For reasons similar to those cited
in the proof of Theorem 7, we have p; > O ifandonly if 2n — 2k + 2 =i =2n — k + 1.

Now, consider orderings of component failures for which the component fatal o the system
is the (2n — 2k + 2 + rjth component 1o fail. The number of such orderings is the product
of the following factors: there are (, _ P, ;) ways to select the (n — & + 1) modules whose
failure results in system failure; there are (% 1) ways to select r other modules in which single
component failures have occurred prior to system failure; there are 2° ways 1o select a single
failed component from the component pair in each of the r modules containing exactly one
failure; there are (2n — 2k + 2) ways to select the component whose Tailure is fatal o the system
from among the 2n — 2k + 2 components in the first n — & + 1 modules to fail; there are
(2n — 2k + 1 + r)! orderings of the (2n — 2k + 1 + r) components that fail before the
component whose failure is fatal o the system; and there are (2k — 2 — r)! orderings of the
remaining { hypothetical) component failures following system failure. The product of the terms
above, divided by (2n)!, can easily be reduced to the expression forp,, 5, 5, in (28) O

Armmed with the signature formulae for k-out-of-n systems under systemwise and compo-
nentwise redundancy, we are now in a position to establish the desired result.

THEOREM 9: For 1 = & = n, let T, be the lifetime of a k-out-of-n system with i.id.
components under systemwise redundancy, and let T, be the corresponding lifetime of the
system under componentwise redundancy. Then T, =" Ta.

PROOF: Forr = 0, 1, ..., & — 1, we have from Theorems 7 and § that

i) k=1Y 4s
I: Pro—2c+24r r B
3r) = — = ¢
; {1} i
Pra—2k 424 (J: S I:}

Now si(r) is proportional to the function

o=k +r+ 1)1
tir) = =

The fact that s(r) is nondecreasing in r is implied by the fact that the inequality 1(r + 1)/#r)
= 1 holds for all r = 0. Given the monotonicity of s, it follows from Theorem 5 that
=" 0O

Mote that the fact that p'" =™ p'*', as shown in Theorem &, implies (by virtue of Theorem 2)
that the signatures of the two systems that are the duals of those in Theorem 8 satisfy the
opposite inequality, that is, pi' =" pl'. This in wrn implies that the lifetimes of the dual
systems satisfy T7 =" T2 This result is an immediate consequence of the approach taken here,
but is not easily derved as a consequence of the developments in Singh and Singh [11].
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