Uncertainty Principles on Nilpotent Lie Groups

Sanjay Parui

A thesis submitted to Indian Statistical Institute
in partial fulfilment of requirements

for the degree of Doctor of Philosophy

ATATIZTICAL

g

| Frdrdmer 2
LIRITY 1M DIVERZ[TY

Bangalore
July 2005



ACKNOWLEDGEMENTS

A long exhausting journey becomes easier when we travel with acquain-
tances. I owe to all of them who have provided support, encouragement and
assistance along the way in writing this thesis. It is a great pleasure for me

to get an opportunity to express my gratitude to all of them.

My deepest gratitude is to my supervisor Professor S. Thangavelu for
his continuous guidance and stimulating discussions on various aspects of

Harmonic analysis.

I am grateful to the Stat-Math faculty at the Indian Statistical Institute,
especially to Professor S.C. Bagchi, Professor G. Misra and Professor A.
Sitaram for their excellent teaching, guidance and endless support. Their
ideas and concepts have had a remarkable influence on my entire research

career.

No words can express my indebtedness to Dr. Rudra P. Sarkar for the
extensive discussions that I had with him, and for his brotherly advice that

helped me to stay in the right track all along.
A great amount of gratitude is deserved by Dr. E. K. Narayanan for

reading my thesis with infinite patience and providing suggestions for its
improvement.

I would like to thank all of my friends for their inspiration from the
beginning until this lovely moment. My special thanks go to Mr. Binod
Kumar Sahoo who not only shared many of his experiences and thoughts
with me during the last four years but also showed himself to be a very kind

person, and a most helpful and trusted friend. I will miss you all.

I also extend my sincere thanks to Professor N.S.N. Sastry, Head of the



ii

Stat-Math Unit, ISI Bangalore Center, for providing me everything, I have

asked for throughout the development of this research.

I owe thanks beyond measure to all other members of the ISI Bangalore
Center, for their cheerful assistance. However, Ms. Asha Lata and Ms.
Mohana Devi, who extended their helping hands throughout, deserve a more

personal note of gratitude. I shall cherish their friendship forever.

I wish to thank the Indian Statistical Institute for providing me financial

assistances and research facilities.

This acknowledgements is surely incomplete without expressing my in-
debtedness to my parents and my brothers for their unconditional love and
support. Without their encouragement and understanding it would have

been impossible for me to finish this work.



CONTENTS

1. Uncertainty Principles on Heisenberg Groups . . . . . . . .. ...
1.1 Heisenberg groups and their representations . . . . . ... ..
1.2 Uncertainty Principleson H} . . . .. ... ... ... ... ..

1.2.1  Vector valued uncertainty principles and their appli-

cationsS . . . . . ...

1.2.2  Heat kernel version of uncertainty principles for H}

2. Uncertainty Principles for Step T'wo Nilpotent Lie Groups . . . . .

2.1 Preliminaries on step two nilpotent Lie groups . .. ... ..
2.1.1 Representations of step two nilpotent Lie groups

2.2 Step two stratified groups . . . . .. ...

2.2.1 Uncertainty principles on step two stratified groups
without MW- condition . . . . ... ... ... ....

2.2.2  Uncertainty principles on step two stratified groups
with MW condition . . ... ... ... ... .....

2.3 Uncertainty principles on general step two groups . . . . . . .
2.3.1 Uncertainty Principles on step two groups without
MW condition . . . ... ... ... L.
2.3.2  Uncertainty principles on step two groups with MW

condition . . . . . . ...



Contents iv

3. Uncertainty principles for general nilpotent Lie groups . . . . . . . 61
3.1 A new version of Cowling—Price theorem for R™ and its ap-

plication to nilpotent groups . . . . . . . . ... ... 61

3.1.1 A new version of Cowling—Price . . . . . . .. ... .. 62

3.1.2  Cowling—Price theorem versus its new version 67
3.1.3 An uncertainty principle for operators and Cowling—

Price theorem for nilpotent Lie groups . . . . . . . .. 69



0. PREFACE

Roughly speaking the Uncertainty Principle says that “ A nonzero function
f and its Fourier transform f cannot be sharply localized simultaneously”.
There are several ways of measuring localization of a function and depending
on it one can formulate different versions of uncertainty principle. A classical
theorem of Hardy [14] proved way back in 1933 states that f and f both
cannot have arbitrary Gaussian decay. Here the localization of f and f
are measured in the sense of rapid decay at infinity. More precisely, for a

measurable function f on R if
F@)] < Cem, |f(©)] < e

for some a,b > 0, then f = 0 for ab > 1/4 and f(z) = Ce~*" for ab = 1/4.
Also there are various ways of measuring decay of f and f . Cowling and
Price [6], Beurling [17] measured the decay in terms of integral estimates
of f and f. Recently Bonami et al [5] generalized the result of Beurling
and characterized Hermite functions. The theorems of Hardy and Cowling—
Price follow from the stronger result of Bonami et al. Narayanan and Ray
observed in [23] that Hardy’s theorem can be viewed as a characterization

of the Heat kernel associated with the Laplacian on R.

Analogues of Hardy and Cowling—Price theorems for various Lie groups
have received considerable attention during the last decade. Heisenberg
group is the most well known example from realm of nilpotent Lie groups.
Uncertainty principles on Heisenberg group was first considered by Sitaram,
Sundari, Thangavelu in [30]. After that Bagchi and Ray [2] proved Cowling—
Price theorem for Heisenberg group. In the last few years Thangavelu proved

analogues of Paley—Wiener theorem and Hardy’s theorem for Heisenberg
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groups, see the monograph [34] and the references there. He formulated the
Hardy’s theorem in terms of the Heat kernel associated with the sublaplacian
on the Heisenberg group (see [32]). We call it the Heat kernel version of
Hardy’s theorem.

An analogue of Hardy’s theorem for all simply connected nilpotent Lie
groups was proved by Kaniuth and Kumar [19]. A slightly different version
of Hardy’s theorem was also proved in [1] for connected simply connected
step two nilpotent Lie groups. Cowling—Price theorem has been considered
by Ray [28] for connected simply connected step two nilpotent Lie groups.
All these authors measure the decay of the group Fourier transform f (\) in
terms of the Hilbert—Schmidt norm and the results are essentially for the

central variable.

However the research in this direction is still incomplete since in most
of the results proved in the above mentioned papers the case ab = 1/4 has
been left open. Once we have the result for ab = 1/4 we can always deduce
the case ab > 1/4. Thangavelu conjectured in his book [34] that the heat

kernel version of Hardy’s theorem is true for all stratified groups.

The main purpose of this thesis is to prove the cases ab = 1/4 and get
complete analogues theorem of Hardy, Cowling—Price and Beurling for con-
nected simply connected step two groups. The conjecture of Thangavelu
will be proved for all step two stratified groups. We prove a different ver-
sion of Cowling—Price theorem for Euclidean Fourier transform and as an
application of it, formulate and prove a version of Cowling—Price theorem

for general nilpotent Lie groups.
The structure of the thesis is as follows:

In Chapter 1 we introduce nonisotropic Hesienberg group H and de-
scribe its representations. We prove vector valued Beurling’s theorem and as
an application of it we get theorem of Hardy and a version of Cowling—Price
for H}. A complete analogue of Cowling-Price and Morgan’s theorem has
been obtained after proving a version of Beurling’s theorem for H}. We de-

fine Fourier-Weyl transform of a measurable function on H}} and formulate
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a version of Beurling’s theorem. Finally we prove heat kernel versions of

Hardy and Cowling—Price theorems.

In Chapter 2 we describe the irreducible unitary representations, the
Plancherel formula and other relevant aspects of step two connected simply
connected nilpotent Lie groups. We prove the heat kernel versions of Hardy
and Cowling—Price theorems for all step two stratified groups. Also an alter-
native condition on f is obtained to formulate and prove heat kernel versions
of Hardy and Cowling—Price theorems for all connected simply connected
step two groups. Analogue of Beurling’s theorem for all step two groups is
also proved. All other results proved in Chapter 1 has been extended for

step two groups.

In Chapter 3 we obtain a new version of Cowling—Price theorem for
Euclidean Fourier transform where the decay has been measured only on
f and its derivatives. We also give a comparative study of Cowling—Price
theorem and its new version. We use this new version to obtain an un-
certainty principle for operators and Cowling—Price theorem for Laguerre
expansions of polyradial functions. Finally we get an uncertainty principle

for all connected simply connected nilpotent Lie groups.

The thesis is based on [25, 26] and [24]. The paper [25] will appear in J.
Austral. Math. Soc. (series A).



1. UNCERTAINTY PRINCIPLES ON HEISENBERG GROUPS

Our aim in this chapter is to prove some uncertainty principles for non—
isotropic Heisenberg groups. Some of these results are known in the case
of isotropic Heisenberg groups but the proofs do not extend to the non-—

isotropic case. We provide different proofs which work for both cases.

1.1 Heisenberg groups and their representations

Given d = (di,dg, -+ ,dy),d; > 0 the non-isotropic Heisenberg group H} is
C™ x R equipped with the group law

1 n
(z.0)(w,8) = (z +w,t + 5+ 5 > djIm(z;w;)).
j=1
For each A € R\ {0} there exists an irreducible unitary representation )

realized on L?(R™) given by

. M(Zn: dj(zi€i+5x5y5))
(2, 1)) = eMe (€ +y),
where ¢ € L?(R") and z = z + iy. These are all the infinite dimensional
irreducible unitary representations of H} up to unitary equivalence. For
f € LY(H?), its group Fourier transform F(N) is defined by
fN) = [ fzt)ma(z,t) dz dt. (1.1.1)
Hy
We define 7y (z) = mz(z,0) so that my(z,t) = emy(z,0). For f € LY(C"),
we define the bounded operator T)(f) on L?(R™) by

Lo = [ FEm)e ds. (11.2)
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It is clear that || T\(f)|| < ||f|1 and for f € L'(C") N L?*(C"), it can be
shown that T (f) is a Hilbert-Schmidt operator and we have the Plancherel
theorem
n
I = o T4 [ 1P e (113)
j=1
Thus T} is an isometric isomorphism between L?(C") and Ss, the Hilbert
space of all Hilbert-Schmidt operators on L?(R"). For f € Ll(Hg), let

) = / TN f (o) di

be the inverse Fourier transform of f in the t—variable. Then from the
definition of f()), it follows that f(\) = Tx(f*).

If dj = 1 for all j then H} is denoted by H", called the Heisenberg group.
For H™ the representations corresponding to 7y will be denoted by py. Thus
pa(z,t)p(&) = ei’\tei)‘(x'er%x'y)qb(f + ), for all ¢ € L?(R") and A € R\ {0}.
In this case we will denote T)(f) by Wx(f) which will be called the Weyl

transform of f. For A = 1, we define W (z) = pi(2).
For z € R and k € N the polynomial Hy(x) of degree k is defined by the
formula
k
o k x2 d _x2

We define the Hermite function hy(x) by

22

hi(x) = (2Fk!\/7) V2 Hy(2)e 7.

For = (p1,--+ , ) € N”, the normalized Hermite function ®,(x) on R”
is defined by

O, (x) = hy, (1) -y, (). (1.1.5)

Hermite functions are eigenfunctions of the Hermite operator H = — A+ |xz|?
and they form an orthonormal basis for L?(R™). For pu,v € N™, the special

Hermite function ®,,, is defined by

D, (2) = (2m) "2 (W(2)®,, D). (1.1.6)
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These functions form an orthonormal basis for L?(C") and they are express-
ible in terms of Laguerre functions. For our purposes, we only require the

formula

®,0(2) = (27)"% <;>1 (\%)Me—ilzl? (1.1.7)

For a detailed account of Hermite and special Hermite functions we refer to
[36].

A basis for the Lie algebra of H is given by the left invariant vector
fields

0 1 0 0 1 0
Xid)=—+=dyi—, Yi(d=——=diz;j—, j=1,...,n.
i(d) 0 +2 iYige 5(d) dy; 2 iTige J RN L
and T. We define the sublaplacian L4 by
Lq=—> (X;(d)* +Y;(d)?). (1.1.8)

j=1
The sublaplacian is a subelliptic operator which generates a heat diffusion
semigroup. Let g4 be the heat kernel corresponding to this sublaplacian

which is given by

o0
Qa,d(2,t) = / e”\tqé‘,d(z,t) dt, (1.1.9)
—00
where
= d;\ 1 2
A _ J —zdjA(cothdjda)|z;]
Qua(2) =C ( - >e 1% JAWNE (1.1.10)
@ n][[l sinh dj\a

Then using the formula ( 1.1.10 ), it can be proved as in the case of H"
(see [34]) that it satisfies the estimate

|qu.a(z,1)] < Cema =P+, (1.1.11)

for some C, A > 0. We define

H(\d) =) <_8£2 + /\2d2§J> : (1.1.12)

J=1
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Using the explicit formula for the representations m) we can show that
mA(Lq) = HAA), mr(qa,a) = e *HOD. (1.1.13)

Given r = (r1,72, -+ ,ry), r; > 0, we define U(r) : L>(R") — L*(R") by
Ure(6) = [T rie(Vig Vst Vruga).
j=1

Then U(r) is a unitary operator on L?(R") and

HOQU(MND®, = | ST0M@u; + 1)dy) | UIND)S,.
j=1

If d; = 1 for all j, H(Ad) reduces to the scaled Hermite operator

H(\) = —A + Nz

1.2  Uncertainty Principles on H}

Roughly speaking the Uncertainty Principle says that “A non zero func-
tion f and its Fourier transform f cannot be localized simultaneously.” The
simplest example of this phenomenon is the Paley—Wiener theorem: the Eu-
clidean Fourier transform of a smooth compactly supported function on R"
can be extended as an entire function on C" and hence cannot be compactly

supported. Consider a function f such that for some a,b > 0
J(z) = O(e™*F) and f(€) = O(™"F)
where f is the Euclidean Fourier transform of f defined by

f&) =2 / e f(2) da.

n

For § > 0, let fs(z) = f(dz) so that f5(z) = O(e~®l#*) and f5(¢) =
0(675%‘342). As 0§ increases, f has faster decay. On the other hand decay of
f becomes slower. So f and f both cannot have arbitrary Gaussian decay,

as was proved by Hardy [14] in 1933 for n = 1.
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Theorem 1.2.1. (Hardy) Let f be a measurable function on R™ such that

f(z)| < Ce=* | f()| < Ce VP

If ab > 1/4 then f = 0 almost everywhere and f(z) = Ce=e for ab = 1/4.

Since ab > 1/4 implies f = 0 the result of Hardy is an example of uncer-
tainty principle for the Fourier transform. The case ab = 1/4 is considered
as a characterisation of the Gaussian. The Hermite functions ®,(x) satisfy
the conditions of Hardy’s theorem for any a = b < 1/2 and hence in the case
ab < 1/4 there are infinitely many linearly independent functions satisfying
the hypotheses of the theorem.

In 1983, Cowling and Price [6] replaced the L> estimates on f and f by

LP estimates and obtained a generalization of Hardy’s theorem.

Theorem 1.2.2. (Cowling—Price) For 1 < p,q < oo let fo;! € LP(R")
and fd)b_l € LY(R™), where ¢q(z) = e=*. Then f = 0 whenever ab > 1/4.

Note that the case p = ¢ = co in the above theorem is Hardy’s theorem
with ab > 1/4. The above result is true even if ab = 1/4 under the added
assumption that min(p, ¢) < oco. In fact we have the following results which

are stronger than theorems of Hardy and Cowling—Price.

Theorem 1.2.3. Suppose f is a measurable function on R™ such that it

satisfies the estimates
1f(2)| < O+ |z))™e " and |£(£)| < C(1 + |¢|)™e P,

Then for ab > 1/4, f = 0 and whenever ab = 1/4, f(z) = P(z)e =,
where P is a polynomial with deg P < m.

Theorem 1.2.4. Let N > 0 and 1 < p,q < co. Assume f € L*(R")

satisfies

f@e e\ (F@e N
@(u+mw>d< dé(u+mﬂ>%<
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If ab > 1/4 then f = 0 and for ab = 1/4 f(z) = P(x)e~**", where P is a
polynomial with deg P < inf{N — %,N - % .

The above results follow from the following stronger result known as

Beurling’s theorem.

Theorem 1.2.5. Let f € L2(R") be such that for some N > 0 it satisfies

the condition ‘ ™
||y
/ / /(= Hf e dx dy < oo.
n Jrn (1 [ + [y

Then f(x) = _0‘|‘”‘ where P is a polynomial and o > 0.

This result is an immediate corollary of the following theorem due to

Bonami et al [5].

Theorem 1.2.6. Let f € L*(R") be such that

|f (@)I1f (y)|elt=4)]
dx dy < 0o
/n/n (1 + ||+ [y)Y

for some N > 0. Then f =0 whenever N < n. If N > n, then the above
holds if and only if f can be written as

f) = Plaje 3042

where A is a real, positive definite, symmetric matriz and P is a polynomial
with deg P < &2,

Also the inequality case of the following theorem known as Morgan’s

theorem discussed in [2] can be proved using Theorem 1.2.5.
Theorem 1.2.7. Let f : R™ — C be a measurable function such that
(i) |f(z)] < Cemalel
(ii) |f(x)| < el

where 1 < p,q < oo, %—I—% =1 and (ap)l/p (bq)l/q > 1. Then f =0 almost

—alz|?

everywhere unless p = q = 2 and ab = 1/4, in which case f(z) = Ce



1. Uncertainty Principles on Heisenberg Groups 7

1.2.1 Vector valued uncertainty principles and their applications

In this section we formulate and prove analogues of the above theorems
for H}. In order to do that we need vector valued versions of the above
theorems. We first state and prove a vector valued version of Theorem 1.2.6.
In what follows H denotes a separable Hilbert space and L?(R"™, H) stands
for all H—valued function f on R™ such that ||f(x)|| is square integrable on
R™,

Theorem 1.2.8. Suppose f € L?(R™,’H) be such that for some N > 0 it

satisfies
[(z,y)]
[ [ e ollf @l
w e (L 2]+ [y

If N <mn, then f =0. If N > n, then the above holds if and only if f can

be written as

fle) = P(a)e 24

where A is a real, positive definite, symmetric matriz and P(z) = > x%),,
|| <m

(N—n
Yo € H and m < T)

Proof. Take ¢ € H and consider the function Fy(x) = (¢, f(x)). Since
1/7;(5 ) = (o, f (£)), using Cauchy—Schwarz and the hypothesis of the theorem

we have ()
|Fy ()| Fp(€)]el®
dr d€ < 0.
L L e e

Applying Theorem 1.2.6 to the function Fys we have Fj(x) = e~{A@)22) p,(z),

where A(¢) is a real, positive definite, symmetric matrix and Py (x) is a poly-
nomial of degree < N=n)  We will write Py(z) = > Col¢)z®. We want

laj<m

to show that A(¢) = A is independent of ¢. To show this we need to prove

the following;:
If for each x € R

¢ — (@@ P () (1.2.1)
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where Py(x) is a polynomial in z, is a bounded linear functional on H then
a(¢), b(¢) are independent of ¢.

From the linearity of the above map ( 1.2.1 ) we have
e*(a(¢>)x2+b(¢)w)p¢(x) + e*(a(¢)12+b(¢)x)pw(m)
= la@rn bt p (), (1.2.2)

Without loss of generality we assume a(¢) < a(v).
Case(i): If a(¢) < a(v) < a(¢ + 1), we have from the above equation

(@(+)-a(9)22 —0()2) P () 4 ((@(6+)-a())a* b)) p (1)

= ¢ tOHTp (7). (1.2.3)

This shows that left hand side of the above equation ( 1.2.3 ) grows faster
than the right hand side of the above equation and hence a(¢) = a(y) =
a(¢+ ).

Case(ii): If a(¢ + 1) < a(¢) < a(y), the left hand side of ( 1.2.3 ) decays
faster than the right hand side of ( 1.2.3 ) and hence a(¢) = a(v) = a(p+1).

Case(iii): If a(¢) < a(¢ + ) < a(y)), we rewrite the equation ( 1.2.2 ) as

(@) =a(6)2 -b(9)2) _ o((a)—a(ét))s?—b(ot)e) p ()

= —eWp ().

Arguing as before we conclude a(¢) = a(¢) = a(é + ).

Similar argument will show b(¢) = b(¢)) for all ¢,9 € H. Let us prove
that A(¢) is independent of ¢ using the above result. Since A(¢) is a sym-

metric matrix,

(A@)z,z) = D Cin(d)zjms

1<j,k<n
= ) Cil@)zjme +2 [ D> Cin(d)z; | 21 + Cua(g)t.
) i

We recall that for each z € R", ¢ + e~ (A(9)72) Py(2) is a bounded linear

functional on H. If we vary the variable x; keeping other (n — 1) variables
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fixed and use the above result we get
Cri(g)z] + Z Cij(p)z; = Cua(¢)z] + Z C1j()x;
j=1 j=1

for all ¢,4 € H. This is true for all (z1,---,z,) € R” and hence Cy;(¢) =
C1j(¢) for all ¢,9p € H and for all 1 < j < n . Similarly if we vary the
variable x; keeping other variables fixed we will get Cy;(¢) = Cy;(¢) for
all ¢, € H and for all 1 < k < n. Finally we conclude A(¢) = A is
independent of ¢. Therefore, ¢ — Py(x) is also a bounded linear functional
on H for all x € R". We write Py(xz) = >, Co(¢)z®. We claim that

laf<m
¢ — Cyu(¢) is a bounded linear functional on H for each a.. Let us consider

m
the case n = 1. In this case Py(z) = 3 Ci(¢)z* for all x € R. Choose
k=0

x; € R such that z; # z;, for all 0 < zj] < m. We consider a system of

linear equations given by:

I 2 - af Co(9) Py(z0)
Loa eoaf Ci(@) | | Pelz)
1 xm - oy Cm(9) P(b(xm)

Since z; # x; for all 0 <4, j < m the determinant of the (m + 1) x (m +1)
Vandermonde matrix is nonzero. Therefore, for each j, C;(¢) is a linear com-
bination of {Py(x¢), -, Pyp(xm)}. It follows that ¢ — Cj(¢) is a bounded
linear functional on H. Now consider the case n > 1. Suppose that our
claim is true for all n’ < (n —1). For x € R" and a € N" write z = (21, ),
a = (a1,&), where & = (2, -+ ,2z,) and & = (g, -+ ,ap). Therefore we

can write
m

Py(z)= > | D Copar()i® ] 5.

a1=0 \|a|<m

From the case n = 1, we get for each # € R*7!, ¢ > Y C’al,a/(qﬁ)isd is a
|&|<m
bounded linear functional on H for each (o, @). Now using the induction

hypothesis it follows that for each a = (a1,@), ¢ — Cq(9) is a bounded



1. Uncertainty Principles on Heisenberg Groups 10

linear functional on H. Therefore, for each « there exists 1, € H such that
Co(@) = (¢,14) and hence the theorem is proved. O

We state below a vector valued version of Theorem 1.2.5 which is a

consequence of Theorem 1.2.8.

Theorem 1.2.9. Let f € L2(R™,’H) be such that for some N >0

//Hf 2)|[1f(y He\xlly\<oo
nJrn (L[] +[y)Y

Then f(z) = e "’ P(z) where P(z) = Y 2%a, Vo € H,a > 0 and

laj<m

< (o)

In view of Theorem 1.2.9, all the theorems 1.2.3, 1.2.4 and 1.2.7 remain
true for vector valued functions. If f € L?(H?) then the function F defined
by F(t) = f(-,t) is an L?(C™) valued measurable function of ¢. Using the

Plancherel formula and Theorem 1.2.8 we have the following theorem:

Theorem 1.2.10. Suppose f € L*(H}) and for some N > 0, it satisfies

n/2 LA
[ /Hf DN W lhsel™
(14 N+ )™

m .
Then f(z,t) = e~ P(z,t) for some a > 0 and P(z,t) = (Z wj(z)t]>,
j=0
where ¥; € L*(C") and m < N1
An analogue of Cowling—Price and Theorem 1.2.7 for H™ has been proved
n [2] but the equality case has not been treated there. We prove equality

cases of theorems of Hardy and Cowling—Price. Immediate consequences of

the above theorem are the following three corollaries.

Corollary 1.2.11. Let f be a measurable function on H} such that it sat-
1sfies

(i) 1f(z,0] < g(z)(1+ [t))™e~", where g € LA(C™),



1. Uncertainty Principles on Heisenberg Groups 11

(i) 21 F W) las < C(1+ A)me .
Then f =0 for ab> 1/4 and if ab = 1/4 then f(z,t) = e_atQP(z,t), where
P(z,1) = jiotwj(z), ¥ € LT,
Corollary 1.2.12. Suppose f € L*(H}) and it satisfies the estimates

(i) 1f(z. )] < g(z)e” ", where g € L*(C"),

(id) N2 s < et

where 1 < p,q < o0, %—l—% =1 and (ap)l/p(bq)l/q > 1. Then f =

unless p = q = 2 and ab = 1/4 in which case f(z,t) = e~ (2) for some
Y € L2(CM).

Corollary 1.2.13. Suppose f € LQ(HQ) and for some N > 0, assume that

1) lze " A2 F O s\
/R<(1—|—]t])N ) dt<oocmd/R< (1+’)\’)N ) d)\ < 0.

If ab=1/4 then f(z,t) = e~ (i}iﬁj(z)tj), where each v; € L*(C") and
J:

m <min{N -2, N — 2}.

We remark that Corollary 1.2.12 has been proved in [2] with an extra
condition p > 2 and the equality case has not been treated. To get Cowling—
Price theorem for H}, we need a modified version of Theorem 1.2.5 for n = 1.

We record it as the following theorem.

Theorem 1.2.14. Let h € L*(R). Assume for some N > 0 and § > 0 it

satisfies

[ MU 4 4y < o (1.2.4)
(1+ |t + AN ’

where @Q is a polynomial of degree m. Then h(t) = P(t)e‘atz, where P is a

polynomial of deg < M
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Proof. The condition ( 1.2.4 ) of the theorem is equivalent to

BRI QE)P
/ ) (L 1)V (1 e (1.2.5)

Therefore,

h(b)]e1X
/]Rn i+ |t|)N/2 dt < oo (1.2.6)

for sufficiently large |\'| > 1 for which |Q(\)] > 1 holds for all |A| > X.
Hence it is easy to see that for any 0 < Ag < ||

/ |h(t) e dt < co. (1.2.7)
R

This shows that h € L'(R) and h is analytic in the open strip |SA| < Ag.
Using this fact together with ( 1.2.5 ) and ( 1.2.6 ), we have the integral

Hh )‘e\tllkl
dt d\
// 1+|t| YN2 (14 AN2
A el
- // ]U/Q( ) w7z dt dA
IAI<IN] 1+|t| (14 1]A])

OO el
// ]U/Q( ) N2 dt d\
A=V ( 1+ [t)™ = (1+|A])

B[ ORI Q)P
% (14 1) e ), T TR

< o0

If we apply Theorem 1.2.5 for n = 1 we Will get h(t) = P(t)e="" for some
a > 0 and P is a polynomial of deg < Y=L But the hypothesis (1.2.4) will
force deg P < M O

With this preparation we establish a version of Theorem 1.2.5 for H}}.

Theorem 1.2.15. Suppose f € L' N LQ(HZ]) and for some M, N > 0, it

satisfies

B
/ / If 2 t)II1f( ])Vll/;rse A" dX dz dt < oo
w R (14 |2)M (14 )N (14 AN/
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Then f(z,t) = e~ (1 + |2[)M (in: wj(z)tj>, where ; € L*(C") and m <
=0

N—-n/2—1
5 .

Proof. For each pair (¢,), where ¢,9 € L?(R™) we consider the function

Foan(® = @r)78 [ f001+1:)TWE5,0) d-
Then it follows that
Fup() = (2m)72 Cnf‘k(z)(1+Izl)‘f‘”(W(z)cb,w) dz (1.2.8)
1/2
< o [ irera)
= CIA™2||f(=N)]|us-
Therefore,
Fl, )| [¢[IA]] \|m/2
/ | HN¢2¢()|€ A gt
1+rtr / <1+w>N/2
DY
n 1+|z 1+|t|) / (1+|>\|)N/2

from our hypothesis. Now applying Theorem (1.2.14) to the function F{y

with § = n/2 we have F(y)(t) = Py (t)e~ @V where P4,y is a poly-
N—n/2-1
—

nomial with deg < As in the proof of Theorem 1.2.8 keeping
Y fixed, it can be shown that a(¢,) = a(v) is independent of ¢. Simi-
larly keeping ¢ fixed, we can show that a(¢,v) = a(¢) = a is independent
of (¢,7¢). We recall that {®,3 : a, € N"} forms an orthonormal ba-
sis for L?(C"). Now we take ¢ = @, and ¢ = ®g. Let F, 5 = Fa, e,

and P, g = P, ;). Since for each ¢t € R, (14| - N~Mf(.,t) € LE3C™)
aj(a, B)¥/,

7 < m. We

MS

the sequence {P, 5(t)} € 1% for all t. We write P, s(t) =

N S,
Il
o

m < % Choose t; € R such that t; # t;, for all 0 <
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consider a system of linear equations given by:

1ty - g {ao(a, 8)} {Pa,p(to)}
1oty -t {ar(e.p)} | | {Pap(t)}
1 oty -t {am(a, B)} {Pos(tm)}

Since t; # t; for all i # j, the determinant of the (m + 1) x (m + 1) Vander-
monde matrix is nonzero. Therefore, {a;(ca, 5)} will be a linear combination
of members from {{P,3(t;)} : 0 < j < m} and hence {a;(a, 3)} € I? for

each 0 < 7 < m. With this observation we can write

A+ 1D)™Mfzt) = D Pap®)@ap(z) | e
o8

3 aj(c )t | @aplz) | e
=0

S aj(a, B)Pas(z) | ¢ | e
0

where ;(-) = Z%aj(a,ﬁ)fba,g(-) € L*(C") . O

Applying the above theorem, we get a complete analogue of Cowling—

Price theorem for H)} and we record it in the following corollary.

Corollary 1.2.16. Suppose f € L' N LQ(HZZ) satisfies the conditions
(i) ng P24 £ (2, )P dz dt < oo,
(i) [ e | FON)|%sIA™ dA < 0.

Then for ab > 1/4, and min{p,q} < oo, f =0.
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Proof. Using Holder’s inequality we can find N, M > 0 such that

(2 0)e”
anm dz d'l€<C>O7

b)\
) fw 1%‘ S A" dA < .

These two conditions together with ab > 1/4 give us

0 1A
/ / 1/ ONFNllise A" dX dz dt < .
w R (14 2™ (14 )N (1 + AV

Therefore, using Theorem 1.2.15 we get for some m > 0,

f(z,t) =e" 1+\z| 21/1] ,
where 1; € L*(C"). Since min{p, ¢} < oo the conditions (i) and (ii) will
force f to be zero almost everywhere. O

Let us assume that f € L' N L?(H?Y) is such that

5 1/p
/ (/ P f(z, )P dt) dz < 0.
n \JR

Then using Holder’s inequality followed by Minkowski’s integral inequality
we get N > 0, for which

e | f(z,1)]
/ LAy

) 1/p
C < / e [ f(at) defp dt)
R Cr

, 1/p
/ (/ P\ f(z, 1) P dt) dz < 0.
n \JR

This observation gives us the following corollary which is also a version of

IN

IN

Cowling—Price theorem.

Corollary 1.2.17. Let f € L' N L?(H?) be such that
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) Jen (f]R epatz\f(%t)\p dt> v dz < oo,

qbk by n
(i1) fR J{/\(&V”HS IA|"dA < oo.

If ab > 1/4 and min{p, q} < oo then f =0 almost everywhere.

The second condition of all the theorems and corollaries proved for HY; is
in terms of the Hilbert-Schmidt norm of f()) and these theorems are in some
sense theorems for the t—variable. This can be easily justified if we consider
functions of the form f(z,t) = g(z)h(t). We are interested in formulating

uncertainty principles in which both the variables z,t are respected.

1.2.2 Heat kernel version of uncertainty principles for H)}

The equality case of the Hardy’s theorem on R™ can be viewed as a char-
acterization of the heat kernel associated with the Laplacian A. If p,(z) =
(4mt)~"/2e , t > 0 denotes the heat kernel associated to A we can rewrite
Hardy’s theorem as follows. (We call it the heat kernel version of Hardy’s

theorem.)

Theorem 1.2.18. Suppose f is a measurable function on R™ such that

|£(2)] < Cpi() and [£(€)] < Cpa(€).
Then fort < s, f =0 and f(x) = Cpi(x) fort=s.

We remark that the heat kernel g, 4 satisfies neither of the two conditions
in Corollary 1.2.11. In fact, if ¢44(2,t) < C(z)e* for some a > 0 then
qé: 4 extends to an entire function of A in the complex plane. But the explicit
formula of qé: 4 shows that it has singularity at +ink/ad; for k € N\ {0}.
Hence the estimate g, q(z,t) < C(z)e~*" is not possible. On the other hand
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using the relation g, 4(\) = TA(qé"d) and the formula ( 1.1.3 ) we have

AP ldeaN2s = H / 42 a(2)? d

2
LY. - 1 2
= CTL J *7)\(:0tha)\dj|zj| d .
,H sinh ad; H /Ce ’ &
J=1 J=1
" 2
Ad; 2T
= C, _ ="
H sinh aAd; H A coth ald;
J=1 J=1
- A
. !
= G H sinh 2a\d;
J=1

Q

n
C H o—2aMd;
=1

for sufficiently large |A|. This shows that ¢, ¢ cannot satisfy the hypotheses
of Corollary 1.2.11. So it is not possible to characterize ¢, 4 by Corollary
1.2.11. Let £ be the sublaplacian on H™ with associated heat kernel ¢,(z, ).
Then the following theorem has been proved in [32].

Theorem 1.2.19. Suppose f is a measurable function on H™ that satisfies

(Z) |f(Z’t)| < CQa(Z7t)7
(i) FN)*F(N) < Cdap(N) for all X # 0,

for some a,b > 0. Then f =0 almost everywhere whenever a < b.

In [34], it has been conjectured that such a theorem is true for all strat-
ified nilpotent Lie groups. The proof given in [32] uses Gelfand pairs asso-
ciated to H™ and properties of the metaplectic representations. Therefore,
this proof is not suitable for generalizing to other nilpotent Lie groups. Here
we give a proof which works for all non-isotropic Heisenberg groups. In order
to do it, first we prove a version of Theorem 1.2.6 for H}}. This theorem will

be used to get heat kernel versions of Hardy and Cowling—Price theorems
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for H}. Thangavelu has defined Fourier-Weyl transform for a function on
H"™ and used it to prove Paley-Wiener theorem for H" (see [33]). Before

stating our theorems we need the following two definitions.

Definition 1.2.20. For £ = (¢/,¢") e R" x R" and f € L*(H}), we define
f08) = m(¢ +ig",0) f(N)ma(€ +i€",0)*

and call it the Fourier—Weyl transform of f on H}.

It can be easily checked that

XY (s -ui€)) |
fog=[ & P ) (e + i, 0)d dy,
R2n
where we have written z = x + 4y and f*(z,vy) stands for f(2).

Definition 1.2.21. A function ¢ € L*(R") is said to be an analytic vec-
tor for the representation w if for all » € L*(R™) the function (z,t) —
(ma(z, 1)@, ) is real analytic.

Since U(|\|d)"tmx(z, ) U(|A\|d) = p1(v/|A|d 2,t), it is sufficient to con-
sider analytic vectors for the representation p; of H™. In the following

theorem we give a sufficient condition for a function ¢ € L?(R"™) to be an

analytic vector for p;.

Theorem 1.2.22. Let ¢ € L*(R") be such that |(¢, ®,)| < CebClel+n)
for all & € N and for some b > 0. Then ¢ is an analytic vector for the

representation p1 of H™.

Proof. Since p1(z,t) = e¥p1(z,0) it is enough to show (p1(z,0)¢,v) is real
analytic function on R?" for any 1 € L?(R"). The following formula
(p1(2,0)81, 1) x (p1(z,0)d2,1b2) = (Y2, $1){(p1(2,0)d2, ¢1)
has been proved in the proposition 1.47, page-32 of [10]. Therefore, for any
Y € L*(R™),
1{p1(2,0)0,¥) X Raallz = [(Pa, d)| [[{p1(2,0)Pa;, 1) |2

(&, @a)| [|9]|2]|Pall2
< Oe—b(?\aH—n)_
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Let ¢r(z) = LZ_I(%‘ZP)Q_%"ZF. It follows from the identity (see [34],page
58),
Pr(z) = (27T)n/2 Z Paa(z)

|a|=k
that

”<01(Z,O)¢, ¢> X d)kHQ S C Z eib(2|a|+n)

laf=k

(k+n—=1! _yopin)
Cim =1 ¢
< OV (@ktn)

for some 0 < b’ < b. We conclude (p1(z,0)¢,) is real analytic using the

following proposition proved in [30]. O

Proposition 1.2.23. Suppose g € L*(C") is such that |gx ¢p|j2 < Ce™bEk+n),

for some b > 0. Then g is real analytic.

The above theorem shows that for each A € R\ {0} and o € N, ®,
is an analytic vector for p; and hence is also an analytic vector for my. So

analytic vectors for 7 are dense in L?(R").

Theorem 1.2.24. Suppose f € L' N L*(HY). Assume that for each \ €
R\ {0} there exists an analytic vector ¢y for m and 1y € L*(R") such that

/R%/n [f (@ + iy, )][(FO (€,€7)r, 00)]

PSRN o
i=1 dx dy dt d§' d&" < co.

xe
Then f =0 almost everywhere .

Proof. Let gx(z,y) = fA(x,y) (ma(z+iy, 0)dr, ). Then (F(X, (€,€"))br, 1)
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is the Fourier transform of gy at |A|(=di&Y, -+, —dn&l, di&}, - -+ ,dn&),). Now,

/ / |97 (2, )] [Ga(€', €M)+ du dy de’ de”
R2n RZn
Lo 1 i IO €€ 00,00
d
IS dj(as) —u€))] o
xe =1 dx dy dt d¢ d¢

< o0

by our hypothesis. Applying Theorem 1.2.6 on R?" to the function gy we
get gy = 0 almost everywhere. Therefore, the support of f* is contained in
{(z,y) : (ma(z + 1y)px, ¥r) = 0} which is a set of measure zero as ¢, is an
analytic vector. Since f* = 0 almost everywhere for each A € R\ {0} we

have f = 0 almost everywhere. O

The following theorem is analogue of Theorem 1.2.6 for H.

Theorem 1.2.25. Suppose f € L' N L*(HY). Assume that for each \ €
R\ {0} and for every pair (¢x, 1)) , where ¢y, ¥y € L2(R™)

/ / Fa@ + iy, OO (€ €7)dr )
e Sy (Lt [ )] +1(E €D

[Al] Z dj (€7 —y;€5)| -
xe =1 dx dy dt d&¢' d¢" < oo,

for some N > 0. Then

1 - — X X
Pa,y) = Pala,y) eop(3 D INd; (] +y7))e A0,
=1

where Py(x,y) is a polynomial in (z,y) but depends on X and A is a positive

definite symmetric matriz.

Proof. Consider the function gy(x,y) = f(z,y)(mx(z + iy)dxr, ). From
the hypothesis of the theorem we see that

‘g)\ z,y | ’g)\(gl fﬂ)|e|$ &yt 1 gl
dx dy d&' d€" < oo.
/]R?“ /Rzn (L4 (@, y)| + (&, MDY
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Therefore, using Theorem 1.2.6 we get

@, ) (ma(@ + iy, 0)pa, 1a) = Pgy gy (@, y)e A@ 0] @)

where Py, ) is a polynomial in (z,y). But as in the proof of Theorem 1.2.8
we can show that A(¢y, ) = A is independent of the choice of (¢y,1). In
particular take ¢y (z) = ¥ () = U(Ad)Po(x) which yields

n

1 - X X
Mz, y) = Py(z,y) exp(Z Z(|)\|dj(x§ + 3/32.))) o (Al@y),(z.))
j=1

and deg P, < ¥52n 2” O

Assume f € LY(H™) N L?(H™) and f is radial that is f(o - z,t) = f(z,t)
for all o € U(n), the unitary group. In this case f (M) is diagonalizable with
respect to the orthonormal basis given by Hermite functions (see [34],page

62). So we can write

No= > Ra(A) (¢, ®))0
aeNm
where @) (€) = |A["4®,(1/|N€). Suppose for each A € R\ {0} there exists
an operator S(\) € Sy, the space of Hilbert-Schmidt operators on L?(R™)
such that f(A) = S(A\)e ®H), Then it follows that for some C' > 0

|Ra(N)| < Ce—(QIa\Jrn)I/\\b’

for all & € N™. This shows the exponential decay of singular numbers of
F(\). Tt is to be noted that @ (A\) = e"* ). The condition that for each
A € R\{0} there exists S(\) € S, such that f(A) = S(A\)Ga () is the analogue
of the condition f(p;)~! € LI(R™) in the case of Heisenberg group. Here S,
denotes the set of Schatten g—class operators. Let us see the effect of such
an assumption on f (A) on the Fourier-Weyl transform of f on H}}. Assume
for each A € R\ {0} there exists a bounded operator S(\) on L?(R") such
that f(A) = S(\) (H(Ad))™ e 7D for some m > 0. Therefore, there exists
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C > 0 such that for all ¢ € L2(R™), [|S(Nél2 < C|l¢||2. As

H([Ad)U(|A|d)® (AZ 205 +1)d ) U([Ald)®q

for all & € N, we have

IF U (Aol < C( (205 +1) Ad)

Jj=1

» (H eb)\(Qa]—H)d])
j=1

for all a € N™. Therefore, for any 0 < b’ < b, there exists a constant C' such
that

IF U (A @al2 < C (H e’“@“f“)df) (1.2.9)

j=1
for all @ € N.
For ¢ = (¢,¢") e R" x R" and r = (r1,--- ,r,) € R" let us denote the

point (r1&y, -+ mny) by r& and (rigl, - ra&y, mi&”, -+ rady) by (7€', rg")
and write r(&" + i€”) for the point ¢’ + irg” € C". Using the fact that
{U(|\|d)®, : « € N"} forms an orthonormal basis for L2(R"), we compute

(€ +i€”,0)*U(|\|d) ®o
= > (mA(& +i€”,0)*U(|\d) Do, U(|A|d) @)U (|A|d) B

o

= S U(AD) AE + 06", 0) U (N d)Bo, Do) U (A d) e
= LV + )20, U ()2,
- z@ao A€ + €U (A,

Using ( 1.2.9 ) and the above expression for my (& + i&”,0)*U(|\|d)®g we
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have

[(FOX (€, €)U(IAd) Do, U(|A|d)Do)]
[(mA(€ +€”,0) f(\)mA(E + 3", 0)*U(|1\|d) Do, U(|A|d) Do)

SHﬂ)m@+%WW(W®%M
< CZ\%O (&' +i€")| IF U (Ad) o2
—b/lx\\(Z (2a+1)d;)
< OZ\%O (€ +ighe T
We choose b’ with a < b < b’ < b and apply Cauchy—Schwarz inequality to
get
[(FON(€,EM)U (1A d) Do, U (|A]d) o)
— =N e+ D)d;) —b (S (205+1)d;)
< O e g T T
(0% ) %
g 2O (2a5+1)d;)
< VI +ig") e =
1
n a; 2 2) °
< e 26" 1A (205 +1)d "? —3\ld; (&5 +¢7
< HZ% P0G (€] +E)) e BN
j=1a;=0
1
n 2 0 1 9 AN
< — 3l ( 5’ +¢£77) 12\ —4b'"|\|d;
< CIl|- DY o (G + e
j=1 a;=0

In the fourth step of the above calculation we have used the explicit formula
(1.1.7) of @40 . Thus the function (f(\, (€', €")U(|\|d)®o, U(|\|d)Po) has

a Gaussian decay.

Theorem 1.2.26. Let f be a function on H}} such that for some a,b >0
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(1) (L+ 127" f(ga,)~" € LP(H}),

(ii) f(A) =SA) (mA(La)™ Gb.a(N), S(N) € Sy for all A,
where 1 < p,q < o0o. Then f =0 almost everywhere whenever a < b.

Proof. Define g(z,t) = (1 + |2]) 7™ (qa.a(2,t)) "1 f(2,t). From the hypothesis
g € LP(HY). We have the estimate |gqq(2,t)] < Ce_g(‘ZPHt‘), for some
A > 0. Using the condition g € LP(H}), the following integral

(0]
PR = | g e g ) dt
o )
< ¢ / ette w1 gz, 1) dt
—0o0
is finite for |u| < %. Now applying Morera’s theorem it is easy to see that

f* can be extended as a holomorphic function in the strip |S\| < % of the

complex plane.

For p = o0,
A+ 1) ™A@ < gtz e / a2, 1)] dt
e
< gz, Yooe™ 8.

For 1 <p <2,

N

L+ =)™ =) < /Oo |9a.a(2,t)[|g(z,1)] dt

—00

</Z \qa,a(z, )P dt)pl, </Z 19(z, )P dt)’l"

Now applying Hausdorff-Young inequality to the first integral

arEPEl < ([ daor dA)’lj (" ot dt)é

IN
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3 =

AN

-n * T d])‘ P —2(d;\cothd;)a)|z;|?
(4m) H sinhd;xa ) © Y T
J

—o0 5

1

x ( J dt)p
e ;
< Cewall </ l9(z,t)[F dt>p

When 2 < p < oo, 1<p’<2writel%:%+1;2Vf0rsom60<y<1.

‘ 2

Since [|gaa(z, )1 < e and [lgaa(z, )2 < B_i"le, applying Hélder’s

inequality with the pair of conjugate exponents - , and ﬁ, we get

/ da,a(z, D" dt :/ Ga.a(2, )77 |qa(z, 1)L at

< lgaa(z N aalz, )57

which gives [|gqq(-,t)|l,y < e ~2al** . Therefore, f>‘()(1 + |2))meaa#” be-
longs to LP(C") and hence for any a’ > a, f(- )e4a 1P e LP(C™) . Since
every member of S; is a bounded operator there exits C' > 0 such that
1SNz < C||¢|l2 for all ¢ € L2(R™). Since m\(Lq) = H(\d), from the
previous observation we have for any 0 < b < b

(N (€ f")) (IAld) o, U (|Ald) Do)
H ~i (e ) (67 ). (1.2.10)

Let gx(z,y) = f’\(l‘?y)ﬁx(ﬂ? + iy,0)dx, ¢a) Where ¢x(z) = U(|A[d)Po(x).
Note that ¢, is an analytic vector. Then

/R2 /Rz gx (@, y)| 1G2(€, ") el v  da dy de’ d”

. [A] Z dj (25 €7 [+ly;€51)
< / / Py FOEEén dalle e dy de' de”
Rzn Rzn

R2n JR2n ’

[ e NGO M) M) € g, gy ger ger
j=1

107 (@) —2alXJd(E€" NP o

IN
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Since f)‘e%rﬂ(mzﬂy‘z) € LP(R?"), the above integral will be finite if a’|\|d; <
i (1 — e_4b’|’\‘df>. Therefore, applying Theorem 1.2.6 to the function gy,

we conclude gy = 0 whenever a’|A|d; < % (1 - e_4b/|’\|dﬂ'). As the function

n
(malz +iy)ox, or) = [1 e~ il @) 4g non vanishing everywhere for all
j=1

A, we can conclude f* = 0 whenever d’|\|d; < (1 — e~ ') Since

a < d <V <bwe can choose § > 0 such that o’ < b'e=2'MNdi < ¢/ for all j
with 0 < || < 6. Now

1 . 6—4b/‘)\|dj — e—2b/|>\‘dj (e2b’\)\|d] o 6—217/‘)\|dj)
/ .
> AY | A|djem 2V N

> 4&")\’dj

for all j and A with 0 < |A\| < 6. Since f* can be extended as a holomor-
phic function in a strip of the complex plane we conclude f* = 0 for all A

whenever a < b and hence f = 0 almost everywhere. O

We also have the following version of Hardy’s theorem.

Theorem 1.2.27. If
(i) 1£(2,8)] < C(L+ |2 ua(z:1),
(i) FO)FN) < Clma(La)™dona(N)
for some a,b > 0, then f =0 whenever a < b.

Proof. It f(A)*f(A) < Ce2H(Nd) we have the estimate
IF VU (A|d) o |2 < C T et
j=1

for all & € N" and hence (f(X, (€/,€"))U(|\|d)®o, U(|A|d)®Po) can be esti-
mated as before. Thus the proof will be completed. O



2. UNCERTAINTY PRINCIPLES FOR STEP TWO NILPOTENT
LIE GROUPS

The aim of this chapter is to prove various uncertainty principles for con-
nected simply connected step two nilpotent lie groups. We have organised
the chapter as follows: We describe the irreducible unitary representations,
Plancherel formula, relevant aspects of step two nilpotent Lie groups. Then
we extend the results proved for Heisenberg groups in earlier chapter, in the

context of connected simply connected step two nilpotent Lie groups.

2.1 Preliminaries on step two nilpotent Lie groups

Let G be a step two connected simply connected nilpotent Lie group so
that its Lie algebra g has the decomposition g = v & 3, where 3 is the
centre of g and v is any subspace of g complementary to 3. We choose an
inner product on g such that v and 3 are orthogonal. Fix an orthonormal
basis B = {e1,ea- - ,em,T1, -+, T} so that b = R span{ej,es--- ,en} and
3 = R span{T},---,Tx}. Since g is nilpotent the exponential map is an
analytic diffeomorphism . We can identify G with v @ 3 and write (X + 7))
for exp(X +1T') and denote it by (X, T) where X € v and T' € 3. The product
law on G is given by the Baker-Campbell-Hausdorff formula :

(X, )X, Th=(X+X,T+T + -[X,X'])

1
2
for all X, X’ € v and T,7" € 3. For any orthonormal basis {X; : 1 < j <m}
of v define the sublaplacian

L= —ixj?.
j=1
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2.1.1 Representations of step two nilpotent Lie groups

A complete account of representation theory for general connected simply
connected nilpotent Lie groups can be found in [8]. Representations of step
two connected simply connected nilpotent groups are easy to describe. Ray
[28] has described their representations and proved the Plancherel theorem
following the orbit method of Kirillov. Let g*, 3* be the real dual of g and 3

respectively. For each v € 3* consider the bilinear form BJ, on v defined by
B(X,Y)=v([X,Y]) for all X,Y € g.
The radical t, of the bilinear form B!, is given by
t,={Xeg:v(X,Y])=0forall Y € g}.
Let B, be the restriction of Bj, on v and
,={X cv:v(X,Y])=0forall Y € v}.

Let X; =¢; forall 1 <i<mand X,,4; =7T; forall 1 <4 <k. Then B =
X1, Xy X1, -0+ Xy Let B = { X, -+, X0, Xog, o X0 )
be the dual basis of B. We consider the matrix (B,(i,7)) given by the bi-
linear form B, that is (i,j) th entry of the matrix is B, (X;, X;). Let B!
denotes the submatrix of (B, (i,7)) consisting of first i rows. If rank B is
strictly greater than rank Bl(,i_l) then i is called a jump index for v. Since
B, is an alternating bilinear form v has an even number of jump indices.
The set of jump indices is denoted by S = {j1,j2- -+ ,j2n}. These indices
depend on v as well as the order of the basis. But they are all same if we
choose v € U = {v : rank (BY) is maximal for all i.}, a Zariski open subset
of 3. Let T'= {ni,n2, -+ ,ny,m+1,--- ;m+ k} be the complement of S
in{1,2,--- ,mym+1,--- ;m+k}. Let

Vi = Spang{ X, 11, Xpp, Xy, im0 €T}

and ‘77’5 = {X;, : n; € T}. The irreducible unitary representations relevant

to Plancherel measure of G are parametrized by the set A = f/if xXU.
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If there exist v € 3* such that B, is nondegenerate then the Lie algebra
is called an MW algebra after Moore and Wolf and the corresponding group
is called an MW group. In this case T = {m +1,--- ,m + k} and U =
{v € 3 : B, isnondegeneate}. The irreducible unitary representations
relevant to Plancherel measure of G will be parametrized by A ={v e z*:
B, is nondegenerate. }

For

m k
(X, T) =exp(Y_2;X; + Y t;Xj4m), 2,1 €R,
j=1 J=1

we define its norm by
(X, D) = (@] + -+ a, + 8]+ 1) V2

The map

m k
(1, Tyt tg) — Z:Eij+thXj+m
J=1 J=1

takes Lebesgue measure dxq - - - dz,,dtq - - - dty, of R™** to Haar measure on
G. Any measurable function f on G will be identified with a function on
R™+* . We identify g* with R™** with respect to the basis B* and introduce

the Euclidean norm relative to this basis.

Step two groups without MW condition

In this case v, # {0} for each v € U. Let m,, be the orthogonal complement
of v, in . Then By |y, is nondegenerate and hence dimm,, is 2n. From the

properties of an alternating bilinear form there exists an orthonormal basis
{Xl(y)v H(V)v T ,Xn(y),Yn(V), Zl(y)v I ZT(V)}

of v and positive numbers d;(v) > 0 such that
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(i) v, =R span {Z1(v), -+, Z,(v)},

(i) v(Xi(), Y;(0)) = 8ijdj (), 1 < i,j < n and
V([Xi(0), X)) = 0, v([¥i(w), Y;(n)]) = 0 for 1 < i j <,

(iii) R span {X1(v)- -, Xn(v), Z1(v), -+, Zy(v), Th,--- , Tk} = b, is a po-

larization for v.

This means the subalgebra b, is maximal with respect to the property
v([by, hu]) = 0. We call the basis

{Xl(y)"" vXn(l/)vyl(V)v"' vYn(V)azl(V)7"' >Z7"(V)7T1a"' ka}

almost symplectic basis. Let &, = R span{X;(v)---,X,(v)} and 7, =
R span {Yi(v),---,Y,(v)}. Then we have the decomposition g = &, &7, ®
t, @ 3. We denote the element exp(X +Y +Z +1T) of G by (X,Y,Z,T) for
Xe&,Yen,Z e, T €j. Further we can write

n n r k
(XY, 2,T) = z;(n)X;(0) + > _y(0)Y(0) + >z () Z;(v) + ) _ 4T,
j=1 j=1 j=1 j=1

and denote it by (x,y, z,t) suppressing the dependence of v which will be
understood from the context. If we take A € A then it can be written as
A = (p,v), where p € f/:ﬁ =R span {X} :1<i<r}and v € U. Therefore,
A= (p,v) = i Xy, + % viTF. Let X € g* such that X' (X;) = 0 for
1<i<2n an(li:‘éhe restriczi:oln of X to Vit is A = (p,v). Let fi; = N(Z;(v))

and consider the map
¢: Vi — Rspan {Z1(v)*, -, Z(v)*} (2.1.1)

given by ¢(p1, -+, tr) = (f1,- -+, fir). Then it has been shown in [28] that
|det Jy| = %, where J, is the Jacobian matrix of ¢ and Pf (v) =

det(B,(ji, js)) is called the Pfaffian of v. Now we want to study the
behavior of d;(v) as v — 0. We show that d;(v) — 0 as v — 0. It is
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to be noted that (B, (i,5)) = s(B.,(i,5)) for s € (0,00) and w € SF~1,
Then it follows that X;(sw) = Xj(w), Yj(sw) = Yj(w), Zj(sw) = Z;j(w) and
dj(sw) = sd;(w) for all j. The entries of the matrix (B, (7, j)) are continuous
functions of v and +id;(v) being eigenvalues of the matrix, d;(-) are also
continuous in v. Using the fact that d;(sw) = sd;j(w) we conclude d;(v) — 0
as v — 0.

We take A = (i, v) € A. Since A|[h,, h,] = 0 we define character o, , of
H, =exp (h,) by

000(X, 2,T) = HA)+(T)

for all (X,Z,T) € H,. For each A = (u,v) € A we construct a new Hilbert
space H ) consisting of C valued measurable functions f on G such that for
all k € H,

f(kg) = 0 (F) f(9) (2.1.2)

and
£(0,Y,0,0) € L*(n,,).

As any element of G can be written uniquely as h(0,Y,0,0) for some h €
H,, we can identify H) with L?(1,) . We define an irreducible unitary

representation m,, of G on Hy by

[0 (9)f1(9') = fd'9) (2.1.3)

for all f € Hy and g,¢' € G. Since we can write the following product

uniquely
(O’ Y,? 07 O)(X7 Y’ Z? T)
1
= (X,0,Z,(T+[Y'+ §Y,X -Y'+Z])(0,Y +Y’,0,0,0)

using ( 2.1.3 ) and the identification of H, with L?(n,) we get an irreducible
unitary representations 7, of G realized on L?(n,). It is the representation

induced by o, and can be described as follows :

(T (X, Y, Z,T)9) (Y') = VT 43V XY 2) i) gy 4y
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for all ¢ € L%(n,). Using the almost symplectic basis we have the following

description :

(’/T,LL,V (Z’, y7 Z? t)(b) (5)
k r n
= el Y wity 1Y gz 1Y di) s + 3es)OLE + )
j=1 j=1 j=1

for all ¢ € L%(n,).
Define the Fourier transform of f € L'(G) by

v) = // / fx,y, 2, 0)mu (2, y, 2,t) de dy dz dt
sJu I, Je,
for A = (p,v) € A. We let

k
£l = [expli 3 vit) (. 0)
3 j=1

k r
frr(z,y) = / /exp(iz viti +i Zﬂjzj)f(x, y,z,t) dt dz
tw /3 j=1 j=1

for all i € v%,v € 3*. If f € L' N L2(@) then f(u,v) is an Hilbert-Schmidt

operator. For all i € v} we have

Hd JIF (i \|Hs—//|fwxy>|2dxdy (2.1.4)

U u

Now applying Plancherel formula in the variable i we get

(2m)~ ) T ds(v) / 1) 2 (2.1.5)
j=1 Kz

= ///\f”(x,y,Z)\zdwdydz
tl/ 174 éV

= /!f”(x,y, 2P dx dy dz.
v

Polarizing this identity

“”"f[ / c(fvan)dp (216)

/f z,y,2)g" (z,y, 2) dr dy dz.
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Using the change of variables defined by the function ¢ in ( 2.1.1 ) we get
(2m) 0 PH0) [ 17l di (2.7
T

_ /|f”(x,y,z)|2 dz dy dz
1J

and

2n) Pt [ (fnger))dn (208)

2
— /f”(m,y,z)g’/@,y, z) dx dy dz.
v

The Plancherel formula takes the following form:

J 1) e d = [ 1@z 0 de dy dz ar
For g € L?(v), define the Hilbert-Schmidt operator W,,,(g) by
Wou(g) = /g(x,y, 2)Tuw(2,y, 2,0) do dy dz. (2.1.9)
v
With this notation, for all g, h € L?(v) we have

2r) CTPIw) [ (Wil Wi (1)) dis (2120

Vr

= /g(fﬂ,y,Z)h(fc,y,Z) dr dy dz.

Y

If g is a Schwartz function then it has been shown in [1] that [W, ,(g)| is a
trace class operator and tr(|W, . (g)|) can be estimated in terms of Schwartz

semi norms of g. In fact (1 + |u|)*tr(|W,..(g9)]) < Cr(v)!gl« for some

I,k >0, where 7(v) = Y (dj(v)? +d;j(v)~2) and ||g|. is a suitable Schwartz
j=1
seminorm.
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Step two groups with MW condition

In this case the representations are parameterized by the Zariski open set

A ={v € 3*: B, is nondegenerate} and is given by:
(m (2, ., 1)9)(£)
k n
. . 1
= exp(iy_vjt+i Yy di(w)(zi& + 5)o(€ +y) (21.11)
j=1 j=1

for all ¢ € L?(n,). Since B, is nondegenerate it is clear that Pf(v) =
[[j=1 d;(). Define the Fourier transform of f € LY(G) by

:// f(x7y7t)ﬂ-l/(xay)t) dx dy dt
5 v gl/
for all v € A. Also define

1Y (x, /exp ZVJtJ (z,y,t) dx dy dt

for all v € A. For each v € A and g € L' L?(£, @ n,,), define the operator

:/ /g g(z,y)m,(x,y,0) dz dy. (2.1.12)

Then W/ (g) is an integral operator with kernel

Ky(fvy)z/ exp( %Zd (& +y)aj)g(z,y —§) do

which is in L?(n,) ® L?(n,). Moreover if g € L?(&, © n,) then W/ (g) is a

Hilbert-Schmidt operator and we have the Plancherel theorem
PEO) WL = 0" [ [ oGl do dy
Polarizing this identity, we obtain

) tr (W, (g)* W’(h)) (2.1.13)

= (27)" // g(z,y)h(x,y) dx dy.
v &y
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If f € L' N L?(G) then from the definition of f(v) we have f(v) = W.(f*)

and hence

PEw)|| () I[s = (2m)" /ny /gu | (2, y)? da dy (2.1.14)
and
Pf(v) (trf(u)A(V)*) (2.1.15)
— (2 / [ ) de iy

2.2 Step two stratified groups

The two step Lie algebra g = v @ 3 is called stratified if [b,v] = 3 and the
corresponding group is called stratified group. If the group G is stratified
then it admits a natural family of dilations so it is a homogeneous group.
Then there exists a smooth function p,(v,t) on G x (0,00) such that f x
pa(v,t) solves the heat equation associated with the sublaplacian £ with
initial condition f, see Folland-Stein [13]. This p, is called the heat kernel
associated with £. In this section we will prove heat kernel versions of Hardy

and Cowling-Price theorems for all step two stratified groups.

2.2.1 Uncertainty principles on step two stratified groups without MW-

condition

If we write the sublaplacian with respect to an almost symplectic basis it
takes the normal form

n

L=-> (X;(w)+Y}(v ZZQ (2.2.1)

J=1

We define

i( o +d3(v) 2-) + |2 (2.2.2)

Jj=1



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 36

Using the explicit form of the representations we can calculate that

T (£) = H(f, d(v))

where d(v) = (di1(v),- -+ ,d,(v)). Also we have

(
)-
H(p, dw))U(d(v))®a = (ﬂ2 + (205 + 1)d;(v) | U(d(v))®q

5w, y) = 2m) 5 ([ dj(v)? (mou (@, y, 0,00, ©%). (2.2.3)
j=1

Then {®, 5 : o, 3 € N"} forms an orthonormal basis for L%(&, @ n,). For a

detailed account we refer to [28]. It can be proved as in the case of H}} that
Palp,v) = e @HEAW)), (2.2.4)

The heat kernel is explicitly given by
fﬁ S (0,2;(0)?
o e

™)
H 6—%dj(1/) COthadj(I/)((’U,Xj(V)>2+<U,Yj(l/)>2)'
il Slnh ad sinh ad; (v)

Writing v = sw for s € (0,00) and w € S¥~! we can compute lim,_o pi* (v)
using the fact that X;(sw) = X;(w),Yj(sw) = Yj(w), Zj(sw) = Zj(w) and
dj(sw) = sd;(w) for all j. We get

pa(v) = (4

O( ) (4 ) (4 ) r _*41(1 (ZT:l(v,Zj(w))Q-i- £1<U,Xj(w)>2+ i1<1}7}/j(“)>2>
Pa\VU = T -n Ta —ia—ne i= = Z
— _r _ 741(1(% <v>ej> ) 7410,(% <U:T]>2)
= (4n)"(4mwa)"2a e =T e

(2.2.5)
Writing v = (z(v),y(v),2(v)) €& & ny & ry =,
P, y(0),2(0) = (4r) " (dna) e (=P 0P,

With this preparation, we have the following versions of Hardy and Cowling—

Price theorems.
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Theorem 2.2.1. Let G be a step two stratified group without MW condition.
Let f be a function on G such that

(@) 1f(v,t)] < CQA+ [o])pa(v,1),

(i) f(u ) F(p,v) < C (mu (L)) Pon(p, v) for every (u,v) € A,

where | > 0. Then f =0 almost everywhere whenever a < b.

Proof. Let f*(x,y,z,t) = f(—x,—y, —z, —t) and consider the function
hy(2) :/ Y 3 f*u(x,y,z) dzx dy,
£u v

where %3 means convolution is taken in the third variable. Since |f(x,y, z)| <

C(1+ |(x,y, 2))'p2(x,y, 2) we have the following estimate on  :
‘hu(z)‘ < Ceiﬁlzlz

for any a < @’ <b. Also

A~

f(/h V)*]E(M7 I/) < C(ﬂ-u,l’(ﬁ))lﬁﬂ)(u? V)
= (H(Ed(v) e R0

for every p € f/fk and v € U from which we get

n

C 6721)'[},'2 2(2%' + 1)d](1/) + ‘ﬁ‘Z H Z —2b(20;+1)d; (v

7j=1 j=1lajeN
_on512
< C, e 2l

1 s )1

IN

for any a < a’ < b < b. Therefore,

ho(i) = /£ P () de dy
v Iy

= @) " [T i) 1 () s

Jj=1
_on'12
< C,e 26" |a)*

v)
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Now applying Hardy’s theorem on t, we conclude that h, = 0 and hence

f(u,v) = 0 for all (u,v) € A, whenever a < b. Therefore, f = 0 almost

everywhere for a < b. O

Theorem 2.2.2. Let G be a step two stratified group without MW condition.
Let f be a function on G such that

() A+ ) frat € LP(G),
(1) f(psv) = S(usv) (mun(£)) Po(psv)

with S(p,v) € Sy for every (p,v) € A, where l >0, 1 < p,q < co. Then

f =0 almost everywhere whenever a < b.

Proof. Using the explicit formula for p%(v) it can be proved as in the case
of H} that eﬁMQf” € LP(v) for any a < a/ < b. Let g(v,t) = e~ h(v),
where o« > 0 and h is a smooth function with supp h C {v : |v| < J}.

Choose a” such that a’ < a” < b. Then for all v € v with |v| > \/j—,‘,/_% and

v € supp h we have [v—v'| > [v] = [v/| > [v]| = > [v]{/Z. Since g* € LP(v)

for all p we get by Holder’s inequality a constant C' > 0 such that

c > / ew PP 1 (0 — o) |g” (v') o’

v

L’Uz 12 12
enrl / (0 — )] 19" ()]
o}

v

for all v with |v| > \/5—,% . From the continuity of the function (f *g)” it
follows that

(e = | [ 7= )ae)ed D av)
/|f”(v—v’)llg”(v’)|dv’

IA

< Ce_ﬁw|2

for all v € v. Since

H(ji, d(w))U(d(v)®a = | [A° + Y (205 + 1)d;(v) | @a
j=1
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for all @ € N, from the hypothesis on f (u, v) it follows that for some constant
C>0andd” <V <b,

1F (s ) U (d(0)) B || < Cpe V1
for all a € N. This shows that ||f (1, »)[%s < Ce 27" Therefore,

17 91, ) s 195G ) Non1.f (12, ) s

<
< Ce VAP,

From the proof of the previous theorem we conclude that f x g = 0 as
a<a” <b. Letg(v,t) = (277)_211(11)6_# where h is a compactly supported
smooth function and [h(v) dv = 1. Let ge(v,t) = e nHhtrg(2 L) for
€ > 0. Then {ge}eso0 fotlirn an approximate identity. Since f * g.(v,t) = 0 for
all € > 0 whenever a < b, it follows that f =0 for a < b. O

2.2.2  Uncertainty principles on step two stratified groups with MW

condition

In this subsection we assume G to be step two stratified group with MW
condition. If we write the sublaplacian with respect to the symplectic basis

it takes the normal form
n

L= (X;)?+Y;())

i=1

and

n 2
m(L) = (—jsz + dj(u)%j?) = H(d(v)). (2.2.6)

j=1

If p, denotes the heat kernel associated to £ then
Pa(v) = e @H @) (2.2.7)
and

Pa(z(v), y(v)) (2.2.8)

(da‘(”)) =2, () coth ad, ())(w; ()41, 1))

= (m™ sinh ad;(v)

7j=1
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From the work of Jerison and Sénchez-Calle [18] it is known that p,(v,t) <
Ce= 2l for some A > 0, where | - | denotes a homogeneous norm on G.
As in the case if H} we define the Fourier-Weyl transform of a function f
by

flv.(€,6") = m (€€ 0) f(r)m, (¢ ¢",0)",

for (¢',¢") € & @y

Theorem 2.2.3. Let G be a step two stratified group with MW-condition
and f be a function on G such that

(@) (L+ o))" fogt € LP(G),
(i1) f(v) = SW) (m (L) po(v), S(v) € Sy for every v € A,

where | > 0 and 1 < p,q < oco. Then f = 0 almost everywhere whenever

a <b.

Proof. Since any two homogeneous norms are equivalent, using the estimate
of p, in terms of the homogeneous norm obtained from natural dilation, it
can be shown that f” can be extended as a holomorphic function of v in
a strip of C* and also using the explicit expression of py we can conclude
that f”(w,y)eﬁ(‘xlzﬂylz) € LP(&, @ my) for any a’ > a. Let us compute
m,(&,6"7,0)*U(d(v))®o using the fact that {U(d(v))®, : a € N} forms an

orthonormal basis for L?(n,). Therefore, we have

™, (€, €",0)"U(d(v)) Po(x)
= > (m(€,€",0)"U(d(v))®o, U(d(r))®a)U(d(v)) Pa(x)

[0}

= > (UW)m(€,€",0)U(d(v)) o, Pa)U(d(v)) ®a(z)

[0}

= D W(VAW)(E +i€) B0, o) U (d(v))Pa(x)
= 3 Gao (VAW)(E +i€")) Ud(w)Pa(2).
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1% EE) Now
1

Let ¢V = U(d(}/))(I)O’ then <Fu(§/a§/,>0)¢uy ¢V> =

(v, (€,6"))bw, )| (2:2.9)
[ (& + 8", 0) f (), (& + i€, 0)* U (d(v)) o, U (d(v)) Do)

I/ (v )m(&’ws” 0)*U(d(¥)) ol

OZ@ao V)(E +iN] | F @)U (A1) a2

n

VAN

IN

From the hypothesis on f(l/), we get C' > 0, such that for all @ € N

1)U (A(v)Pall2 (2.2.10)
< C(ﬁé@%+1 )]Ieb@%ﬂw
=1

Using the above estimate for || f(v)U(d(v))®q|2 in (2.2.2) and proceeding
as in the case of H] we see that for any b’ with o’ < b <b

[(f(v. (€.€7) b, ) (2.2.11)

< ¢ idj(y)<1—ef4b dj(u)) (%2_1_5;/2)

';:1:A

(&
1

J

For each v € A we define the function g, on v =&, ® 1, by

gl/(xvy) - fy(.’L',y)<7TV(CC,y,O)(Z§V7 ¢V>

Then

/ / 90 (2, y)| [Gu(€, €)™+  dz dy de’ de”
O £U®77V

) S5 dy () (J25€7 | +ly;€51)
= / / 7 (@, y)] [(F (v, (€,€6")) b, )= T d dy de' de”
V@nu Eu@nu
< C / / | ()| eawr e+ = e (@) —2'd0)(E" €I o
IeU £u®nu

- —4'dj () _gq. ;
[[e GO ) )&+ g, gy gt ggr

j=1
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Since fuefd(lml2+\yl2) € LP(v) the above integral will be finite if a'd;(r) <
i (1 — e_4b’dj(”)) for all j. If we apply Theorem 1.2.6 to the function it yields
f” = 0 almost everywhere if a'dj(v) < % (1 - e_4b/df(”)) as the function
(my(x,y,0)¢y, ¢) is non vanishing. We recall that d;(v) — 0 as v — 0 for
all j. Since a < @’ < b/ < b, using the above fact we can choose § > 0
such that a'd;(v) < % (1 - e*4b/dﬂ'(”)> for all j and for all |v| < 4 as in the
proof of Theorem 1.2.26. This means f* = 0 almost everywhere for |v| < §.
We have already observed that good estimate of the heat kernel allowed to
extend f¥ as a holomorphic function of v in a strip of C*. Finally we have
f = 0 almost everywhere since for all v € A, f“(z,y) = 0 almost everywhere

in (z,y). O
In the above proof we have used the estimate ||f(v)U(d(v))®q|3 <

l
C (Z(de(l/) + 1)) [ e 2R+ Dd () which is also true if we assume

J=1 J=1

that f(v)*f(v) < Cm, (L)) pap(v). Therefore, we have the following version
of Hardy’s theorem.

Theorem 2.2.4. Let G be a stratified step two group satisfying MW -

condition and f be a function on G satisfying

(i) 1f(v,t)] < C(1+ o)) pa(v,1),
(i) f()* f(v) < C(m (L)) Pap(v), for some 1> 0.

Then f =0 almost everywhere whenever a < b.

2.3 Uncertainty principles on general step two groups

The main purpose of this section is to extend the results, in the context
of step two groups, proved in the previous chapter . For general step two
groups we find an alternative condition on f and prove Hardy and Cowling—
Price theorems. Also an analogue of the result of Bonami et al [5] will be

proved. Ray in [28] has proved Hardy, Cowling—Price and an analogue of
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Theorem 1.2.7 . The equality case has been left open. Another version
of Hardy’s theorem (inequality case) was proved in [1]. We treat here the

equality case.

2.3.1 Uncertainty Principles on step two groups without MW condition

For a stratified group the associated sublaplacian is a positive Rockland
operator (see [13], 4.20, page-130,). Then Theorem 4.25 of [13] asserts that
this operator generates a diffusion semigroup with kernel p,(v,t). Such
results are not available for general step two groups. We are looking for an
alternative condition on f and f (u,v) to formulate heat kernel versions of
Hardy and Cowling—Price theorems for general step two groups. Let us first
introduce Radon transform of functions on R¥. For suitable function g on
R* the Radon transform Rg is a function on R x S*~1, defined by

Rg(w,r) = Rug(r) = / _ g(z) do, (2.3.12)

where do denotes the (k — 1)—dimensional Lebesgue measure on the hyper-
plane {z : - w = r}. It is known that

oo

Rog(r) = (277)1/ eisr/ e @l g(t) dt ds. (2.3.13)
—0 Rk

For stratified step two group the condition |f(v,t)] < Cpg(v,t) implies
|Ry f(v, )| < CRypa(v,r). Writing v = (z(w), y(w), 2(w)), using the above

notation and the formula ( 2.3.13 ) we have

Rupn(@(w) (), 2(0).7) (2.3.14)
e / ISP (3 (1), y(w), 2(w)) ds

— C e 4az(w)|2/ 6—erq21d(w)(:p(w>7y(w>) dS
1
= Cpe 1l g, 4 (@), y(w), )

So it is natural to formulate Hardy’s theorem as follows:



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 44

Theorem 2.3.1. Let G be a step two group without MW condition. Let f

be a function on G such that for every w € S*~1

(4) |wa(1w(W)7y(w)7Z(W)7T)| < O(1+ [(2(w), y(w), z(@)])’
x 73, ) (@(w) + iy(w),7)

(i) f(uv)* f(p,v) < C(muu(L)) e 2mur D) for every (u,v) € A, where
[>0.

Then f =0 almost everywhere whenever a < b.

Proof. We have the formula

[ (w), y(w), 2(w)) = /oo " Ry f((z(w), y(w), 2(w)), 5)) ds

—0o0

for all € (0,00),w € S¥~1. Then from the first hypothesis of the theorem

we have
770 (0), (), @) < Ce R I

for any a < a’ < b. Now proceeding as in the proof of Theorem 2.2.1 we get
the desired result. O

Also we have the following version of Cowling—Price theorem:

Theorem 2.3.2. Let G be a step two group without MW-condition. Let f
be a function on G. Let us define the function g, by

9o (2(w), y(w), 2(W),r) = Ruf(z(w),y(w), z(w),r)eis* )’

X (Gasde)) " (#(w) + iy(w), 7).
Suppose
(i) (1+|(z(w),y(w), 2(w))]) 'g. belongs to LP(v x R),

(it) fpsv) = S(u,v) (mp (L)) e b8,
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S(p,v) € S for every (pu,v) € A, where l > 0 and 1 < p,q < oo. Then

f =0 almost everywhere whenever a < b.

Proof. Tt is easy to see that for each eﬁ|'|2fm(') € LP(v) for any a < d/, for
all 7 € (0,00) and w € S*¥~! as in the case of H?. Now the rest of the proof

will be same as Theorem 2.2.2. O

We define Fourier-Weyl transform f((u,v),€) of a function f on G by

F(1,v),€) = mu(€,€7,0,0) f (1, V), (€, €”,0,0)

for all £ = (¢/,¢") € & @ n,. A simple calculation shows that

F((u,v), (€,€")

- / /5 exp(i S di(0) (@5 — €))7 (2, y)mo (2, ,0,0) d dy.
v v j=1

We have the following theorem which is analogue of Theorem 1.2.24.

Theorem 2.3.3. Suppose f € L' N L*(G). Assume that for each v € U

there exits an analytic vector ¢, for mo, and ¢, € L2(771,) such that

/ / @y, 20 {(F ), (€160 )] X
&P B d3 I JEu

exp(] Y dj(v)(x;& — y;&))]) €' d¢” dw dy dz dt < oo
j=1

for all p € Vf‘ Then f =0 almost everywhere.

Proof. We define g, (2,5) = f*(2,y) (7o, (2, 5,0, 06y, ;) for all v € U
and i € t*. Tt follows from the explicit expression of f((u, ), (€/,€")) that

T dw)(=n,€)) = 2m)" (F (R, v), (€,€")) v, ).

Let us consider the following integral:
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/ /g / / 970 (@, )| (€, € exp IZx £ty &) de dy de' de”
v J Ny

l/

/ y /s /@%@cy@z 2,9, 2 O)|[(F (7 v), (€, €)bw, )|

X exp |Zdj (2;&) — y;€)))) da dy dz dt d€’ d¢”
=1

< 00.

If we apply Theorem 1.2.6 to the function g;,, we get gz, = 0 almost
everywhere in (¢,€"”). Since ¢, is an analytic vector, f~¥ = 0 almost
everywhere. But this is true for all (ii,v) € t x U. Therefore, finally we

have f = 0 almost everywhere. O

In the case of H} we have proved Hardy’s theorem and Theorem 1.2.12
as corollaries of Theorem 1.2.10. Our plan is to prove analogue of Theo-
rem 1.2.10 in this context. Then we will deduce theorem of Hardy and an

analogue of Theorem 1.2.12 from it.

1/2
Theorem 2.3.4. For f € L*(G), let g(u,v) = ( fv* 1F (s ) |[26 ) .
Suppose for some N > 0,

v]1¢]
//Ilf Dlaglu et
L+l + 1)

Then f(v,t) = e~ P(v,t) for some a > 0 and P(v,t) = ( > to‘wa(v)> ,

lal<m

where 1o € L?(0) and m < %

Proof. Since f € L*(G), the function F defined by F(t) = f(-,t) is L*(v)
measurable function. Now using the formula ( 2.1.14 ) and Theorem 1.2.9
the proof will be finished. O

Immediate consequences of the above theorem are the following two

corollaries.
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Corollary 2.3.5. Let f be a measurable function on G such that it satisfies
(i) |f(v,)] < g(v)(1 + [t])™e= W, where g € L2(v),
- . 1/2 ol
(ii) PR (Jore 10 i) < e,

Then f =0 for ab > 1/4 and if ab=1/4 then f(v,t) = P(v,t)e‘a‘tP, where

P(v,t) = > ta(v)t® e=lt”  where v, € L2(0) and k < m.
la|<k

Corollary 2.3.6. Suppose f is a measurable function on G such that it

satisfies the estimates
(i) 1f(v,0)] < g(v)e ", where g € L(v),
- . 1/2 ol
(ii) A2 (fi 1) 3 i) < Cet,

where 1 < p < q¢ < o0, %—&—% =1 and (ap)l/p(bq)l/q > 1. Then f =0
unless p = q =2 and ab = 1/4, in which case f(v,t) = ¥(v)e " for some
Y € L*(v).

Cowling—Price theorem for any nilpotent Lie group has been proved in
[3]. It has been assumed that 2 < p,q < co and ab > 1/4. Ray assumed
1 <p<o0,g>2andab > 1/4 in his proof of Cowling—Price theorem for
step two nilpotent Lie groups which are not MW (see [28]). We prove the
same theorem with assumptions 1 < p,q < oo and ab > 1/4. We make use
of the following theorem which is a modified version of Theorem 1.2.5. The

proof (see [24]) is based on the use of Theorem 1.2.14 and Radon transform.

Theorem 2.3.7. Suppose f € L*>(R"). Let for some § > 0

||f e Q)
/n / N I s (2.3.15)

—alz|?

where @Q is a polynomial of degree m. Then f(x) = P(x)e for some

, , d—n—ms
a > 0 and polynomial P with deg P < "7,
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Proof. In Theorem 1.2.14 we have seen that the Theorem is true for n = 1.
Let us assume n > 1. Since A = {y : f(y) = 0 and Q(y) = 0} is a set of

measure of zero there exists ¢y’ € R™ such that
/ |f(2)]e"V] da < .

This shows that f is L'(R™) and f can be extended as a holomorphic function
in a strip of C™. In particular f is real analytic on R”. In ( 2.3.15 ) we use
polar coordinates for 7, to see that there exists a subset S of S”~! with full

surface measure such that for every ws € S,

n |l[s]
/Rn/ |f ()1 Sw2+|||8x|’ +1||§2|)(sw2)]6 ds di < oo, (23.16)

In view of ( 2.3.13 ) this is the same as for every ws € S,

sz s|n—1 ||s]

Step 1: In this step we will show that for any w; € S"~! and wy € S,

R, )| Ress f n—1 I7|Is|
[ [ e 1+(ri‘||+||s|>|Q(M)‘e ddrsoe (2319

We will break the above integral into the following 3 parts and show that

each part is finite. That is we will show:
(i)

ds dr < oo

/ / R(f)(wr,7)| Rup F(5)]el™91] 5"~ |Qsw2))]
151 (1 + [r[ + |s)d

for L > 0 such that L2+ L > d.
(i)

ds dr < oo

/ / R(|f1) (@i, )| Rup F(5)]el™91] s~ |Q(sw2))]
it Jlsl<L (A +|r] +]s])?

for M =2(L+1) and L as in (i).
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(iii)

ds dr < oo

/ / R(f) (w1, 7)|Run J (5)]el™9l] 5"~ |Q(sw2))|
rl<M J|s|<L (L4 |7 +s])®

for M, L used in (i) and (ii).

Proof of (i): It is given that L + L? > d. We will show that for any s such

that |s| > L,
elsllz] elsll(zw1)|

> .

(L+fz[+[sD? — (1 + [{z,w1)] +|s])

Let F(z2) = m for « > 0 and o + a? > d. Then F'(z) > 0 for any
z > 0. Therefore, if z1 > z9 > 0, then

(2.3.19)

0?1 0?2

> : 2.3.2
(1+a+2)4 " (1+a+ z)d (2:3:20)

Note that |z| > |(z,w;)| for all x € R™ and w; € S" 1. Now take z; = |z
and zo = |(z,w1)|. Then 21 > 29 > 0. We take o = |s| > L to get ( 2.3.19).

We start now from ( 2.3.17 ) and break it up as:

/ / / (@ HRwa N Qo) 4 o gy < 0, (2.3.21)
s (1 + [l + [s[) ’

where do; denotes the Lebesgue measure on the hyper plane {z : z-w; = r}.
We use the inequality ( 2.3.19 ) to obtain:

[(z,w1)]s]] g|n—1
[[ [ MR gy
z-wi=r J|s|>L +|<$7w1>|+|8|)
(2.3.22)

Now we put (x,w;) = r in the above integral and use the definition of Radon

transform to obtain,

R( ) (wr,7) [ R £(5)]el™19] 5" Q(s2)]
/ /|>L (1 +|r| + s ds dr < oo. (2.3.23)

This proves (i).



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 50

Proof of (ii): Let

R(|f1) (w1, 7)| Reoy £ (5)[el™191] 5" Q(sw0)]
I = drds.
? /|T|>M/ <L (L + [r] + Js])? e

It is clear that,

Lir|
12 S C R(’f‘)(w17 7,)C|le d?"
pem (14 !r\)

c/ / M d
= g1 ar
[r|>M Jz-wi=r 1+’ |

= CI37

say. We will show that I3 is finite for M = 2(L + 1).

We have already observed that f is real analytic on R™ and hence f (y) #
0 for almost every y € R™. Therefore, from ( 2.3.17 ) we can get a 59 € R
with |sg| > 2L such that:

,f($)|e|z|\80|
dx < oo.
/]Rn (14 [z] + [s0])

That is

|90H80|
/ / doy dr < oo.
Twi=r +’x‘+’30‘)

Notice that |so| + |sg|? > d, since |so| > 2L and L + L? > d. Now applying
the argument of case (i) (see ( 2.3.20 )) to |so| we get:

clelisol ol (@)l lsol

>
(14 fz| + [so])* — (1 + [, wi)] + [so])

as [{(x,w1)| < |z|. Therefore,

() elrllsol
/ / doy dr
|r|>M Jz-wi=r 1+|T’+|50‘)

(z)|el@wnillsol
/ / doy dr < oo
|r|>M Jz-wi=r 1+‘ z w1>‘+’30‘)

from the above observation. Note that M + M? > d as M = 2(L + 1) and
L+ L? > d. Applying the argument of case (i) again (see ( 2.3.20 )) this
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time with o = || > M and z; = |sg|, 22 = 2L we get,
elsollr| e2LIr|

> :
(L4 [sol +[r)* — (14 2L + [r[)

Therefore,

2L\7”|
doq dr < oco.
/7"|>M/xw1 =r + |T| + 2L)

From this it is easy to see that

|eLlr]
/ / doq dr < oo
[r|>M Jzwi=r + | |

and hence, I3 < oo. This completes the proof of (ii).

Proof of (iii): As the domain [—-M, M] x [—L, L] is compact and as

|Roy f(3)]e131s]71|Q(5w0)|
(1 + |7+ [s])?

is continuous in this domain, the integral is bounded by C' fin R|fl(w1,r)dr.

Now recall that f € L'(R"). Therefore,

[ wisleni < [ R
- //M . x)|dodr

= [ W@l <.

(2.3.24)

Thus from (i), (ii) and (iii) we obtain ( 2.3.18 ). This completes step 1.

Step 2: From ( 2.3.18 ) we see that for almost every w € S"~ !,

//R Wl fI(r !wa( )Is["1|Q(sw)Pelrls

dr ds < oo.
(L47[+]s])?

Since |Ry f(r)| < Ry|f|(r) we have,

[ (MIRF(S)lls] | Q(sw) el
(L [+ [s])?

dr ds < 0.

(2.3.25)

(2.3.26)
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Using the result for n = 1 we conclude that R f(r) = A, (r)e=*", for some

polynomial A, which depends on w, deg A, < m

and « is a positive
constant. A priori, « also should depend on w. But we will see below that «
is actually independent of w. It is clear that R, f (s) = Pw(s)e_iSQ, where
deg P, is same as A,,. Consider wi,wy € S with w; # wy for which R,,,,, Ry,

satisfy ( 2.3.18 ), that is

// ’Runf HRw 4(_2;’4_’78’?@(8&)2)‘6“8' dr ds < co. (2‘3.27)

From the above argument it follows that R, f(r) = A, (r)e®"™ and
}?W\Qf(s) = P(‘)Q(s)efﬁs2 for some positive constants ai,as. Suppose if
possible a1 # . Without loss of generality suppose a1 < ag, otherwise we
will change the role of w; and wy. Substituting them back in ( 2.3.27 ) we
see that

drds

// S 0 IO 1 Qi) Ay () P ()
(L Ir[ +IsD?

Fix € > 0, consider the set Ac = {(r,s) : r,5 > 0 and |\/oqr — \/%725| <€},
which is a set of infinite measure. Since % < 1, it is easy to see that
there exists C' > 0 such that the integrand of I is greater than C' on the
strip A, . Hence, I > Cm(A¢) = oo. Thus we get oy = ag = a and
Ruf(s) = Pu(s)e 1"
Step 3: We will show that P,(s) = P(sw) is a polynomial in sw, that is
P is a polynomial in R". Recall that R, f (s) = f(sw) is a holomorphic
function in a neighbourhood around 0. We can write P, (s) = f(sw)eﬁsz =
f(sw)eils“"2 = F(sw), say.
We write F(sw) = Z?:o a;j(w)s?, where k = max, deg P, < m.
Then for j =0,1,...,k
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The left hand side is the restriction of a homogenous polynomial of degree
j to S"~1. Therefore F(sw) is a polynomial of degree < k in R™. Therefore
f(m) = P(m)e‘ﬁm?7 where deg P < W. O

First we want to prove an analogue of Theorem 1.2.15 for step two groups

and then as a corollary we deduce the Cowling—Price theorem.

Theorem 2.3.8. Suppose f € L' N L*(G) and for some M, N > 0, it

satisfies
// f(, y,z t)|Hf(M7 )HHSe‘Z”“MtH”'
sonana; (L 1@ ) DM (L +](z, ) )V (1 + | (1, v) )N/

X Pf(v) dz dy dz dtdp dv < oc.

Then for each v € U
[y, 2,t)

— 2 2
= (+]@yDM | Y s(a,y)t | e =,
i+sl<t

where ¥, 5 € L2(¢, ®ny) and 1 is an nonnegative integer.

Proof. For each pair (¢,1), where ¢, € L?(n,) let us consider the function
F(¢7w) defined by

Flo.p)(2,1)
/ [ 10200+ 1)) G0 0,009, ey

It follows that for all (f1,v) € ¢ x 3*

is\w(u, v)
/ / 5 () (1 + (@ 9)) M (mo (2,0, 00, 9) da dy.

M J &
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Using Cauchy—Schwarz, we get

—_—

| Fi,) (it V)]
) 1/2
= C(/ / |5 (e, y)|? da dy>
v 7 &y
. 1/2
- H d; 1 (fi, 1) |- (2.3.28)
7j=1
Therefore,
/ / / [Flg.) (2, Dl Flg ) (s v) el
ety Jo (L4120 )N2(1+ (3, v)])N/?
1/2
Hd dt dz dji dv
< /// 1F (@, 9, 2, D) (G, ) sl 1+
B e Je,ononas (L+ (@) )M (1 + |(z, ))N2(1+ | (p, v) )N/
Hd dz dy dz dt dji dv

- // |f (.9, 2, Ol f (1, ) [[usel= 11
genens; (1+]@ ) DA+ (2, )N + | (1, v)[)N/2
x Pf(v) dx dy dz dt du dv

< oQ.

In the last step we have used the change of variables by the map ¢ defined

n
n ( 2.1.1 ). Notice that [] dj(v) is a polynomial in v. Now using Theorem
j=1
2.3.7 we have for each pair (¢, )

I = —a 2|2 2
(P,2) ('Zv t) P(Cbﬂl}) (z’ t)e (@,0) (2% +t| )7
where a(¢, 1) > 0 and

Pouy(t) = > aps(9)t

[y|+16]<m
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and m is independent of (¢,1). As in the proof of Theorem 1.2.15 we can
show that a(¢,v) = a is independent of (¢,1)). Finally taking ¢ = ®¥ and
¢ = @7 and using the fact that {®}, 5(z,y) : @, € N"} (see 2.2.3 )forms an
orthonormal basis for L?(£, @ n,) we can show as in the proof of Theorem
1.2.15

fag,zt) = A+ @)™ [ D0 Uy, y)27e0 | el
[y[+18|<m

where U, 5 € L2(&, &1,).
O

Now we are ready to prove the following version of Cowling—Price theo-

rem.

Theorem 2.3.9. Suppose f € L' N L?(G) and it satisfies the following

conditions.
i) [ PO | f v, )P dv dt < oo,
(it) [y 6P f ()% PAV)dp dv < oo,
Then for ab > 1/4 and min{p, q} < oo, f = 0 almost everywhere.

Proof. Using Holder’s inequality we can find M, N, C > 0 such that for each
vel

! eal(z’t)‘Q‘f(x7y7Z,t)|
f&,@nu@ru@g () DM (1+[(z,2) DN dr dy dz dt < C,

2] ) s
) Sy S Ty Pi)dp dv < oo.

With this observation and using Theorem 2.3.8 we can conclude that f =0

almost everywhere under the assumption ab > 1/4 and min{p, ¢} < co. [0

As in the case of H} we can get the following following analogue of
Corollary 1.2.12.
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Theorem 2.3.10. Suppose f € L*(G) satisfies the estimates for each v € U
(i) 1f(x,y. 20| < gla,y)e= 1 where g € L* (&, @ 1),

(i) (IT )21 f (e v)lus < Ce™MEDI for ail fi € x5,
j=1

where 1 < p,q < oo, %—f— % =1 and (ap)'/?(bq)"/? > 1. Then f =0 almost
everywhere unless p = ¢ = 2 and ab = 1/4 in which case f(z,y,z,t) =
Y(a,y)e 1E0E for some ¢ € L2 (& @ ny).

Proof. For each (a, 3), consider the function
Faplet) = [ [ @20 o) de dy (2.3.20)
v & ’

Now proceeding as before and using the hypotheses we get

Now applying Theorem 1.2.7 to the function F, g we get Fi, 3 = 0 almost
everywhere unless p = ¢ = 2 and ab = 1/4 in which case F,g(z,t) =
C’a’ge_‘”(z’t)‘?. Therefore, f = 0 almost everywhere for (ap)'/?(bg)*/? > 1
and p # 2. Let us consider the case p = ¢ = 2 and ab = 1/4. Since

f € L*(G) we can express it as

fay,zt) = e &0 N 0 5@ 5(2,y)
(a,8)

= GOl (e, y),
where ¢ € L2(&, @ n,). O

For all step two nilpotent Lie groups Astengo et al [1] have proved a
version of Hardy’s theorem. The equality case has been left open. Our
method will give the equality case which implies the inequality case. We

now prove the following version of Hardy’s theorem.



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 57

Theorem 2.3.11. Let f € LY(G) satisfy the following conditions:
(i) fn | f(v, D)[(1+ |U|2)k/ dv < Ce_a\t|2,

(i1) PIO) fo 1FG0) oy (U )™ e < Cr(wyle P,

where r(v) = Y. (dj(v)?+dj(v)~2), k',l € N. If ab > 1/4 then f = 0 almost
j=1
everywhere and for ab=1/4, f(v,t) = f(v,O)e_“WQ,

Proof. Let h(v,t) = f(v,t)(1 4 |[v|>)~* and g be a Schwartz function. Con-

sider the function
F(th) = h(,t)*g(’[))
= /h(w,t)g(v —w) dw.

v

Taking the Fourier transform in the ¢ variable

F’(v) = /t’(l_{_(:é)k,g(v —w) dv dw

= (277)(”+7")Pf(1/)/~ tr (f(,u,,l/)Wm,/ (h;j)*> du,
Vi
where R (w) = g(v — w)(1 + |w|?>)~*". Note that A/, is from Schwartz class
and hence
FY) < o TP | (F )W (h)) | du
1F (1)l % /
< CPiw)| [ WL ew (0K g (W (1)) d
[PE(v)] (4 Tl (L4 1pu)™ tr ((Waw(R)]) du

< C(v) T(V)k//e_b|”‘2,

for some positive integer k” using the second hypothesis of the theorem
and estimate on (1 + |u|)*tr (|W,,(h])|) as mentioned earlier . Let D =
{w e S¥1: dj(w) # 0 for all j}. Note that we have dj(v) > 0 for all j
whenever v € U. Also dj(sw) = sdj(w). If v denotes the surface measure
on S¥=1 then v(S*~1\ D) = 0 as U is a set of full measure on R¥. Let



2. Uncertainty Principles for Step Two Nilpotent Lie Groups 58

dw) = fgjaé(n{dj(w)’dj_l(‘“‘j)}' for fixed w € D. Since d;j(sw) = sd;j(w) for

n
sufficiently large |s|, Y d;j(sw)? + d;j(sw)™? < nd(w)(1 + s?). Therefore,
j=1

k,//
n

r(sw)f = [ di(sw)? + dj(sw) 2
j=1

< O+

for sufficiently large s. For each w € D consider the Radon transform
R, F(v,s) of the function F(v,t) in the last variable . So we can conclude
that

|RLF(v,5)] < C(0)C'(w)(1 + s*)* e’

for sufficiently large positive integer m . Also we have |R,F (v, s)| < Ceas
as |F(v,t)] < Ce~” using the first hypothesis of the theorem. Now ap-
plying Hardy’s theorem to the function R, F'(v,-) we conclude that for all
w e D, F**(v) = C(v)C"(w)e " whenever ab = 1/4 and F*(v) = 0
for ab > 1/4. Since F" is a continuous function of v we conclude that
F¥(v) = C(v)e PP for ab = 1/4 and F¥(v) = 0 whenever ab > 1/4 for all
v € 3*. Finally we get F(v,t) = h(-,t) *x g(v) = C(v)e=* for ab = 1/4 and
F(v,t) = h(-,t) * g(v) = 0 for ab > 1/4. Choosing g from an approximate
identity {gm }m where each g, is of Schwartz class on v we conclude that
h(-,t) %Gy (v) = 0 for ab > 1/4 and h(-, t) %G (v) = Cp(v)e~ 4 for ab = 1/4.
But h(-,t) * gm(v) converges to h(v,t) as m — oo. Hence Cp,(v) — C(v) as

m — oo.
Therefore, f(v,t) = C(v)(1+ |(v)]2)F e = f(v,0)e~ " for ab = 1/4
and f(v,t) =0, whenever ab > 1/4. O

2.3.2 Uncertainty principles on step two groups with MW condition

All the theorems except Theorems 2.2.4, 2.2.2 proved for step two groups
without MW condition can be formulated and proved for MW groups with
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obvious modifications. So we discuss here analogues of Theorems 2.2.4 and
2.2.2 for MW groups.

Theorem 2.3.12. Let G be a step two group with MW- condition. Let f
be a function on G such that for every w € S*~1

(1) |Ruf(z(w),y(w),r)| < O +[(2(w), y(@)]) ta,dew) (#(w) +iy(w),r),
(i1) f(w)*f(v) < C(m (L)) e 2L for every v € A,
where | > 0. Then f =0 whenever a < b.

Proof. We recall the formula

fW@W%M@)Z/WGWRJ«ﬂ@w@W£)%

— 00

for all r € (0,00) and w € S¥~1. Then from first hypothesis of the theorem

we show that for any b > d’ > a
(@), y(@))| < Cemar(HFHIP,

Also using the above formula and the given estimate on R, f it can be shown
that for each w € S*~1, f™ can be extended as a holomorphic function of
r € C in some strip |3(r)| < 2. Now the rest of the proof will be same as
Theorem 2.2.4. O

Theorem 2.3.13. Let G be a step two group with MW condition. Let f be

a function on G. Let

9 (@(@), Y(@),7) = R f(2(w), y(@),7) (dud(w) (@(w) + iy(w), )

Suppose for every w € SF~1

(1) (1+ |(x(w),y(w))])"'gw belongs to LP(v x R), 1 < p < oo and

A

(i) f(v) = SW) (m (L)) e7tm5),

where 1 >0, 1 < g < oo and S(v) € S, for every v € A.Then f =0 almost

everywhere whenever a < b.
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Proof. As before it can be shown that f™ can be extended as a holomorphic
function of r € C in the strip |3(r)| < % for some A > 0 and eﬁ|“2f’"“’ €
LP(v) for any a < a’ < b. This is true for all w € S¥~!. The rest will follow
from the proof of Theorem 2.2.2. O



3. UNCERTAINTY PRINCIPLES FOR GENERAL NILPOTENT
LIE GROUPS

In the previous chapters we have proved various kinds of uncertainty princi-
ples for Heisenberg groups and step two nilpotent Lie groups. It is natural to
ask up to what extent those results can be generalized for general nilpotent
Lie groups. Recently a version of Hardy’s theorem and Cowling—Price theo-
rem for connected simply connected nilpotent Lie groups have been proved
in [19] and [3] respectively. In the proof of heat kernel versions of Hardy
and Cowling—Price theorems for step two stratified group we have used good
estimates of the heat kernel as well as the explicit expression for the partial
Fourier transform of the heat kernel in the central variable. For a general
stratified group a good estimate of the heat kernel is available from the work
of [18]. However we do not have an explicit expression for the partial Fourier
transform of the heat kernel in the central variable. So there are technical
problems in proving such a version of uncertainty principle even in the case
of a stratified group. Due to the lack of such information in the general case

we look for alternative versions of Hardy and Cowling—Price theorems.

3.1 A new version of Cowling—Price theorem for R" and its

application to nilpotent groups

We replace the first condition of Theorem 1.2.2 by estimates on derivatives
of f and get a new version of Cowling—Price theorem. We also give a com-

parative study of these two versions.
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3.1.1 A new version of Cowling—Price

Consider the Gaussian ¢, (z) for which ¢, = (4ma)~"/2¢y with b = 1/4a. In

view of the Plancherel theorem we have
~ n 9] 5
Ww%z/‘ﬂ%@ﬁmzwn/ $20; o —2at? gy
R 11/
7j=1

which gives the estimate

n

jo°ul3 = [T (% + ;) 20y < Cal)l @1)

If a function f satisfies | f(x)] < C' ¢q(x) then the derivatives of f satisfy

the estimates

10°f112 < C al(2a)7 . (3.1.2)
Replacing the pointwise estimate | f(z)| < C ¢4 () by the slightly weaker
estimate ( 3.1.1 ) we get the following uncertainty principle.

Theorem 3.1.1. Let f be a function on R™ such that |f(£)] < C e VP,
and for every a € N", ||0°f||3 < Cal(2a)~1%l. Then f =0 whenever ab > 1
and when ab = %, f(6) = (b({)e*bmz where ¢ is an entire function on C™.

We start with the following lemma which allows us to get pointwise

estimates on 0°f when we have estimates on [|0%f||».

Lemma 3.1.2. Suppose we have
10 f]13 < € al(2a)71*

for every a € N*. Then we also have
n
i < Tlies + o

for every a € N™.
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Proof. In view of Sobolev embedding theorem (see [11], page 270),

P fEF<C > 10 fII3

|B|<n

which gives the estimate

°FOF < ¢ Y lo*P 3

|B1<n

< C Z (2a)~(el+18D (o 4 )1
1Bl<n

< C [](e;+n)(2a) .
j=1

O]

In view of this lemma, we only need to prove the following version of
Theorem 3.1.1.

Theorem 3.1.3. The conclusions of Theorem 3.1.1 are valid if we replace
the estimates on [0 f|2 by

‘aaf(f)|2 <C H(ozj + n)!(2a)*|a‘

j=1

for every a € N™,

Let us complete the proof of it. We first consider the case ab > 1/4. We

make use of the following lemma.

Lemma 3.1.4. Let F (&) be a smooth function on R™ which satisfies
F©)P < C [[le +m)2a)e
j=1

for all o € N*. Then F extends to C™ as an entire function which satisfies
IF(Q]<C bl for every b > 1/4a.
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Proof. For b > 1/4a,
9 F(E)

al

0°F
al(g) ‘ ‘n|\a|

[FE+ml = 1)

67

2.

«

“|

IN

lo

= Z [9°F(&)] (gb)—‘%‘ _(21’312‘77,@

1
a 04!2 ol2

o : ol \ 2
. (Z\a i (%)_a|> (Z (n2) )

[0}

<o () e

«

= C(n, b)ebm‘Q.

This shows that F' can be extended as an entire function on C" and it
satisfies
[F(E +in)| < C(n,b)e,

Coming to the proof of the case ab > 1/4, choose b' such that b > o' >
1/4a. By Lemma 3.1.4 we have

Q)] < C ISP,

As we have |f(£)| < C e b and ¥ < b we appeal to the following lemma
to conclude that f = 0. O

Lemma 3.1.5. Let F({) be an entire function on C™ which satisfies
()] < "B, F(©)] < Ce

for ¢ € C" and € € R™. Then F = 0 whenever a < b and F(¢) = Ce™ %
fora="b.

Now take up the equality case. Clearly it is enough to prove it when

n = 1. Indeed if we have the result in the one dimensional case then by



3. Uncertainty principles for general nilpotent Lie groups 65

considering the function

F(&n) = f(glvgn)v gl = (é,_l?g?v o 'gnfl)

which satisfies the estimates
[F(&)] < C(€)e ™ |0FF(€)* < C (k +n)!(20) 7

we obtain

F(&) = C(€,&)e ",
But now the function C(&',¢,,) satisfies the same estimates as f on R* 1,
By using induction we can obtain f(f) = qb(f)e_blfP with ¢ bounded. For
the one dimensional case using Lemma 3.1.4 f can be extended to C as an
entire function of order at most 2. Since f cannot decay on R faster than

its order its order is 2. Since we have the estimate

~ s 1
1O < C B for all v > "

its type is ﬁ. Now we apply the following result of Pfannschmidt [27] to

the entire function f(¢).

Theorem 3.1.6. Let F' be an entire function of one variable { of order p
(p integer) and type b. Let
1 F 0
h(#) = lim sup log|F(re)]

r—00 rP

, 0€]0,00)

be its indicator and assume that

Qi
h(ﬂ-j> S_b7]:0717277p_1
1%

Then F(¢) = P({)e " where P(() is an entire function at most of minimal
type of order p.

The following remark is in order. In Theorem 3.1.3 with ab = 1/4 we
have concluded that f(£) = ¢(§)e*b‘5|2. It would be nice to say something

about f itself. As ¢(() is an entire function we have

$&) =Y anl®+on(¢)

la|<N
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where [¢n(€)] < C (1 +|£])N. This shows that, in view of the inversion

formula
fla) = (2m) 7% [ e eog)e tielag (3.1.3)

f can be written as

F@)=| D con® | e 4 fr(w)

la|<N

where

In(€) = on(E)e .
We also have (LP, L?) version, the case ab > 1/4 of Theorem 3.1.1.

Theorem 3.1.7. Let f be a smooth function such that
10°f|I; < Cal(2a) 71!, fel T € LY(R")
where 1 < p,q < oo then f =0 for ab> 1/4.

Proof. We reduce the conditions of the Theorem to the corresponding condi-
tions when p = ¢ = oo using a trick from [2]. Let h be a smooth function with

supp C {z : |z| < §}. Choose V' such that b > ¥’ > . Then for all z € R"

. F) /
with |z| > \/gl[\b/p and y € sup h we have |z—y| > |z|—|y| > |z]-§ > |3:|\/%.

Since h € LP for all p we get by Holder’s inequality a constant C' > 0 such
that

c > /R M| f(z — )| |h(y)\dy

J2” f(z —y)||h(y)|d
/Rnwx y)||h(y)|dy
> | fx ()]

/

> e

for all |z| > \/glf%. From the continuity of the function f A it follows that

|f * h(z)] < Ce VI
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for all x € R™. We also have the following estimate

0°(f * h)()?

IN

1% f11511Al17
< Ca!(2a)71°

Since ab’ > 1/4 we can apply Theorem 3.1.3 to conclude f* h = 0. As this
is true for all h € C3°(R"™) we get f = 0 almost everywhere. O

3.1.2  Cowling—Price theorem versus its new version

To investigate the relation between Theorem 1.2.2 and Theorem 3.1.7 we

need to compute the following integral.

n 00
/ |x°‘6_a‘x2‘|pdaz = H 2/ P25 e~ . (3.1.1)
n Jaie 0

It is enough to consider the case n = 1. Now

oo o0
_ 2 _ pk+1 _ pk—1
2/ e WP PR dy = (pa)” 2 / e fx 2 dx
0 0

= Clap) T (pk i 1> (3.1.2)

Using the Sterling’s formula T'(t + 1) ~ tte=t\/2mt

(ap)f%lﬂ (pk: + 1> = (ap)*%F (pk: -1 + 1)
2 2
E—1\"%
p pk— — 2
< Clap) 7 ™7 (p 5 )
< C’e_%(Qa)_%k‘%
< C ((QQ)—k/Qkk/Qe—k/Q)p
2
< C((Za)_kkk+%e_k)p/
/2
< C ((2a)—’f/<:!)p . (3.1.3)
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Therefore, from ( 3.1.1 ) and ( 3.1.2 ) we have

1/p 1/2
</ |a:o‘e_a‘$2‘|p dm) <C ((2a)_|a|a!) / .

Now if f satisfies the conditions of Theorem 1.2.2, then using the above

estimate and Holder’s inequality we have

P = |zof(e)
< 2 flh
< Cllfea 1" ally
< Cal(2a)719.

Therefore, the hypotheses of Theorem 3.1.7 are satisfied and hence The-
orem 1.2.2 can be deduced from Theorem 3.1.7.

We show below that the case p = 2,¢ € [1,00] of Theorem 1.2.2 is
equivalent to the case p = 2, ¢ € [1, 00| of Theorem 3.1.7.

Suppose f satisfies the hypothesis of Theorem 3.1.7 with p = 2, ¢ €
[1,00]. Choose @’ < a but satisfying a’b > %+ and consider f ¢.'. Expanding

the Gaussian we have

[ 15@u@) P s

o a/k
= ([ r@PC e a)
k=0
_ kzo |Z_:k;'/R ()22 da | (20')F.

Under the hypothesis on [|0f]|2 we get

/ (@) 2 da
- / 0°f(2)? da
RTL

< Cal(2a)71o.
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Therefore,

/ F(@)bar (2) 1 da
RTL

> 1 a \*
< ox | Za) (5)
k=0 \|a|=k
[e'e) . CL/ k
< n- —
Cofen (4
k=0
< 0o0.

Hence the hypotheses of Theorem 1.2.2 (case p = 2,q € [g,o0]) are
satisfied. On the other hand suppose f satisfies hypothesis of Theorem
1.2.2 with p = 2. The above calculation shows that

10°f|I3 < Cal(2a)~

for every o« € N™. Thus the hypothesis of Theorem 3.1.7 (case p = 2,q €

[1,00]) are satisfied.

3.1.3 An uncertainty principle for operators and Cowling—Price theorem

for nilpotent Lie groups

The group Fourier transform on a nilpotent Lie group G is operator valued.
Given an irreducible unitary representation 7 of G and a function f on G
the operator f(w) = m(f) is realized on L%(R") for a suitable n. In order to
formulate an analogue of Theorem 3.1.1 we need such a result for operators.

We require the notion of noncommutative derivatives.

Given a bounded linear operator T' on L?*(R"), we define certain non-

commutative derivatives of T' by
5, = [A;,T], 8T = [T, A%, (3.1.1)

where [T, S] = T'S— ST is the commutator and A; = 6%4—{]-, Al = —%4—{]-
are the annihilation and creation operators. The above derivations were in-
troduced by Mauceri [21] and Thangavelu has used them on several occa-
sions, see [33, 34]. For multiindices «, § we define §*T" and 88T iteratively.
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Since for any Hilbert-Schmidt operator T there exists f € L?(C") such that
T = Wy(f) it is sufficient to consider an analogue of Theorem 3.1.1 for
Weyl transform. The following Cowling—Price theorem for Weyl transform

is a generalization of Theorem 1.6.5, page 43 of [35].

Theorem 3.1.8. Let fe?lI* € LP(C") and Wx(f) = S(\)e 2N for some

S(\) € S;, where 1 < p,q < oco. Then f =0 almost everywhere. whenever

aw > % and min(p, q) < co. If p=q = oo then f = Oforaw >1/4
—a|z 2 1.

and f(z) = Ce= " for aw = 1/4.

Proof. We give a sketch of the proof as it is a modification of the proof of
Theorem 2.9.4 of [34]. Let T" denotes the subgroup of the unitary group
U(n) consisting of diagonal matrices. Then each element of T™ can be
written in the form e = (€1 2 ... ¢¥) so that T can be identified
with n-torus. Let m be an n-tuple of integers. Since fe®*” is in LP(C™) it
follows that fne®?” € LP(C™) where

fm(z) = | [ 2)e”™0 qdg. (3.1.2)
Tn

Now Wi(f) = S(A\)e ™ for some S(\) € S,. Therefore, S(\) is a
bounded operator and hence there exists C' > 0 such that ||[Wy(f)®2[l2 <
Cet@lal+n)\ for all @ € N™. Using this estimate it has been shown in page
91 of [34] that

(s @ )| < Co T (20 + 1)@t DN, (3.13)
=1

Let F)f stand for the symplectic Fourier transform of a function f in C"
defined by
Faf(z)=@m)™ [ f(z—w)e23ED) gy, (3.1.4)
C7l
F) is related to the ordinary Fourier transform by F)f(z) = f(—z%z) We

also have
f)\fm(z) = Z<fm’ (I)é,a—i-m(I)())\c,a—i—m)

«
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A

a,a+m 1t can

in the sense of distribution. Using the explicit expression of ®

be shown
| Fafm(2)] < C’nym()\)(l_k|)\||Z‘2)l6—(i)\tanhb>\)|z\2

for some positive integer [ > 0, (see [34], page 93 ). Therefore, we have

anh b\
_tdn/\ |Z|2

[fn(2)] < Com(A)(L+ [2)'e

So by the Cowling—Price theorem for the Euclidean Fourier transform we

conclude the following:

Case 1. If 1 < p < 00,q < 0, then for a% > 1/4, fm =0 for all m and

hence f = 0 almost everywhere.

Case 2. If p = 0, 1 < ¢ < o0, then for a% > 1/4, f,, = 0 and for
aw = 1/4 fm(2) = Cme = for all m. Since f,, is m-homogeneous
Cp = 0 except m = 0 and hence f(z) = fo(z) = Ce=*" which yields
Wi(f) = Ce M) But this is not compatible with the condition Wy(f) =
S(N)e O for some S(\) € S, and hence f = 0 almost everywhere.

Case 3. If p = ¢ = o0, then f,, = 0 for all m whenever aw > 1/4 and

for a% = 1/4 arguing as before f(z) = fo(z) = Ceal=, O

Let T be an Hilbert—Schmidt operator. Then there exists f € L*(C")
such that T'= Wy (f). A simple calculation using the definition shows that
§;Wi(f) = Wi(M,f) and §;Wy(f) = Wi(M, f) where M;f(z) = z; f(z) and
M;f(2) = zjf(2). By iteration we get W1 (f) = W1(z°f) and §°W1(f) =
W1 (2% f). With this observation we are ready to prove our operator analogue
of Theorem 3.1.1.

Theorem 3.1.9. Let T' € Sy satisfy the estimates
(i) T*T < C e 208
(i) 1693" (T*T)|12 < C (a + B)lal® 18l for all a, B € N,

for some a,b >0 . Then T = 0 whenever a < 2tanh 2b.
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Proof. Let S = T*T. Since S is a Hilbert—Schmidt operator there exists
f € L%(C") such that S = Wi(f). We define the operator valued function
f(u, v) on R?" given by

fu,v) = W(u+iv)Wi ()W (u+iv)*. (3.1.5)

As W(z) is a projective representation of C™ it is easily seen that

flu,v) = /n ! @VmY) £ (3 iYW (z + iy) da dy. (3.1.6)

Taking derivatives in w,v and using the relations 0*Wi(f) = Wi(z“f),
Wi (f) = Wi(zPf) we get

0088 f(u,v) = 270w (4 4 iv) (6 4 6)%(6 — 8) W1 (f)W (u + iv)*.

This identity shows that

10208 F(u,0) |25 < C (o + B)lalet (3.1.7)
whenever we have

16°6" WA ()3 < C (a+ p)lal A, (3.18)
Let F be the function on R?" defined by

F(u,v) = (f(u,v)®g, Bp).

then F'(u,v) satisfies the following two properties:

(i) F(u,v) extends to C>" as an entire function which satisfies the estimate
IF(Q] < CeISC? for some a1 < %(1 - 6_4b)7

(i) F(u,v) < C e~ 20=e )l +P),

Assuming this claim for a moment we appeal to the following lemma.

Lemma 3.1.10. Let G(C) be an entire function on C™ which satisfies |G(C)| <
C e ¢ e " and |G(E)] < C (1 + |¢)mePEP, € € R, Then G = 0

whenever a < b.
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The lemma shows that F' = 0 whenever a; < (1 — e *). Since a <
2tanh 2b we have coth2b < % and so we can choose b; and by such that
coth2b < 4b1 < 4by < % This gives by < i and 1+ 4b; > 1 + coth2b =

2 2 —4b : _ 1
= OF 17, < (1 — e *"). In our claim we can take a; = TTap; SO that

F = 0. Since

Fu,v) = (W(u+iw)Wi(f)W (u+ iv)*Po, o)
_ / ei@o—v0) f(5 )= 1P HIP) 4o gy
R2n

by Fourier inversion formula f = 0 almost everywhere proving the theorem
as S = T*T = Wi(f) = 0. It remains to prove the claim with a; = ﬁ
where by is chosen as above. As we have indicated earlier the estimates on

59608 S give the estimates

10207 F(u,v)lIfis < € (a+ 8)lal**1 (3.1.9)
for all a;, 3 € N™ and hence

10505 F (u, v)|[5 < C (a + B)lalH7 (3.1.10)

for all a, B € N”.

Since S = Wi(f) using the Plancherel theorem we have the estimates

/ 12%y° f(2,y)|2dx dy < C(a+ B)lall T8,
]RZTL
We claim that

/ |f(x,y)|262b2(|$|2+|y|2) dx dy < 0o (3.1.11)
R2n

for any by < % To see this consider the series
1
>y [ PR e by 112)
k=0 " "

which converges as long as by < %
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Now consider F'(u,v) which is given by

_F‘(’UJ7 ’U) = f("r’y)ez(xv_yu)e_i(|m‘2+|y‘2) dx dy
R2n

By Holder’s inequality
10208 F (u,v)]* < C /R 2 |2y 22l D (P H W) g gy (3.1.13)

which gives the estimate

~(lal+8)
10298 F (u,v)[2 < C (a + B)! (2 <z)2 + 4>> L (3.1.14)

Appealing to Lemma 3.1.10 we see that F'(u, v) extends to an entire function
ﬁ. Since ay < a1 we get |F(¢)] < € emlS¢P
which proves the claim (7). The second claim is proved using the bound
T*T < C e 2H_ We have

of type ao where as =

F(u,v) = (W(u+)T*TW (u+iv)*®q, @)
< C (W(u+w)e*2bHW(u+z'v)*<1>0,q>o). (3.1.15)
We now expand W (u + iv)*®g = W(—u — iv)®g in terms of ®,,:
W (u+iv)*®g = (2m)2 Y o u(—u — iv) Dy (3.1.16)
p
Since
e PP, = 2

we have, using Parseval’s formula for Hermite expansions,

F(u,v) < CY e 2G| ®g , (—u — iv)|?. (3.1.17)
I

Now using the explicit formula ( 1.1.7 ) for ®¢ ,, we get

) SR N N
Flu,0) € ) e ?Cm 5 (2<\u| + o] >> e~ b+l
o |

which gives
Flu,v) < C e~ z(1me™*)(u*+f?) (3.1.18)

as desired. 0
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We now give an application of the above theorem for multiple Laguerre
expansions. Let f be a function in L?(C") which is invariant under the

action on T™. Then f is called polyradial and it has expansion

f(z) = Z(f, D) P pupu(2)-

m

Let d be a function on N™. For each j = 1,2,...,n we define the difference

operators A; and A} by

(AT d) (1) = d(p+ e5) — d(p), (A7 d)(p) = d(p) — d(p — e5),
where e; are the coordinate vectors. For multi-indices o, 3 € N we define

AY = (AT (AF) 2 - (A4, A2 = (A7) (285)% - (an).

n

With these notations we will prove the following corollary of the above
theorem, which can be considered as Cowling—Price theorem for multiple

Laguerre expansions of polyradial functions.

Corollary 3.1.11. Let f be a polyradial function which is in L*(C"), C(u) =
(f, ®uu) and d(p) = |C(p)|?, p € N*. If C(p) satisfy the following condi-

tions:

(i) 1C(w)] < Ot

2
(i) 3 Uetal ‘(A‘iﬂid) (u)‘ < O + B)12-(lal+8D g lal+18)
"

where a,b > 0, then f =0 whenever a < 2tanh 2b.
Proof. Since f is polyradial

Wi(F)é =D (f @) (6, @),

I

Using the formulae

1 " 1
Aj(I)M = (Q,Uj + 2)2<I)M+€j7 Aj(I)M = (Q/J,j)?(I)u_ej
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it is easy to see that
ash *
CRRAGRIATGIES

(il (m>2 (87 £9d) ()%yams.

Then using the above conditions we will get
WA(F) Wi(f) < Ce M, 5757 (Wi (F) W (f)) [is < Cla+ B)lal .
So by Theorem 3.1.9, Wi(f) = 0 for a < 2tanh 2b and hence f = 0. O

As an immediate corollary of Theorem 3.1.9 we have the following the-

orem for general nilpotent Lie groups.

Theorem 3.1.12. Let G be a connected, simply connected nilpotent Lie
group and let A be a cross section for the generic coadjoint orbits parametris-
ing the elements of G which are relevant for the Plancherel theorem. For
each \ € A let Ty, be the associated element of G. Let f € L N L?(G) satisfy

the following conditions:
() mA(f)*ma(f) < C e 2H
(i6) [15°6% (ma(F)'ma() I3 < C (o + B)la(A)lel+14

where a(\),b(A) > 0. Then f = 0 whenever a(\) < 2tanh2b(\) for all
AEA.

For the case of of the Heisenberg group it can be easily checked using
the explicit formula for the heat kernel that |f*(2)| < C ¢} (2) leads to the

estimates
1596 (FON)* F)IEs < C (a+ B)!(al APl (3.1.19)

Thus condition (i7) in the above theorem is a suitable alternative which
compensates for the absence of a good formula for the heat kernel. In the

case of the Heisenberg group we can replace the condition (i) by f(A)*f()) <
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Ce2PH(N) | Note that e ®# ) = §,(\) and so it is a natural candidate for
measuring the decay of f(A). As H()) is unitarily equivalent to [A|H the
condition (i) is natural. The same comment applies to the case of all step
two groups as the scaled Hermite operator is related to the sublaplacian even
in that case. In the case of general nilpotent groups, there is no canonical
way of measuring the decay of my(f). Therefore, we have used e ?"™H to
measure the decay of the Fourier transform since we do not have any other

choice.



1]

BIBLIOGRAPHY

F. Astengo, M Cowling, B, Di Blasio and M. Sundari, ‘Hardy’s Uncer-
tainty principle on certain Lie groups’, J. London Math. Soc. 62 (2000),
461-472.

S. C. Bagchi and S. K. Ray, ‘ Uncertainty principles like Hardy’s theorem
on some Lie groups’, J. Austral. Math. Soc. (series A) 65 (1999), 289—
302.

A. Baklouti and N. B. Salah, ‘The Cowling—Price theorem for nilpotent
Lie groups’ Preprint.

A. Baklouti, N. B. Salah and K. Smaoui, ‘Some uncertainty princi-
ples on nilpotent Lie groups, Banach algebras and their applications’,
Contemp. Math., 363, Amer. Math. Soc., Providence, RI, 2004, 39-52.

A. Bonami, B. Demange and P. Jaming, ‘ Hermite functions and uncer-
tainty principles for the Fourier and the windowed Fourier transforms’,
Revist. Math. Ibero. 19 (2003), no.1,23-55.

M. Cowling and J. Price, ‘Generalisations of Heisenberg’s inequality, in
Harmonic analysis (G. Mauceri, F. Ricci and G. Weisss, eds)’, Lecture
notes in Math. 992, Springer, Berlin (1983).

M. Cowling (‘Private communication’).

L. J. Corwin and F. P. Greenleaf, ‘Representations of nilpotent Lie
groups and their applications, Part 1 : Basic theory and examples’,
Cambridge University Press (1990).



Bibliography 79

[9]

[11]

[12]

[13]

[14]

[15]

[16]

J.Dziubanski, W. Hebisch and J. Zienkiewicz, ‘Note on semigroups gen-
erated by positive Rockland operators on graded homogeneous groups’

Studia Math. 110 (1994), 115-126.

G. B. Folland, ‘Harmonic analysis in phase space’, Ann. Math. Stud.
122, Princeton University Press, Princeton, NJ, (1989).

G. B. Folland, ‘Real analysis, Modern techniques and their applications’,
John Willey and Sons, Inc, (1984).

G. B. Folland and A. Sitaram, ‘The uncertainty principles : A mathe-
matical survey’, J. Fourier Anal. Apl. 3 (1997), 207-238.

G. B. Folland and E.M. Stein, ‘Hardy Spaces on Homogeneous groups’,
Princeton University Press, Princeton, NJ, (1982).

G. H. Hardy, ‘A theorem concerning Fourier transforms’, J. London
Math. Soc. 8 (1933), 227-231.

V. Havin and B. Joricke, ‘ The uncertainty principle in Harmonic anal-

ysis’, Springer, Berlin, (1994).

W. Hebisch, ‘Sharp pointwise estimates for the kernels of the semi-
groups generated by sums of even powers of vector fields on homoge-
neous groups’, Studia Math. 95 (1989), 93-106.

L. Hérmander, ’A uniqueness theorem of Beurling for Fourier transform
pairs’, Ark. Mat. 29 (1991), no. 2, 237-240.

D.S Jerison, A. Sanchez-Calle, ‘Estimates for the heat kernel for a sum
of squares of vector fields’, Indiana Univ. Math. J. 35 (1986), 835-854.

E. Kaniuth and A. Kumar, ‘Hardy’s theorem for simply connected nilpo-
tent Lie groups’, Proc. Cambridge Philos. Soc. 131 (2001), 487-494.

A. Kumar and C. R. Bhata, ‘An uncertainty principle like Hrdy’s the-
orem for nilpotent Lie groups’, J. Aust. Math. Soc. 77 (2004), 47-53.



Bibliography 80

[21]

[22]

[23]

[24]

[25]

G. W. Morgan, ‘A note on Fourier transform’, J. London Math. Soc. 9
(1934) , 187-192.

D. Muller and F. Ricci, ‘Solvability for a class of doubly characteristic
differential operators on two step nilpotent Lie groups’, Ann. Math. 143
(1996), 1-46.

E. K. Narayanan and S. K. Ray, ‘The heat kernel and Hardy’s theorem
on symmetric spaces of noncompact type’, Proc. Indian Acad. Sci. Math.
Sci. 112 (2002), no. 2, 321-330.

S. Parui and R. P. Sarkar, ‘Modified Beurling’s theorem for R™,
Preprint.

S. Parui and S. Thangavelu, ’ Variations on a theorem of Cowling—Price
with applications to nilpotent Lie groups’, J. Austral. Math. Soc. (series

A) (to appear).

S. Parui and S. Thangavelu, 'On theorems of Beurling and Hardy for

certain step two nilpotent groups’, submitted.

C. Pfannschmidt, ‘A generalization of the theorem of Hardy: A most
general version of the uncertainty principle for Fourier integrals’, Math.
Nachr. 182(1996), 317-327.

S. K. Ray, ‘Uncertainty principles on two step nilpotent Lie groups’,
Proc. Indian Acad. Sci. 111 (2001), 1-26.

S. K. Ray and Rudra P. Sarkar, ‘Cowling-Price theorem and charac-
terization of heat kernel on symmetric spaces’, Proc. Indian Acad. Sci.
114 (2004), no. 2, 159-180.

A. Sitaram, M. Sundari and S. Thangavelu, ‘ Uncertainty principles on
certain Lie groups’, Proc. Indian Acad. Sci. 105 (1995), 135-151.

L.M. Sun and S.L.Wang, ‘Uncertainty principles on mnilpotent Lie
groups’, Acta Math. Sinica 42 (1999), no. 4, 597-604.



Bibliography 81

[32] S. Thangavelu, ‘Hardy’s theorem on the Heisenberg group revisited’,
Math. Z. 242 (2002), 761-779.

[33] S. Thangavelu, ‘On Paley- Wiener theorems for the Heisenberg group’,
J. Funct. Anal. 115 (1993), no. 1, 24-44.

[34] S. Thangavelu, ‘An introduction to the uncertainty Principle : Hardy’s
theorem on Lie groups’, Progr. Math. 217, Birkh&user, Boston, (2004).

[35] S. Thangavelu, ‘Harmonic analysis on the Heisenberg group’, Progr.
Math. 159, Birkhauser, (1998).

[36] S. Thangavelu, ‘Lectures on Hermite and Laguerre expansions’, Math.
Notes. 42, Princeton University Press, Princeton, NJ, (1993).



