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Introduction

In the theory of classical dynamical system, Markov processes, or equivalently, the
associated expectation semigroups (Markov semigroups ) are often used to model
the irreversible time evolution of the system. Here, the Markov processes describe
the evolution of the total (along with the environmental) system which is given by
a stochastic differential flow equation and the evolution within the original system
is obtained by taking conditional expectation with respect to the filtration of the
above stochastic process. However, in accordance with theory of quantum mechanics,
semigroups of completely positive (CP) maps acting on algebra of observables of the
system make a natural appearance and the dynamics of an irreversible quantum
dynamical system is modeled by a CP semigroup on some appropriate algebra. Here
the algebra need not be commutative in contrast to the classical situation and such
semigroups are of great interest from physical as well as mathematical point of view.

A linear map T between two *-algebras is said to be completely positive if T' ®
idyr,(c) 1s positive for each n > 1. Let A be a C*-algebra. A one parameter
Co-semigroup {T;} of CP maps on A is called a quantum dynamical semigroup
(@DS). A QDS on a von Neumann algebra A, is a one-parameter Cp-semigroup
{T};} of normal (continuous with respect to ultraweak topology) CP maps on A. A
QDS is said to be conservative if it preserves the identity element. Given a QDS
on a C* or von Neumann algebra A C B(hg) (hg is the initial Hilbert space ) a
natural question arises whether it can be dilated, that is, whether we can find a
family of #-homomorphisms j; : A — B where B is a x-algebra containing A with a
conditional expectation Eq : B — A, such that Eqj; = T3, Vt > 0. Motivated by the
classical case, it is natural to look for a quantum analogue of classical probability

theory and then obtain a time indexed family j; of *-homomorphisms from A to
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the larger algebra B, modeling the total system, consisting of the original system
and some “quantum noise”, so that j; satisfies a suitable differential equation. With
the theory of quantum stochastic calculus as developed by the pioneering works of
Hudson and Parthasarathy [19] and improved by a number of authors, a notion
of quantum stochastic differential flow was formulated by Evans and Hudson [11],
[10] and subsequently studied by many authors [31, 34, 12, 13]. In this formulation
B is given by AQ B((T'(L*(R4,ko)))) for some separable Hilbert space ko where
I'(k) denotes the symmetric Fock space over the Hilbert space k. The family of *-
homomorphisms j; is obtained as the solution of Evans-Hudson (EH) type quantum
stochastic differential equation (qsde)
dje(a) = Y ji(0f(a)) dAL(H), jo(a) = a, ¥ a € A,
(1,0 >0
where A is a dense *-subalgebra of A, 61 are linear maps (called structure maps)
on A with ) as the infinitesimal generator of the QDS T} and {A}} is the family
of fundamental processes associated with an orthonormal basis {e; : i > 1} of kg
[33, 29]. Here, E is the vacuum conditional expectation. Such a family {j;} of *-
homomorphisms is called an Evans-Hudson (EH) dilation for the QDS {7}}. In some
situation one can obtain a *-homomorphic flow {j;};>0 implemented by a unitary
valued process U; on hg @ I'(L3(Ry, ko)) (ie., ji(z) = Uf(z ® 1p)U;) satisfying
Hudson-Parthasarathy type equation
dU, =Y U,LE dAL(t), TUp = 1,
%

for a suitable family of operators { L)} on the initial Hilbert space hg. Such a dilation
is called Hudson-Parthasarathy (HP) type dilation.

In order to obtain a solution of EH or HP type flow equation, one may encounter
all sorts of technical difficulties, arising due to possible unboundedness of the struc-
ture maps or the possible infinite dimension of noise space. There is a considerable
amount of literature related to the existence, uniqueness and characterization of HP
type flows [31, 32, 13, 14] and EH type flows [15, 24, 18, 25, 1, 26, 27] under various
analytic assumptions on structure maps.

Given a QDS T; on a C* or von Neumann algebra the question of obtaining an

EH or HP dilation is investigated by many authors and answered in some situations,
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for example when the QDS is uniformly continuous. The infinitesimal generator £
of a uniformly continuous QDS is a bounded and conditionally completely positive

(CCP) map, i.e. forn > 1,

n n
> biL(afa;)b; >0, for any a;,by’s in A such that Y a;b; = 0.
ij=1 i=1
Such a map £ admits unique structure given by Christensen and Evans [7]. Starting
from this bounded generator one can define structure maps. In [15], a coordinate-free
language of quantum stochastic calculus is developed and a canonical EH dilation for
arbitrary uniformly continuous QDS on von Neumann algebras is obtained. Later in
[18], construction of EH flow is extended to uniformly continuous QDS on separable
C*-algebras. This sums up the situation about QDS with bounded generators.

On the other hand, in case of strongly continuous QDS, the generator is un-
bounded and does not admit structure as in case of uniformly continuous QDS. The
infinitesimal generator can be describe as a form [8]. There is no general method
to to obtain an HP or EH type flows. Many authors have worked in this direc-
tion under suitable analytic assumptions and some partial success has been achieved
[12, 14, 30, 32, 17].

In this thesis, we have investigated the possibility of constructing EH dilation
for a larger class of QDS with unbounded generators. Restricting ourselves to a
particular model [28] of Uniformly Hyperfinite C*-algebra A = ®;cza My(C),
where N and d be two fixed positive integers, we consider the strongly continuous
QDS generated by formal Lindbladian associated with an element r € A. Let tr be
the unique normalized trace on A and hg = L?(A,tr), the GNS space for the pair
(A, tr).

For x € My(C) and j € Z4, let 1) denote an element in .A whose j-th component
is x and rest are identity of My(C). For a simple tensor element a € A, let a;) be

the j-th component of a. The support of a, denoted by supp(a) is defined to be the

set {j € Z% : a(j) # 1}. For a general element a € A such that a = } 7 | cha, with
ay’s simple tensor elements in A and ¢,’s complex coefficients, we define supp(a) :=
U,,>1 supp(ay). Let Aj,e be the x-subalgebra of A generated by elements a € A with

finite support.
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We note that M, N((C) is spanned by a pair of noncommutative representatives
{U,V} of Zy = {0,1---N — 1} such that UN = VN =1 and UV = wVU, where
w € C is the primitive N-th root of unity. Now let us consider the infinite group
G:=1] jezaZn X Zy and the projective unitary representation of G given by G >
9-Uy = [1;ez A
clear that any element a € A can be written as x = ) geg CgUg with coefficients

from C.

€ A where j-th component of g, g; = (aj,5;). It is

For a given r € A, formally we define the Lindbladian £ = ), ;4 L, where
Lrx = H{[r}, 2] ry, + r} [z, rx]}. Here rj, = 73,(r) with 7 : Z% — Auto(A) induced by
the coordinate translation on the lattice Z¢.

For a suitable class of element r = »° _;cUg so that > o el 9> < oo,
the associated Lindbladian £ is defined on a dense *- subalgebra containing the x-
subalgebra Aj,. and its closure is the generator of a conservative contractive QDS

T, [28] on A. We define a family of maps {6/ : u,v € Z¢ U {0}} given by

6 = L, for (ji,v) = (0,0),
= 5]{," for (,LL, V) = (k70)7
= o}, for (u,v) = (0,k),

=0, otherwise,

where 5k,6£ are bounded derivation on A given by dx(z) = [z,r%] and 5:(30) =
(0 (z*))* = [}, x], Vo € A. In order to construct an EH dilation for the QDS T}, we
would like to solve the following qsde in B(hg) @ B(I'(L2(R,12(Z%)))),

—x—l—/ st ))dAL(s),Vz € Ajoc.

In full generality the problem of obtaining an EH flow satisfying the above gsde seem
to be intractable. However, EH flows for a class of QDS are obtained by standard
iteration method. In order to dilate (EH type) more general QDS we follow a different
path using the idea of constructing EH flow as a limit of associated quantum random
walk [3, 23, 35].

In order to define a quantum random walk we use toy Fock spaces and basic

operators on them [3]. Let T’ be the symmetric Fock space I'(L?(K)) where K is
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L?(Ry, ko) with kg is a complex separable Hilbert space. Let AL : p,v > 0 be
the family of fundamental processes on I' with respect a fixed orthonormal basis
{e; : i > 1} of kg and © be the vacuum vector in I'. For any partition S = (0,¢1,t2---)
of R, the symmetric Fock space I' can be viewed as infinite tensor product ®n21 I,
with respect to the stabilizing vector @ = ®p,>18, where Q,, = Q, _, ;.1 is the

vacuum vector in I'y, = T'(K,,_, +,1)- For any 0 < s <t and i > 1 we define a vector

; 15 1 ®e; . ; . . .
Xés,t] = (\/’?_7; € K(s,- It is clear that {Xés,t]}lél is an orthonormal family in K,

and hence in I'(, ;. Here we note that the Hilbert subspace k¢ of I'(, ;) spanned
by these orthonormal vectors is canonically isomorphic to kg. Let us consider the
subspace R(syt] = C Qs D Ks,y) of I which is isomorphic to ko = C@ ko and we
denote the space f<<tnflytn] by kn. Now we define the toy Fock space T'(S) associated
with the partition S, to be the subspace, infinite tensor product ®n21 kn with respect
to the stabilizing vector Q = ®,>18,. Let P(S) be the orthogonal projection of I
onto the toy Fock space I'(S). Without loss of generality let us consider toy Fock
spaces I'(Sy) associated with regular partition S, = (0, h,2h - --) for some h > 0 and
denote the orthogonal projection by Pp. As the width h of the partition tends to 0,
the orthogonal projection P, converges strongly to identity on I'. Now we define a

family of operators {N/'[k] : p,v > 0,k > 1} on the Fock space T', given by

etk = 2otk 28— B for () = (0,0,

h

_ N = (0,]

- \/E 1[ ] or (/’L7V)_(07.7)7
AG (k]

= Py[k] N
= Pi[k](AS[K]) Pk Py K] for (u,v) = (i, ),

for (Ma’/) = (1,0),

where Pylk] and Pj[k] are the orthogonal projections from I'y onto the one dimen-
sional subspace spanned by €, and L?([(k — 1)h, kh], ko) respectively. Here, we have
used the notations AL[k] for AL((k — 1)h, kh] and P,[k] for the associated toy Fock
space orthogonal projection restricted to the interval [(k — 1)h, kh|. Clearly these
operators NJ'[k]’s act non trivially on 'y and as identity on the other components
and they leave the subspace I'(S}) invariant.

Given a *-homomorphic family {8(h) : h > 0} : A — A& B(k), for each h we
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define a family of * homomorphism jt(h) A — AQRQB(T), as follows. For a given
t > 0, we subdivide the interval [0,¢] into [k] = ((k — 1)h,kh], 1 < k < n so that
t € ((n —1)h,nh| and set

p(()h)(x) =rQ® 1F7

P (@) =3 pl) ), (B (. 2)) © NE[K]
%

and pgh) = pgz) This family {pgh) :t > 0} is called the quantum random walk asso-

ciated with the *-homomorphism S(h).

Let us summerize the main observations, made in this thesis:

1. We construct EH flow for QDS T; associated with r» € A such that r;, commute
for different k’s [16]. Covariance of the EH flow with respect to 7 is proved.

2. For QDS T? associated with partial states ¢ on A, EH flows are constructed

and ergodicity of such flows are discussed.

3. Various estimate on toy fock space I'(Sy,) for the operators % N/[k] — Ay [K]

with €gp = 1,€0; = €j0 = %, €;,j = 0 for 7,7 > 1 are observed.

4. In coordinate-free language of quantum stochastic calculus similar estimate for

basic operators as in 3 are established and quantum random walks are defined.

5. Strong convergence of the quantum random walk, associated with bounded
structure maps, is proved under certain assumption using coordinate-free lan-

guage of quantum stochastic calculus.

6. For a larger class of QDS T; associated with elements r € Ajc, *-homomorphic
family {8(h) : h > 0} : A — A® B(kg) are constructed. Which satisfies, for
any (u,v), limp_o W = 0 (x),Vz € Al By using basic operators

N/} quantum random walks are defined.

7. Weak convergence of the above quantum random walk is proved and observed

that the weak limit satisfies the qsde with structure maps 64,.
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Contents of the thesis are in following order:

In Chapter-1, background materials for the thesis are briefly recalled. We begin
with most basic objects, namely C* and von Neumann algebra. Some basic results
and concepts from theory of operator algebras, including a short description of UHF
C*-algebras [9] are given. In the end of this section completely positive maps are
introduced and Stinespring’s dilation [36] theorem is mentioned. Next section is
devoted to semigroup theory and evolution equation on Banach space [37]. The
Hille-Yosida theorem and results on perturbation are stated without proof. From
approximation theory of semigroups Chernoff’s theorem [5] and Trotter-Kato the-
orem [20] are recalled. Finally, the characterization of the generator of uniformly
continuous QDS due to Christensen and Evans [7] is given. In section 3 Quantum
Stochastic Calculus on symmetric Fock space, including a coordinate free description

[15], is briefly recalled.

In Chapter-2, the class of QDS [28] on UHF C*-algebra A = ®;cz4 My (C) is dis-
cussed in detail. For an element r, formally we define the Lindbladian £ =}, ;4 Ly,
where Lz = ${[r}, ] ry + 7} [z, rg]}. For r = > geg CaUg 1 2 geg |l lg|* < oo the
associated Lindbladian £ is defined on a dense *- subalgebra C!'(.A) containing Aj.
and by Hille-Yosida theorem it is shown that the closure £ is the generator of a
conservative contractive QDS T; on A. Moreover these QDS are covariant with re-
spect to the action 7 of discrete infinite group Z?. For a particular class of QDS,
namely, the QDS T% associated with partial state ¢ on A, ergodicity properties are
established.

In Chapter-3, we construct EH flows for a class of QDS {7}} of the Chapter-2.
Here we consider the QDS associated with » € A such that translates rj, for different
k € Z% are commuting. In this situation we control the growth of ||65} --- 04" ()]
for x € A, and employ iteration technique, to obtain a unique solution for EH
flow equation. Exploiting the commuting properties of r;’s, we show that j; is a
weak s-homomorphism and then by standard method we conclude that j; is a *-
homomorphism. Thus we obtain an EH dilation for QDS {T;}. We also observe that
the EH flow j; is covariant with respect to 7. In last section of the chapter, QDS {7, t¢}

associated with partial states ¢ are considered. These QDS are ergodic in the sense
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of [28]. Here, the element r € A whose associated Lindbladian is the generator of
the QDS {T, td)} is supported on only one lattice point. An EH dilation for such QDS
is obtained with a simple argument. As for the QDS, ergodicity of the corresponding
EH flows are discussed.

In Chapter-4, we begin with a brief description of the toy Fock space I'(S) as
a subspace of the symmetric Fock space I'(L?(R,kq)) associated with a partition
S of Ry [3]. The toy Fock space I'(S) associated with the partition S, is defined
to be the subspace, infinite tensor product ®n21 kn with respect to the stabilizing
vector 2 = ®@p>1y,. Without loss of generality we consider the toy Fock space I'(:Sy,)
associated with a regular partition S, = (0,h,2h---) for some h > 0 and denote
the orthogonal projection by P,. The approximate basic operators N/ are defined
and various estimates on the Fock space for operators h» N} [k] — AJ[k], where

€, =0,€0; = €0 = % for 4,7 > 1, are obtained.

For a given *-homomorphic family {3(h) : h > 0} : A — A B(ko), for each h
we define a family of *-homomorphism family quantum random walk pt A —

AQ B(T'), by setting

(@) = pl) (@ Zp(nl (BL(h,x)) ® N£[n]

for t € ((n — 1)h,nh]. We call this family {pgh) :t > 0} as quantum random walk

associated with homomorphism (3(h).

In one dimensional noise case [35] EH flows are constructed by using quantum ran-
dom walk model following [23, 3]. There an EH flow (with bounded structure maps)
is obtained as a strong limit of associated quantum random walks. Here, we have
discussed the strong convergence of quantum random walks in the situation with in-
finite dimensional noise. To handle the presence of infinitely many noise components
we have used coordinate-free language of quantum stochastic calculus developed in

[15]. For S € B(hy), R € B(hg,ho ® ko) and T' € B(hy ® ko) we define the operators
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as follows, for k > 1.

Nk = shi 2 — gpy
N2 [K] Aj%“]mk],
N3[K] = Pl[k]Af}%ﬂ,

where

AR[K] = ap((k — 1)h, kh),
AR = aly((k = 1)h, kh),
AT[K] = Ap((k — 1)k, kh).

Similar estimates on Fock space for these operators h N'[k] — A![k] ( where, €; =

l,e9 = €3 = % and €4 = 0) are obtained as earlier.

Let {3(h)} be a x-homomorphic family from a von Neumann algebra A to A & B(ko).

For z € A, B(h,z) = ((B)(x))) = brlhyz) - (Balh, )" with respect to direct
Bo(hyz)  Balh,)

sum decomposition ko = C@ko. Now using the basic operators N' we define a

quantum random walk pgh) associated with B(h).

Let T; be a uniformly continuous conservative QDS on von Neumann algebra A
with the generator £. Then by results in [15] there exists a Hilbert space kg and struc-
ture maps (£, d,0) where, £ € B(A),0 € B(A, AQ ko) and 0 € B(A, AQ B(ko)) so
that the map

I)* T
0= () = Zl (929( ) ) = ( ? ’ ) : A — A® B(k) is a bounded CCP
3 4 o

map with the structure

0(z) =V (@@ )W+ W@l )+ (@l )W Ve e A

where V, W € B(hg ®R0). The gsde,

Ji(x) —x®1p+2/35 ))dAL(s) ,Vx e A

w,v>0
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admit a unique strongly continuous solution j;.

To obtain *-homomrphic property of the family {j;} we shall make the following
assumption. Let {8(h)} be a x-homomorphic family from A to A ® B(ko) satisfying
for [ =1,2,3 and 4,

18:(h, ) = bi(@) = k=0 ()| < Cllal|h'*=, Vo € A,

where b;’s are linear maps given by b1 (z) = x,bs(z) =  ® 1y, ba(x) = bz(x) =0 €
AQ ko. Moreover, this estimates extend uniformly for m > 0, ampliating ©,b and
(3 as maps from A®B(1A<§@) into A®B(R@) ® B(ko) i.e for any [

16i(h. X) — bi(X) — h0,(X)]| < C'|[ X[+, VX € A @Bk

for some constant C’ independent of m > 0.

Using various estimates on the Fock space and the estimates in the above as-
sumption we have shown that pgh) converges strongly to j; and it follows that j; is a
*-homomorphism.

In Chapter-5, we focus once again on the UHF model discussed earlier. Here
we consider a larger class of QDS associated with elements r € Aj,.. Using local
structure of the algebra we have constructed a x-homomorphic family {#(h) : h >
0} : A —» AQ® B(kg), and we obtain a quantum random walk pgh) associated with
B(h) using basic operators N/ appear in previous Chapter. It is observed that for
any (p,v), limy g W = 0, (x),Vx € Ape. Next, using the above fact we
prove that for any x € Ajye, pgh) (z) converges weakly and the weak limit j; satisfies

the EH type gsde on A, with structure maps 6%, but we are not yet able to conclude

wheather j; is a *-homomorphism.



Chapter 1

Preliminaries

Here basic results and concepts from theory of operator algebras, including a short
description of UHF C*-algebras are given , for detail we refer to [9, 5, 20, 37, 36].
In the last section Quantum Stochastic Calculus on symmetric Fock space [33], in-
cluding a coordinate-free description [15], is recalled. Let us begin with most basic

objects, the C* and von Neumann algebras.

1.1 C* and von Neumann algebras

1.1.1 (*-algebras

Definition 1.1.1. A complex *-algebra A, equipped with a C*-norm, i.e. ||z*z| =
llz||?, is called a pre-C*-algebra. Furthermore, if A is complete with respect to C*-

norm, then it is called a C*-algebra.

A (C*-algebra is called unital or nonunital depending upon the existence of iden-
tity element on it. For any Hilbert space H, the space of all bounded linear operators
on H with operator norm and its closed *-subalgebras are some concrete examples of
C*-algebra. For a locally compact Hausdorff space X, the space Cyp(X) of all complex
valued continuous functions on X, vanishing at infinity, with supremum norm and
with complex conjugation as the x-operation forms a commutative C*-algebra under
pointwise addition and multiplication. In particular for compact X, Co(X) = C(X),

the space of all continuous functions on X, is a unital C*-algebra. The following

11
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result completely characterizes the commutative C*-algebras :

Theorem 1.1.2. (Gelfand-Naimark) Let A be a commutative C*-algebra. Then
there exists a locally compact Hausdorff space X such that A is isometrically iso-

morphic to the C*-algebra Co(X). Moreover if A is unital, then X is compact.

Any nonunital C*-algebra can always be isometrically embedded as a two sided
ideal in a unital C*-algebra canonically. So for rest of the section we consider A to
be a unital C*-algebra. For a € A, the resolvent of a, denoted by p(a), is the subset
{AeC:(a—\)"t € A}; and its complement is called the spectrum of a, denoted by
o(a). The spectral radius spr(a) of a is defined to be, spr(a) = sup{|\| : A € o(a)}.
It is a basic fact of theory of C*-algebras that the norm on a C*-algebra is uniquely
determined by the algebraic structure. For any element a, ||a|?> = spr(a*a).

There is a rich functional calculus which enables one to form functions of elements of
the C*-algebra A. For any function f which is holomorphic in some domain contain-
ing o(a), one obtains an element f(a) € A by the holomorphic functional calculus.
Furthermore, for any normal element x, there is a continuous functional calculus
sending f € C(o(a)) to f(a) € A where f — f(a) is a *-isometric isomorphism from
C(o(a)) onto C*(a), the C*-subalgebra of A generated by a. In particular, for any
positive element a > 0, i.e. a can be written as a = b*b for some b € A, we can form
a positive square root v/a € A satisfying \/52 = z. A linear functional ¢ on A is said
to be positive if ¢(a*a) > 0 for all a. This is a remarkable and useful result that an
element a € A is positive if and only if ¢(a) > 0 for every positive functional ¢ on
A. Tt can be shown that the algebraic property of positivity implies the boundedness
of ¢, in particular ||¢|| = ¢(1). Any positive linear functional ¢ with ¢(1) = 1 is
called a state on A. Tt is said to be faithful if ¢(a*a) = 0 implies a = 0, pure if any
state 1 satisfies 0 < 1) < ¢ must be of the form ¢ = A¢ for some A € [0,1] and trace
if p(ab) = ¢(ba) Va,b € A. . Here we state the celebrated theorem due to Gelfand,

Naimark and Segal, known as the GNS construction for a state.

Theorem 1.1.3. Let A be a C*-algebra. Given a state ¢ on A, there exists a Hilbert
space Hy, a x-representation my of A into B(Hg) and a vector &y € Hy which is cyclic
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in the sense that {my(a)éy : a € A} is total in Hey, satisfying

¢(a) = (£g, mp(a)éy), Va € A
Moreover, ¢ is pure if and only if w4 is irreducible.

This triple (Hg, 7y, &) is called the GNS triple for (A, ¢) and Hy is called GNS
Hilbert space for the pair (A, ¢) and it is denoted by L?(A, ¢).

1.1.2 UHF C*-algebra

(Ref. [9]) A special class of C*-algebras, namely approximately finite dimensional
C*-algebras (in short AF C*-algebra) are built out of the class of finite dimensional
matrix algebras. These algebras are well understood and arise in the study of quan-
tum statistical mechanics. Before going to give the definition of AF algebra, let us

note the following useful facts.

Theorem 1.1.4. Any finite dimensional C*-algebra A is x-isomorphic to a direct

sum of full matriz algebras, i,e.
A~ M, (C)P--- M,, (C) for some ni,ng,---ni > 1.

So, in particular, every finite dimensional C*-algebra is unital.

The following result describe how one finite dimensional algebra fits into another.

Lemma 1.1.5. Let A, B be two finite dimensional C*-algebras such that
A~ M, (C)P--- M,, (C)and

B >~ M, (C)D - - - M, (C).
Then a x-homomorphism ¢ : A — B is uniquely determined upto unitary equivalence
by an l x k-matriz ((X;j)) with entries from non negative integers such that

k
> Xigny <mi,Vi=1,2,---1. (11. 1)
j=1

Moreover, in case of ¢ is unital, equality holds in 1.1. 1.
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So, given any two finite dimensional C*-algebras A and B, the lower dimensional one
can be embedded isometrically in the higher dimensional algebra in various ways.
Now let us define the Inductive Limit of C*-algebras and the AF C*-algebras we are

interested in.

Definition 1.1.6. Let {Ay}acr be a directed family of C*-algebras, i.e. for any
a < 3 in the directed set I, there is an isometric isomorphism iq g from Aq into Ag
and iq,g = i~y 0 lay when o <y < (3. Then there exists a universal C*-algebra A,
called Inductive Limit of the directed family (Aq,iq,5) and isometric isomorphism iq
from Aq into A such thatia = igoia g and such that A = J,ec ia(Aa). The Inductive
Limit has universal property that for any C*-algebra B with isometric isomorphisms

Ja from A, into B such that jo = jg o ia3, there exists an isometric isomorphism

k: A — B and following diagram
A k B
Za ja Zﬁ j,B
Ag Ag
P03
commautes.

Definition 1.1.7. A C*-algebra A is said to be an AF C*-algebra if it is the In-
ductive Limit of a family of C*-subalgebras {A,, : n > 0} with isometric imbeddings
in + An — Ans1 for n > 0. Here Ag = CI in case of A is unital and A = UnzoAna

the norm closure.

Example 1.1.8. For any complex separable Hilbert space H, let us consider the C*-
algebra A = C I+By(H), where Bo(H) is the space of all compact operators on H. For
an increasing sequence of orthogonal projections P, with rank(P,) = n, converging
strongly to the identity, we set A, = C P 4+ P, Bo(H) P, ~ C + M,(C), A is
the closure of |J,,~qAn with the canonical imbedding of My(C) into Mp41(C), which
A0
0 0

sends A —
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The union (J,,5q A, will be not effected if we take a subsequence instead of this
chain of subalgebra A,,. In fact the union is unique upto unitary conjugation, more

precisely:

Theorem 1.1.9. Let A be an AF C*-algebra, such that it can be written as the

closure of the increasing union of two chains

A= UnzoAn = U, 0B

Then for any € > 0 there exists a unitary operator W in the unitization of A with

\W —I|| < € such that
UmsoAm = W(U,50Bn) W™
In particular there are subsequences {m;} and {n;} of N so that A,,, C WB,,W* C

Amip, Vi > 1, dce. Ay, — By, and in By, — A, isometrically.

As an immediate consequence of this theorem we obtain that If A4 = m
and B = m are two *-isomorphic AF C*-algebras, then |J,,>qAm and U,,>oBn
are also *-isomorphic.

Next we discuss about a particular class of AF C*-algebras called Uniformly

hyperfinite C*-algebras (in short UHF C*-algebras).

Definition 1.1.10. An AF C*-algebra is said to be a UHF C*-algebra if it is an
increasing union of unital subalgebras which are isomorphic to full matriz algebras

{Mjy, (C)} for some sequence of positive integers {ky}.

Since a unital imbedding of M,,(C) into M, (C) requires m/n (m divides n), we
have an increasing sequence k1 /ks - - - . So for a prime number p there exists a unique
number €, € {1,2,--- 0o}, given by €, = sup{l : p!/k, as n — oo}. Now we define a
number 6(.A) associated with the UHF C*-algebra A, known as supernatural number,

by a formal product:
5("4) = Hp:primepﬁp'
This number gives a complete invariant for the class of UHF C*-algebras by the

following result of Glimm:

Theorem 1.1.11. Let A and B be two UHF C*-algebras. Then A is isomorphic to
B if and only if 6(A) = §(B).
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In particular, we are interested in the class of N°° UHF (C*-algebras obtained
as infinite tensor product of finite dimensional matrix algebra My (C). For a fixed
pair of positive integers d and N first let us consider the infinite lattice Z?. For
§ = (j1, 71, jq) in Z% let |j| denote max{|j;| : i = 1,2, ---d}. For a finite subset A of
7% we define |A| to be the cardinality of A. Now, let us consider the infinite algebraic
tensor product &) jezd Mp(C), with respect to the stabilizing sequence of identities
I € My(C). For an increasing sequence of finite subsets {Ap, }n>1,An = {j : |j] < n}
of Z4, let A,, = ®;en, Mn(C) and Ag = CI. It is clear that A, = My, (C), where
kn, = Nl |A,| = (2n + 1)? and A, is isometrically embedded in A, by sending
Ap 3 a— a®l, where I is the identity element in M4 (C). Thus A is an increasing
union of full matrix algebra A,, and is called N°°-UHF C*-algebra.

1.1.3 von Neumann algebras

For a Hilbert space H, the space of all bounded linear operators B(H), as a Ba-
nach space equipped with the operator-norm topology. There are many other useful
topologies with respect to which B(H) is a locally convex topological vector space.
The most useful ones are weak, strong, ultra-weak and ultra-strong topologies. How-
ever, although B(H) is complete in each of these topologies, a general C*- subalgebra
A of B('H) need not be so. It is easily provable that A is complete in all of the above
four locally convex topologies if and only if it is complete in any one of them, and in
such a case A is said to be a von Neumann algebra. Furthermore, the strong (respec-
tively weak) and ultra-strong (respectively ultra-weak) topologies coincide on norm-
bounded convex subsets of A. For a o-finite measure space (X, F,u), L>®(X,F,u),
the space of all bounded measurable functions on X is a commutative von Neumann
algebra. For any subset M C B(H), we denote M’, the commutant of M in B(H),
ie. {a € B(H):am = ma,Ym € M}. The following fundamental result due to von
Neumann, known as the “Double commutant theorem” is of fundamental importance

in the study of von Neumann algebras.

Theorem 1.1.12. Let A be a C*-subalgebra in B(H) with trivial null space. Then
A'(= (A)) = AY = A*, where AY and A° are closure of A in weak and strong
operator topologies of B(H) respectively.



1.2. Hilbert modules 17

Thus, in particular, any unital C*-subalgebra B(H) is a von Neumann algebra if
and only if A= A".

A state ¢ on a von Neumann algebra A is said to be normal if whenever {a,} is
an increasing net in A such that 0 < a, T a, one has ¢(ay) increases to ¢(a). More
generally, we call a linear map ® : A — B (where B is a von Neumann algebra) to be
normal if whenever 0 < a, T a in A, one has ®(a,) T ®(a) weakly in B. It is known
that a positive linear map is normal if and only if it is continuous with respect to
the ultra-weak topology mentioned earlier. In view of this fact, we shall say that a
bounded linear map between two von Neumann algebras is normal if it is continuous
with respect to the respective two ultra-weak topologies. Normal states, and more
generally normal positive linear maps (in particular, normal - homomorphisms) play
a major role in the study of von Neumann algebras. The following result describes

the structure of a normal state.

Theorem 1.1.13. [5] ¢ is a normal state of a von Neumann algebra A C B(H) if
and only if there is a positive trace-class operator p on ‘H such that ¢(a) = tr(pa)

for all a € A.

1.2 Hilbert modules

A Hilbert space is a complex vector space equipped with a complex valued inner
product. A natural generalization of this is the concept of Hilbert module, which
has become quite an important tool of analysis and mathematical physics in recent
times. Let us briefly introduce the concept of Hilbert von Neumann modules. For a

comprehensive study of such structures we refered to [22].

Hilbert ("*-modules

Definition 1.2.1. Given a C* algebra A, a semi-Hilbert A-module E is a right
A-module equipped with a sesquilinear map (.,.) : E x E — A satisfying (x,y)* =
(y,z), (z,ya) = (x,y)a and (x,x) > 0 for z,y € E and a € A. A semi-Hilbert
module E is called a pre-Hilbert module if (x,z) = 0 if and only if x = 0; and it is
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called a Hilbert C*-module if furthermore E is complete in the norm x — H(as,xﬂﬁ

where ||.|| the C* norm of A.

It is clear that any semi-Hilbert A-module can be made into a Hilbert module in a
canonical way : first quotienting it by the ideal {x : (x,2z) = 0} and then completing
the quotient.

The A-valued inner product (.,.) of a Hilbert module shares some of the impor-
tant properties of usual complex valued inner product of a Hilbert space, such as
the Cauchy-Schwarz inequality. However, some of the crucial properties of Hilbert
spaces do not extend to general Hilbert modules : the most remarkable ones are the
projection theorem and self-duality. Closed submodules of a Hilbert module need
not be orthocomplemented, that is, given a closed submodule F' of E, there need
not exist any closed submodule G such that E = F @ G. Furthermore, the Banach
space of all A-valued, A-linear, bounded maps on a Hilbert A-module E may not be
isometrically anti-isomorphic to E, in contrast to the Riesz’s theorem for complex
Hilbert space. For example, a bounded A-linear map from one Hilbert .A-module
to another may not have an adjoint. For this reason, the role played by the set of
bounded linear maps between Hilbert spaces is taken over by the set of adjointable

A-linear maps.

Definition 1.2.2. Let E and F be two Hilbert A-modules. We say that an A-linear
map L from E to F is adjointable if there exists a bounded A-linear map L* from F
to E such that (L(z),y) = (x,L*(y)) for allx € E, y € F. We call L* the adjoint
of L. The set of all adjointable maps from E to F is denoted by L(E,F). In case
E =F, we write L(E) for L(E,E).

It may be noted that an adjointable map is automatically bounded.

Let us fix two Hilbert A-modules E and F. For t € L(E,F) and = € E, it is
easy to prove that (tz,tz) < ||t||?(x, ), where ||t|| denotes the map-norm of t. The
topology on L(E, F) given by the family of seminorms {||.|z, .||y : ¢ € E,y € F}
where |[|t]|; = (tx,t:v)é and ||t]], = (t*y,t*y)é, is known as the strict topology. For
x € E, y € F, we denote by 6, , the element of L(E, F') defined by 0, ,(2) = y(z, 2)
(z € F). The norm-closed subset generated by .A-linear span of {6, : x € E,y € F'}
is called the set of compact operators and denoted by IC(E, F'). It should be noted



1.2. Hilbert modules 19

that these objects need not be compact in the sense of compact operators between
two Banach spaces, though this abuse of terminology has become standard. It is
known that K(E, F) is dense in £(E, F') in the strict topology. In case F' = E, we
denote K(E, F) by K(E). Note that both £L(E) and K(E) are C* algebras.

Hilbert von Neumann modules

If A is a concrete C* algebra in B(h) for some Hilbert space h, then for any Hilbert
space H, the pre-Hilbert module A ),, H may be viewed as a subset of B(h, h Q) H)
and AQ@ .. H is the closure of this subset under the operator-norm inherited from
B(h,h@ H). Instead, we may inherit one of the locally convex topologies from
‘H under
that topology. This will lead to another topological module, in general bigger than
AQ -+ H. We denote the closure by A, H or simply by A& H when there is no

possibility of confusion. A, H has a natural A” module action from both sides

B(h,h@ ™), e.g., the topology of strong convergence, and close A,

and has a natural A” -valued inner product. In view of this, we assume that A
itself is a unital von Neumann algebra in B(h). We note a few simple but useful
facts about the Hilbert von Neumann module A Q) H. For this, let us first introduce
some notations. Let H; and Hy be two Hilbert spaces and A € B(H1, H1 @ Ha2).
For each f € Ha, we define a linear operator (f, A) on H; such that,

((f, Ayu,v) = (Au,v ® f),Yu,v € Hy. (1.2. 1)

We shall denote by (A, f) the adjoint of (f, A), whenever it exists. Clearly, if A
is bounded, then so is (f, A) and ||(f, A)|| < ||A] || f]. Similarly, for any 7" €
B(H1 @ Hsz) and f € Ha, one can define Ty € B(H1,H1 @ Ha) by setting

Tfu = T(u & f),Vu € Hi. (1.2. 2)
With the above notations, let us recall some properties of A ® H.

Lemma 1.2.3. Any element X of Hilbert von Neumann module AQH can be
written as, X = Y c;%Ta ® Ya, where {yataes i an orthonormal basis of H and

o € A. The above sum over a possibly uncountable index set J makes sense in the
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usual way: it is strongly convergent and Yu € h, there exists an at most countable
subset Jy, of J such that Xu =) c; (Tau) @Yo Moreover, once {Va} is fized, x4’s

are uniquely determined by X.

Corollary 1.2.4. Let XY € AQH be given by X = 3 c;%a ® Vo and Y =
Y acy Ya®Va as in the lemma above. For any finite subset I of J, if we denote by X
and Y7 the elements Y o1 Ta®Ya and Y o1 Ya @Yo respectively, then limr (X7, Y7) =
(X,Y) where the limit is taken over the directed family of finite subsets of J with

usual partial ordering by inclusion.
Proof. The proof is an easy adaptation of Lemma 27.7 in [33]. O

Here, we note a convenient necessary and sufficient criterion from [15] for verifying

whether an element of B(h,h @ H) belongs to A Q) H.

Lemma 1.2.5. Let X € B(h,h@H). Then X belongs to AQH if and only if
(v, X) € A for all v in some dense subset D of H.

In case H = I'(k), we call the module A I'(k) as the right Fock .A-module over
I'(k), for short the Fock module, and denote it by AQT.

1.3 Some general theory of Semigroups on Banach spaces

Here, we recall some standard and useful results from the theory of semigroups of
bounded linear operators on a Banach space [20, 37]. Let X be a Banach space. A
semigroup on X is a one parameter family of bounded linear operators {7} : t € R, }
on X satisfying Ts.T; = Tsy4, Vs, t > 0, Ty = I. If im0 Tia = a,Va € X, then
the semigroup is called strongly continuous (or Cp-semigroup). For a Cy-semigroup

{T}}, we define a linear operator £ on X, with domain
T(x) —
DIL)={reX: }in(l) W exists}

given by
L(z) = lim M

t—0
This operator (£,D(L)) is called the infinitesimal generator of the semigroup {7;}

and D(L) is dense. A semigroup {7;} is called uniformly continuous if lim;_¢ |7} —
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I|| = 0. For such a semigroup the generator is bounded. Any Cj-semigroup {7;}
on X is quasi-bounded, i.e. there exist constants M > 0 and G > 0 such that
|Ti|| < MePt Wt > 0. Semigroup {T;} is called isometric or contractive according to
each T} is. For any contractive Cy-semigroup {7};}, resolvent of the generator L is

given by Laplace transform of the semigroup,
(o9}
M —-L£)t= / e MT, dt, V) > 0.
0

The following useful theorem due to Hille and Yosida characterizes generators of

Cy-semigroups.

Theorem 1.3.1. (Hille-Yosida theorem ) Let (L, D(L)) be a densely defined closed
linear operator on X. Then (L, D(L)) is the generator of a quasi-bounded Cy-semigroup
{T}} such that ||Ty|| < MePt Wt > 0 for some constants M > 0 and > 0 if and only
if L satisfies

(£ —X1)7H| < 7 , for some X € p(L) with Re(\) > f. (1.3. 1)

M
e(A) =8
Let G(M, 3) denote the class of all linear operators (£, D(L)) on X satisfying 1.3. 1.
Thus in particular the generator of a contractive Cy-semigroup is belong to G(1,0).
Now we recall some useful results for analyzing perturbation, convergence and

approximation of Cy-semigroup. First let us introduce the notion of relative bound-

edness.

Definition 1.3.2. Let £ and A be two operators with same domain space X with
D(L) CD(A). Then the operator A is said to be relatively bounded with respect to L

if there exist nonnegetive constants a and b such that
|Az|| < allz|| + b||Lx||,Vz € D(L). (1.3. 2)

The infimum of all possible constants b in 1.3. 2 is called relative bound of A with

respect to L.

The following theorem gives stability condition for perturbation of contraction

semigroups.
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Theorem 1.3.3. [20] Let L, A € G(1,0) and let A be relatively bounded with respect
to L with relative bound less than % Then the perturbed operator L + A is also in

the class G(1,0).
Following results give the convergence of Cyp-semigroups.

Theorem 1.3.4. [20]

Suppose {Tt(n)}nzl and {1} are Cy-semigroups on a Banach space X with the gen-
erators L™ and L in G(M, B) respectively, for some fixed M and 3. Then Tt(n)
converges strongly to Ty if and only if L™ converges strongly to L in the generalized

sense, i.e. (L — X)~1 converges strongly to (L — \)~! for every Re(\) > .

Theorem 1.3.5. (Chernoff’s theorem [5]) Let P, be a contractive Cy-semigroup
on a Banach space X with generator (L,D(L)). Suppose F : Ry — B(X) satisfies
F0)=1,||F@®)| <1 and lim,_ HF(tz*lx — L(x)|| = 0,Yz € D, where D is a core
of L. Then for any t > 0,

limp, o [|(F'(3))" (z) — Py(z)]| = 0,Vz € A.

Evolution equations on Banach spaces

Let X be a Banach space. We look for a solution z : Ry — X of the differential

equation
dx(t)
dt

where A(t) is a one parameter family of operators on X with domain D(A(t)).

= A(t)x(t), =(0) = zp, (1.3. 3)

Theorem 1.3.6. Let A(t) = L + B(t) such that (L, D(L)) is the generator of a
contractive Cy-semigroup P, on X and t — B(t) € B(X) is locally bounded. Then
the differential equation

dT(t)(x)

o =T(®)A{t)z, T(0)z =z, Vo € D(L)

admits a unique solution T(t).

Proof. Let T > 0 be fixed real number. Then for 0 <t < T, we can find a constant
M < oo such that

sup [|B(t)| < M.
0<t<T
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For n > 0, we set bounded operators T (t) as follows

Now, for any n > 1

t
|17 (1) () = T (8) ()] S/O (T (s) =TTV () B(s) Pi—s (@) | ds.
Taking supremum over {||z| < 1} we get
t
700 = OO < [ [70)) = T s (L3. 4)

0

Repeatedly estimating right hand side, we obtained,

1TV () — T (1)

<M”+1// / dsp+1dsy - - - dsy

thrl

:Mn—l-l
n+ 1’

which implies {70 (t)},>0 is Cauchy in B(X) and the limit, say T'(t), is given by

T(t) =P+ > [T"(t) — T (1)

n>0

and || T(t)|| < M. O

1.4 Completely positive maps and Quantum dynamical

semigroups

Completely positive maps

Let A, B be two unital x-algebra.
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Definition 1.4.1. A linear map T : A — B is said to be positive if T(a*a) > 0
in B for all a € A. T is called completely positive (in short CP) if, for each n >
L, T®idyg,c) : AQ Mn(C) — B@Q M, (C) is positive, where idyy, (c) is the identity

map from the finite dimensional matriz algebra M, (C) to it itself.

Any x-homomorphism is a CP map but converse is not true in general. However,
due to Stinespring’s theorem we have the following characterization of CP map on

x-algebras.

Theorem 1.4.2. (Stinespring’s Dilation Theorem) [36] Let A be a x-algebra and H
be a complex Hilbert space. Let T : A — B(H) be a CP map. Then there exists a
Hilbert space IKC, a representationm : A — B(K) and V € B(H, K) with the minimality
condition that the span of {m(a)Vu:a € A, u€ H} is total in KC, and the map T is
given by:

T(a)=V*r(a)V, Va € A,

Such a triple (IC,m, V') is called the ‘Stinespring’s triple’ associated with T', is unique
in the sense that if (K',7', V') is another such triple, and then there is a unitary
operator T : K — K’ such that 7'(a) = T'w(a)l™* and V' = T'V. Furthermore, if A is

a von Neumann algebra and T is normal, ™ can be chosen to be normal.

The following result shows that the distinction between positivity and completely

positivity appears only for noncommutative algebras.

Theorem 1.4.3. Let A and B be two C*-algebras. Then any positive map T : A+— B
is CP if either of A or B is abelian.

Now let us introduce conditionally completely positive maps.

Definition 1.4.4. A linear map L : A — A is said to be conditionally completely
positive (in short CCP) if

n
Z b; L(aja;)b; >0, for any aij,b; € Aji=1,2,---n,n>1
ij=1

such that > | a;b; = 0.

The CCP maps play an important role in study of CP semigroups.
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1.4.1 Quantum dynamical semigroup

Let A be a C*-algebra.

Definition 1.4.5. A one parameter Cy-semigroup {13} of CP maps on A into itself
is called a quantum dynamical semigroup (in short ‘QDS’). On a von Neumann

algebra A, a QDS is a one parameter Cy-semigroup {T;} of normal CP maps.

Any bounded CCP map £ on a (C*-algebra A is the generator of uniformly
continuous QDS {T; = e'*}. Conversely, the generator of a uniformly continuous
QDS is a bounded CCP map. The important and very useful structure theorem of

Christensen and Evans [7] asserts that:

Theorem 1.4.6. Let A C B(H) be a C* or von Neumann algebra, {T} be a uni-
formly continuous QDS on A with the generator L. Then there exists | € A" and a
Hilbert space K, R € B(H,K) and a x-representation 7w : A — B(K) with the mini-
mality condition: that the span of {(Ra—m(a)R)u : a € A,u € H} is total in K such
that

L(a) = R*m(a)R +la+al*, Va € A.

In case of A is unital, £L(1) =0 and | = iH — %R*R for some self adjoint element
H e A" and L takes the form,

1 1
L(a) = R*1(a)R — 5R"‘Ra - 5aR*RJr i[H,a], Va € A.

1.5 Quantum stochastic calculus on symmetric Fock space

All the Hilbert spaces appearing here are assumed to be complex and separable with
inner product (-,-) which is linear in the second variable. Let us first recall the

definition of infinite tensor product of Hilbert spaces.

Infinite tensor product of Hilbert spaces

Let {Hi, (., .)i}i>1 be a family of Hilbert spaces with {egl)}mzl be an orthonormal

basis for H;. Let S be the set of all sequences n = {n;} of positive integers. We
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define a vector space W spanned by finite linear combinations of elements from the
set Wy = {e,, = e$}3 ® 6%22) ®---:n €S} A typical vector in uw € W is given by
U= Z c(n)en,
nes

for some function ¢ : S — C such that ¢(n) = 0 for all but finitely many n € S
and the zero vector 0 € W corresponds to ¢ with ¢(n) = 0,Vn € S. We define
an inner product (.,.) on W by setting, for two elements u = »_ qc(n)e, and
0= s dlm)en € W,

(u,0) =Y e(n)d(n). (1.5. 1)

nes
It is clear that ||v]| := (v,v) =0 iff v = 0.
Definition 1.5.1. The completion of the inner product space (W,{.,.)) is called
the infinite tensor product of the family of Hilbert spaces {H;} and it is denoted by

®121 H; and vector e, € ®l21 H; is denoted by ®121e§f3.

By definition {e,, : n € S} form an orthonormal basis for infinite tensor product
®121 H.

In order to define the infinite tensor product of the family of Hilbert spaces {H;}
with respect to a sequence of unit vectors {u(l) 1> 1}, uD) e H;, for each [ > 1, let
us consider an orthonormal basis {e,(f}}mzl for ‘H; such that egl) =),

Definition 1.5.2. Let us consider the closure of the subspace spanned by orthonor-
mal vectors e,, € ®121 H; such that n; =1 i.e. eﬁf} = u® for all but finitely many
[ > 1. This Hilbert subspace is called the infinite tensor product of the family of

Hilbert spaces {H;} with respect to the stabilizing vector {u®}.

1.5.1 Symmetric Fock space

For any Hilbert space K and n > 1, let K® stand for the n-fold symmetric tensor
product of K and K© be the one dimensional complex Hilbert space C. We denote
the symmetric Fock space @nzolc@) over K by I'(K) or simply by I'. For f € K, we
denote by e(f) the exponential vector in I' associated with f :

1

e(f) — @nz(]ﬁf(n)a



1.5. Quantum stochastic calculus on symmetric Fock space 27

where f(") = f@ f®---® f for n > 0 with the convention f(®) = 1. The exponential
—_—

n—copies
vector €(0) = 1@ 0@ --- , associated with f = 0, is called the vacuum vector in T’

and it is denoted by €). For any subset M C K, the family of exponential vectors
{e(f) : f € M} is a linearly independent set in I'(K). Let £(M) be the subspace
spaned by above exponential vectors. For a dense set M, £(M) is dense in I'(K).

For f € K and U € U(K), the space of unitary operators on I, the Weyl operator
W (f,U) associated with the pair f,U is defined by,

W (S, U)e(g) = e 21"~ 09e(f 1 Ug),vg € K.
For any operator H € B(K), the second quantization I'(H) of H is given by,
I'(H)e(g) = e(Hg)

Now we consider the following operators a(f),af(f) and A(H), obtained from the

Weyl operators. On the finite particle vectors, we have
e a(f)g™ = vn(f,g)g"

o al(f)g™ =37 g g9 fg "

o \(H)g™ =310 g Hgg).

In view of these properties a(f),a’(f) and A(H) are called the annihilation operator
associated with f, the creation operator associated with f and the conservation
operator associated with H respectively. The space £(K) is contained in the domain

of all these operators and we have,
e a(f)e(g) = (f,9)e(9)
o a'(flelg) = Gl,_pelg +1tf)
o (e(g1), \(H)e(g2)) = (f, Hgz)(e(g1), e(g2)) = (e(g1), a (Hg2)e(g2))

o (a'(fle(g1), e(g2)) = (e(g1), a(f)e(g2)) = (£, g2)(e(g1), e(g2))-

Let ko be a complex separable Hilbert space with an orthonormal basis {e;}i>1. Let

K = L*(Ry, ko) ~ L*(R.) ®ko. So that any f € K decomposes as f = > k>1 frek
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with f, € L?(R;). We take the freedom to use the same symbol fi to denote the
function in L?(R,, ko) as well, whenever it is clear from the context. For any 0 <
s <t <o0,let Py, Py and P are the canonical orthogonal projections 1jg 4, 1,
and 1 o respectively. Denoting by Ky, K, and K, the range of projections
Py, Psy and Py respectively, we have K = KyPK4@DK. Thus any function f
in IC decomposes as [ = fgq @ fs0 © fip, where fgq = 19 qf, fs,) = L(sf and
fit = lit,00)f- The symmetric Fock space I'(KC) over K can be written as a tensor
product I'(K) = T'q @I, @I and the vacuum vector in the Fock space I'(K)
can be written as 2 = Qg ® Q4 ® Qp, where I'y = I'(Ky)),['(s = ['(K(sy) and
[ =T(K) with vacuum vectors €2, Qs ¢ and €2}, respectively.

For the latter part of the thesis let us fix the convention that for two vector spaces
Vi and Vo, Vi @V, denotes the algebraic tensor product as long as at least one of
the two spaces involved are not completed, but when both are complete spaces, Q)

stands for topological tensor product and )., stands for algebraic tensor product.

alg

1.5.2 Quantum stochastic integration

Let hg be a Hilbert space and H = hg @ ['(K). For 0 < s < t < oo, we write

HO} = h(),'HS] = hy ®F(/CS])

7'~f(s,t} = F(’C(s,t])aﬁ[t = F(]C[t)'
Let Dy and M be two dense subspaces of hy and K respectively. The algebraic

tensor product Dy Q) M is a dense subspaces of H.

Definition 1.5.3. A family of operators {L;}1>0 on ‘H is said to be a (Do, M)-
adapted process if,

1. Do(Ly) 2 Do @ M, ¥t >0,

2. Fort>0,u €Dy and f € M,

Ly ue(fy) € Hy and Ly ue(f) = Ly ue(fy) ® e(f;).

It is said to be regqular, if in addition, for every w € Dy and f € M, the map

t— L; ue(f) from Ry into H is continuous. An adapted process is called bounded,
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contractive, isometric, co-isometric or unitary if the operator L;’s are so. Let B =
B(H) ~ By B(T'), where By is stands for B(hg). For 0 < s < t < oo, B can be
written as B = By & Bsq & B, where By = Bo @ B(T'(Ky))), B(s,g = B(L'(Ks))
and By, = B(I'(K};)). These von Neumann algebras are canonically embedded in B.
For any operators L € By and T' € B, can be identified with their ampliations
L®lp,, and ln, ® T. Further, any operator L & By can be identified with the

process given by
Ly = 1[0,t}L ift<s

=1L 1[s,t] if ¢ > S.

Let us introduce the vacuum conditional expectation Eg : By @ B(I') — By, which
is given by, for X € By @ B(I")

(u, Eo(X)v) = (uf2, XvQ), Yu,v € hy.

The fundamental processes {Aff : u,v > 0} associated with the orthonormal basis
{ej : j > 1} are given by

t1, for (u,v) = (0,0),

a(l[O,t] X ej) ’ for (,U,, V) = (07])

AL (t) = (1.5. 2)
aT(l[O,t] ®e;) , for (u,v) = (i,0)

A(Ml[o,t] & |€7; >< ej|) ) for (#7 1/) = (Zaj)

where Ml[ is the multiplication operator on L?(IR) by the characteristic function

0,t]

of the interval [0, t]. All these processes {A}(t)} are defined on the exponential domain
E(K) and as per our convention, A}(t)’s are also identified with their ampliations
1n, ® A(t). For details, the reader is referred to [33, 29].

The quantum Ito formula can be express as
dALAAS = S5dAY, Y, v, 6,1 >0 (1.5. 3)
where

6;’,‘: 0for u=0o0rv=0,

= 0k, otherwise
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with §7 is the Dirac delta function given by
ob= 1for p=v

14

= (0, otherwise.

Now we shall discuss quantum stochastic integration with respect to the above basic
integrator processes. First let us consider integration of simple adapted processes.
An (hg, K)-adapted process L is said to be simple with respect to a partition S =
0=ty <ty <---)of Ry, if

L(t) = L(tk), fort € (tkfl,tk].

For any u,v > 0, we define a simple process X given by, for t € (t,,—1,tn], n > 1,
n
X =Y L, [N (t) = M (th1)] + L, [AL(E) = Ai(tn)].
k=1

The process X is called the quantum stochastic integral of L with respect to A} and
written as fot L(s)dAL(s).

For a simple adapted process L the following observations are immediate.

Proposition 1.5.4. (First fundamental lemma) For any (u,v) and t > 0,u,h € hy
and f,g € K we have

(ue(f), X (t)ve(g)) :/0 fu(8)gu(s)(ue(f), L(s)ve(g))ds.

Let L and M be two simple adapted processes with respect to a common partition

0=tg <ty --- of Ry and t =t, for some n > 0. Let
X(t) = /0 " L(3)dAA(s) andY; — /0 " M(s)dS(s).
Then for any u,v € hy; f,g € L*(R., ko),
(X(t)ue(f), Yive(g))

= > (L(ti-1)ue(fy, 1), M(tr—1)ve(gy, ) (As(K)e(fi, ), AS(K)e(gp, )
1

e
Il

_'_

NE

(X (tr—1)ue(fr,_))s M (te—1)ve(gs,_ ) (e(fir, ), A5 (K)e(gr,))

=
Il
—
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+Z (te—1)ue(fe, 1), Y (tk—1)ve(gs, ) (AL (k)e(fi, ) e(gp, ) (1.5. 4)

From (1.5. 4) and (1.5. 3) the following useful resulted, called the “Second

fundamental lemma” follows (detail can be found in [33]) easily.
Proposition 1.5.5.
(X(t)ue(f), Yive(g))
- / ST 9n() L s uel ), M(s)velg))ds

) fg(S)gn(8)<X($)ue(f),M(S)ve(g)>d8

T fo(8)gu(s)(L(s)ue(f), Y (s)ve(g))ds.

For more general processes, we have,

Proposition 1.5.6. Let L be a (ho, K)-adapted process satisfying, for u € hy, f € K
1. t — L(t)ue(f) is left continuous.

2. supp<,< [|[L(s)ue(f)|| < oo, Vt = 0.

Then there exists a sequence of simple (hg, K)-adapted process { Ly} such that

lim L,(t)ue(f) = L(t)ue(f), Vt >0

n—oo

and for any u,v >0,

¢
s- lim L, (s)dAL(s) exists on the domain hy QE(K).

n—oo 0

The strong limit, say X (t), is independent of the choice of approzimating sequence.

We call the limit X (¢) to be the quantum stochastic integration of L with respect
to AL. For all such processes, the first and second fundamental lemma hold. Let us

denote the space of all such integrable processes by L(hg, K).

Proposition 1.5.7. Let {L}} be a family in L(hg, K) such that for any t > 0,v >
0, u€hgand f € K

/ SO ILE s ue(f)[2dvs(s) <

u>0
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where y¢(t fo (1+ |1 f(s)|?)ds. Then there exists a regular (hg, K)-adapted process
X with
1. limy, o0 SUPg<s<¢ || Xn(t)ue(f) — X(t)ue(f)|| = 0, where

= > /L“ )AL (s

0<p,v<n

2. | X (tyue()|? < 2673 o ILE(s)ue(f) ]| *dys (s).

Such a family {L1} is called stochastically integrable with respect to {A}} and its

stochastic integral is given by,
=) / LY (s)dAL(s), Vt >0
v >0

and we write,

X = LEdAL.

w,v>0

Let {LL} and {Y}'} be two stochastically integrable families. Then we have

Proposition 1.5.8. For anyt > 0,u,h € hg and f,g € K

1. First fundamental lemma:

2. Second fundamental lemma:

X 0uelr). Yivelg) = Y [ dsFulGIanls){ (X s)uel ), ME(s)vels)

w,v>0
(L (s)ue(f), Y (s)velg)) + Y _(Lj,(s)ue(f), MS(s)ve(g))}-
£20

Proposition 1.5.9. Let {L} be a family in B(hg) such that for any v > 0 there

exists a constant ¢, > 0 satisfying

Do ILL@I? < lull?, Yu € ho.

pn>1
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Then there exists a unique reqular (ho, KC)-adapted process X = {X(t) : t > 0} which
satisfies the differential equation
dX = ) XLLdAY (1.5. 5)
w20
with initial condition X (0) = xo ® 1, for some given xy € B(hy).
The next result tells us about the existence of unitary operator valued solution of
dU = Y ULLdAL, U(0) = 1. (1.5. 6)
w,v>0
Proposition 1.5.10. Let H € B(hy) be self adjoint, {r; : i > 1},{sl 1 i,j > 1} be
bounded operators in hy such that S = Zi,jzl st @ ley >< ey| is a unitary operator
in ho @ ko and for some constant ¢ > 0,
Y lr())? < Eull’, Vu € hy.
i>1
If we set the coefficients Li, in the equation (1.5. 6) as follows,

1 *
L‘sz = _(H+ 5 ;Tkrk)v fOT’ (,U,,V) = (050)

= _ZT;;S?’ for (u,v) =(0,75)

E>1
=r;, for (u,v) = (3,0)

=8y, = 0, for (u,v) = (4,7),

there exists a unique unitary operator valued process U(t) satisfying (1.5. 6) .

The equation (1.5. 6) can be interpreted as a Schrodinger equation in the presence of
noise. Now let us look at the Heisenberg picture of this equation. For any = € B(hy)
let us define

Ji(x) =U @) (z @ 1)U(t),Vt > 0.
This defines a family j; : B(hg) — B(hy @T'(K)) of *-homomorphisms and for each

z, ji(z) is a regular (hg, K)-adapted process satisfying

djs(w) = > Gu6h(x))dAL(t) (1.5.7)

v >0
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jo(w‘) =xr® lp,

where {6} be the family of bounded maps from A to itself, given by,

—[H,x] — %Z,Ql rirgx + xrirgy — 2riery , for (u,v) = (0,0)

r, x|sk, for (u,v) = (0,7
O (z) = 21@1[ o2 7] b (1,v) = (0,5) (15. 8)
Zkgl(sﬁ)*[l‘a'rk]’ for (:U’a V) = (Z,O)

(Zkzl(sf)*xsﬁ) - (5;—1‘,f01‘ (N? V) = (Zvj)

The vacuum conditional expectation of j,
ont = Pt7
where {P;} is the QDS with generator 6).

Definition 1.5.11. [33] (Evans-Hudson (EH) flow)

Let A be a unital C*-subalgebra of B(hy). A family {j.} of unital x-homomorphisms
from A into B(hg @T) is called an EH flow with the initial algebra A if the following
conditions are satisfied,

1. jo(z)=2z®1, Ve € A

2. ji(x) € By

3. There exists a family of maps {0, : u,v > 0} defined on a dense *-subalgebra Ay
of A and taking values in A, such that j.(z) for x € Ay is a reqular adapted process,
obtained as a solution of (1.5. 7).

The family {67 : p,v > 0} is called the family for the structure maps of EH flow j;
and they satisfy the following properties

1. 6%’s are linear maps.

2.08(1) =0, Yu,v >0, if 1 € A

3. 04(a") = (0(2)" Vz € Ao (15. 9)
4. For any z,y € Ao, p,v >0

0L (wy) — w0l (y) — O (x)y = Y 02 (2)65(y)
1
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1.5.3 Coordinate-free Quantum stochastic calculus

Here, we shall briefly discuss the coordinate-free language of quantum stochastic
calculus developed in [15].

Let H; and Hy be two Hilbert spaces, R € B(H1, H1 Q Ho) and T € B(H1 Q) Ha).
For any f € Ho, let (f, R) € B(H1) and Ty € B(H1,H1 Q) Hz) be defined as in (1.2.
1) and (1.2. 2) respectively. Let S be the symmetrization operator from free Fock
space I'¢(Hz) to symmetric Fock space I'y(H2). Action of S on finite particle vector

is given by,

1
S(fidfafm)= m—1)! Z Jo(1) @ fo(2) " Jo(m)s

oESm

where S;,, is group of permutation on m points. For R € B(H1, H1 Q) Hs), we define
the creation operator a'(R) which will act on the linear span of vectors of the form

uf®" and on H1 ®,;, £(Ha) as follows,

alg
B) =~ (g ©S)(R) @ 1), (15 10)

It is easy to observe that ), - LllaT(R)(uf®")||? < oo, which allows us to define

a’(R)(ue(f)) as the direct sum €,,- ( '1); a’(R)(uf®"). The annihilation operator
— (nl)2

a(R) is defined by,

a(R)ue(f) := (R, flue(f). (1.5. 11)
Now define the conservation operator A(T) by,
A(T)ue(f) := a' (Ty)(ue(f)). (1.5. 12)

Next, to define the fundamental processes, we need some more notations. Let hg, kg
be two Hilbert space and K = L?(R, k). Let R € B(hg,hg @ ko), T € B(hy ® ko).
For t > 0 and any bounded interval A C [t,00), we define RS : hy® Ly —

hoy@T'y @Ky by,
R (ue(fy)) = P((1n, ® xa)(Ru) @ e(fy)

where xa : ko — K, is the operator which takes z to 1a(-)z for z € ko and P is

the canonical unitary isomorphism from ho @ Ky @ I'y to hg @ I'y) @ K. Now we
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define the creation process aE(A) as :

al(A) = af (RD), (1.5. 13)

where af(R2) carries the meaning as in (1.5. 10), with H; = ho @Iy, He = K.
Let Tﬁt be the linear map from hyo @ I'y to ho @ T'y) @ K. is given by

TH (ue(fy)) = P(1 @ Xa)(T(ufy) @ e(f4))- (15. 14)

Here, T' is the linear map on hy® L2((t,0), ko) = L%((t,00),hg ® ko) given by
T(u fie)(s) = T(uf(s)),Vs > t and ya is multiplication by characteristic function
1a. With the above notation, we define the annihilation and conservation processes

ar(A) and Arp(A) by

ar(A)(ue(f) = (( /A (R, f(s))ds)ue(fy))e(fi), (1.5. 15)
— [ i) ds ()
A
and
Ar (D) (ue(f) = al (TF, ) (ue(f); (1.5. 16)

Here let us recall some preliminary observations from [15] which will be needed later

on.

Lemma 1.5.12. Let A;A" C (t,00) be intervals of finite length, Hy, H, be two
adapted processes and u,v € hy; g, f € K.
1. For R, S € B(hg,hy @ ko) we have,

(Hyaly(A)(velg)), HiaL(A)(ue(f)))
= (e(gy), e(f)) [(H R (ve(gy)), HiSE (ue(fy)))
+ <<f[taHthA>Ue(9t})a (g[t,Hl;S,fA/)ue(fﬂ)ﬂ

_/ ((HiPR)(ve(g)), (H{PS)(ue(f)))ds
ANA/

+ [ [ W) HPR) welo). to(s). HLPS) el ))ds ds.
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2. For T,T'" € B(hy @ ko) we have,

((HTy; )(vel9)), (HITR ) (ue(f)))

= /AQA/<HtPTP*(Ue(g)g(S))’ngPT,P*(Ue(f)f(S)»ds,

and

(o TR = [ {oto). HiT ).

As in the coordinatized version, integral with respect to above four basic processes
can be defined. Here the fundamental lemmas take the following form. Let E, F, G, H
and E', F',G’, H' be integrable (hy, K)-adapted and

t
X; = / (ESAT(ds) + Fyap(ds) + Gal(ds) + Hsds) ,
0

t
X/ = /O (BLAz(ds) + Flan (ds) + Glal, (ds) + H'ds)

Then for u,v € hg; f,g € L?(Ry, k), we have :

Proposition 1.5.13. (i) First fundamental formula

< Xwe(g),ue(f) >
t
= / ds <{< f(s), BEsPTy) > +Fs < R, g(s) > +
0
Gs < f(s),S > +Hs}(ve(g)), ue(f) >

(ii) Second fundamental formula (or Quantum Ito formula) can be put in a conve-
nient symbolic form as follows. Let 7o(z) denote x @ 1y, and mo(z) denote x @ i, .
Then

aR(dt)ﬁo(:r)ag(dt) = R*mo(x)Sdt, Ar(dt)mo(x)Aq:(dt) = Apry @y (dt),

A (dt)Fo(w)al(dt) = al. o (dt), as(dt)Fo(@)Ar(dt) = arerya)s(dt),

and the products of all other types are 0.
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(iii) The (ho, K)-adapted process X, satisfies the estimate

t
[ Xeve(g)]? < e /0 ds[ll{ B PTys) + G, PS}(ve(9))| (L5. 17)

+HH{< g(s), EsPTy) > +Fs < R, g(s) > + < g(s),GsPS > +H,}(ve(9))|?].

In [15, 18], EH flows are constructed on C* and von Neumann algebras when the
structure maps are bounded. Let us briefly recall and state the main result obtained
there. Let A C B(hg) be a von Neumann algebra and ko be a Hilbert space. Let
us consider the Hilbert module A ) ko and define the fundamental processes in the
Fock module AQT.

Assume that we are given the structure maps, that is, the triple of normal maps
(L,0,0), where L € B(A),d € B(A, AQ ko) and o € B(A, AR B(ko)) satisfying:
(S1) o(z) =m(z) —z @ 1k, = X*(z ® 1k,)E — 2 ® lk,, where X is a partial isometry
in hy ® kg such that 7 : A — AQ) B(ko) is a x-representation.

(S2) 6(x) = w(x)R — Rx, where R € B(hp,hy ® ko) so that § is a m-derivation, i.e.
6(zy) = 6(x)y + 7(x)0(y).

(S3) L(z) = R*n(z)R + lx + zl*, where | € A with the condition R*n(z)R, €
A, L£(1) = 0 so that £ satisfies the second order cocycle relation with § as cobound-
ary, i.e.

L(z*y) — 2" L(y) — L(x)"y = 6(x)"0(y) Yo,y € A.
Here we note one important result from [15]

Theorem 1.5.14. Given a uniformly continuous conservative QDS Ty on A with
the generator L there exists a Hilbert space kKo, a normal x-representation w: A —
AQ B(ko) and R € B(ho,ho @ ko) such that the above hypotheses (S1)-(S3) are
satisfied.

Let us define a map O associated with structure maps (£, d,0) as follows

6 0 * L &t
O(x) = 1@ (6:(()) = (@) dl(a) Vr € A, where §f(z) =
O3(x)  Oa(z) o(z) o(x)
(6(x*))*, so that © : A — A® B(ko) is a bounded linear map with respect to
direct sum decomposition kg = C@ko. The following observation [15] sums up the

important properties of the map ©.
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Lemma 1.5.15. [15] Let © be as above. Then
(i) There exists bounded operators V,W € B(hg ®ko) such that

0(z) =V (@1 )V+Wely )+ (@l )W (1.5. 18)
(ii) © s conditionally completely positive and satisfies structure relation:
O(xy) = 0(x)(y ® 1y ) + (z @ 1 )0(y) + 0(2)Q0(y), Yz, y € A,

0 0

where Q = € B(hy ® ko).

(iii) There exists Hilbert space H, D € B(hy ® ko, ho ®@ H) such that
[O@)Ell < Iz @ 13) DE||, Var € A, € € hy@ko. (15. 19)

Proof. Define the following maps with respect to the direct sum decomposition

h0®f{0 = ho @(ho@ko) .

- 0 0 ~ z 0 l 0
R= ,7(x) = W = . )
R -1y, ®@k 0 m(z) R —351lhyek,
o 1m0
0o X

Then it is easy to see that (i) is verified with V' = XR. That © is conditionally com-
pletely positive and satisfies the structure relation in (ii) is also an easy consequence
of (i) and (S1)-(S3). To prove the estimate 1.5. 19 let us consider the following.
From the structure of © given above, for any £ € hy ) ko

10l <3 (IVI? @ ® 1 )VEIR + Wl (@ ® 1, )& + I @ 15, )IWe2)

Thus required estimate follows with the choice of Hilbert space H = ROEBRO@RO
and D € B(hg Q@ ko, hg @ H,) given by

D = V3 (VI VES IW]] 1y, 05, € & WE) .
O

Now we introduce the basic map-valued processes. Fix t > 0, a bounded interval

A C [t,00), elements z1,x9,...,z, € A and vectors fi, fa,..., fn € K;u € hy. We
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define :

( zxz >u_Z|A| ) @ o).
(mm; z; @ e(f;) ) u = 2% (ue(f:)),
(aE(A)(gxi(@e(ﬂ ) Z%@ (ue(fi)),
(}AAxi}m®qﬁ )u—}jmmh )(ue(fi)),

where |A| denotes the length of A. The above processes are well define on A Q),;, €(K)
and they take values in AQT.

Definition 1.5.16. A family of maps {Yi}i>0 from AQ
to be:

(i) adapted, if there is a family of maps Y/ AR E(Ky) — AQT Yy such that
Yi(z @ e(f)) =Y/ (x @ e(fy)) @ e(fy) forallz € A, f € K and t > 0;

(i) regular, if t — Yi(z ® e(f))u is continuous for every fivzed x € A, u € h, f € K.

EK) to AQT is said

alg

For an adapted regular process Y; satisfying

sup [|Yy(z @ e(f))ull < C(f, 7)||(x @ 1y )rul], (1.5. 20)
0<t<r

for x € A,u € hg, f € C, where C is the space of all bounded continuous functions
in £ and H" is a Hilbert space, r € B(hg,ho @ H"), one can define the stochastic
integral

t
/ Ys o (al + a5 + Ao + I2)(ds) (1.5. 21)
0
as follows. First let us recall the following useful Lemma from [15].

Lemma 1.5.17. [15] ( The Lifting lemma)

Let H be a Hilbert space and V be a vector space. Let 3 : AQ, .,V — AQH be a

alg
linear map satisfying the estimate

18(z @ n)ull < el (z @ Tpgr)rul] (1.5. 22)

for some Hilbert space H" and r € B(hg,hg @ H") ( both independent of n ) and for

some constant ¢, depending on 1. Then, for any Hilbert space H', we can define a
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map B : (AQH) @ag V — AQHQH') by setting flx @ f@n) = Blz@n) @ f
forz € A,m eV, f e H. Moreover, 3 satisfies the estimate

1B(X @ n)ull < | (X @ 1pg)ru, (1.5. 23)
where X € AQH'.

In (1.5. 21), the integrals corresponding to a5 and Z, belong to one class while the
other two belong to another. In fact, we define fg Yso(as+Zz)(ds)(x®e(f)) by setting
it to be equal to fg Ys((L(x)+(6(x*), f(s)))@e(f))ds. For the integral involving the
other two processes, we need to consider Vs : AQ ko ® & (Cy) = ARQT R ko as
is given by the lifting lemma 1.5.17, where C,) = C (1 K,). Defining two maps S(s) :

ho ®alg5(cs]) — h0®1“8] ®k0 and T(S) . hg ®alg5(65]) ®k0 — h0®Fs] ®k0
by

S(s)(ue(fy) = Ys(d(x) @ e(fq))u,
and
T(s)(ue(gs) ® f(s)) = Ys(o(2) y(s) @ e(gg) ),
the integral [J Yy o (Ay(ds) + al(ds)(z @ e(f))u is defined to be
( JEAr(ds) + ag(ds)) we(f). For detail see [15], it is shown that

Proposition 1.5.18. [15] The integral Z; = fot Yo (ajs +as + Ay +Zr)(ds), where
Yy satisfies (1.5. 20), is well define on AQ,), E(C) as a regular process. Moreover,

it satisfies an estimate :
1{Z(z @ e(f)}ull?
t A
< 2! [ ean( AP IT(O() i @ el +

A~

10 (), Va(O(@) 1y @ el fy)))ul*} s, (1.5. 24)

t A
<21+ 12 [ eanllfu PV O@) s © elfy))ulds,

where © is as defined earlier, Vs = Y, ® Y, : AQko a1z €Cy) = AQT ko,
f(s)=1@® f(s) and f(s) is identified with 0 & f(s) in ko.

Here, we note that Yy = (Y, ® 1120)62 where, @ : hg ®R0 QRT — hy ®I‘®f<0 is the

unitary operator which interchanges the second and third tensor components.
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Now let us state the main result in [15] concerning the existence-uniqueness and

homomorphism properties of EH flow

Theorem 1.5.19. [15] (i) Let 7 > 0 be fized. There exists a unique solution J; of

the equation ,
t
Jt = idA@F +/ JS o (CL:; + as —"_Ao' +Z£)(d8), 0 <t<rT (15 25)
0

as an adapted regular process mapping AQ E(C) into AQT and satisfies the esti-

mate

swp (i@ e(f)ull < (e & Ly wa(or 200 Eral,

where f € C,E; € B(hg,hg @ Ty (L%([0,7],H))), C'(f) is some constant and
L (L2([0,7],H)) is the free Fock space over L([0,7], H).

(i) Setting ji:(x)(ue(g)) = Ji(z @ e(g))u, we have

(a) (Ge(z)ue(g), je(y)ve(f)) = (velg), ji(z"y)ve(f)) Vg, f € C, and

(b) ji extends uniquely to a x-homomorphism from A into AQ B(T).

Proof. (i) Let us write for A C [0,00), M(A) = as(A) + a}(A) + Ao (A) +Zp(A),

and set up an iteration by

I @@ e(f)) = /0 I o M(ds)(x @ e()), ;" (z @ e(f)) = z @ e(f),

with z € A and f € C fixed. Since Jt(l) = M (][0,1]), t(l) is a regular adapted process
and by the definition of M(A), estimate (1.5. 17) and estimate (1.5. 19) in Lemma
1.5.15,

t A A~
17 (@ @ e(f))ul? < 2€T||e(f)||2/0 ds||0(z)(u @ f(s)I[?[1f(s)[?
t A A~
< 2||e(f)||267/0 ds|| f(s)|[*|l(z © 15 ) D(u® f(s))][.
For the given f, defining Elgl) :hy — hy ® L?([0, 7], H) by

(B u)(s) = D(ue f(s)l|fy(s)]):
where ft}(s) = 1@ fy(s), the above estimate reduces to

1750 (@ @ e(f))ul|? < 2/le(HIPeT|I(x @ 112 (0.7.70) EL ul . (1.5. 26)
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It is also easy to see from the definition of Et(l) that for ¢t <7
Iz ® 12(0.7100) B ull? < [l @ 1r2(0.020) ESul2. Which shows that (J1”) is
indeed adapted regular process, so that fot Js(l) o M(ds) is well-defined. Now, an

application of the lifting lemma leads to
170 (X @ e())ull? < 2lle(f)][2e7[[(X @ 12 (pom70)) BV ul|?,

for X € A® Ro, where as in the previous proposition, ;t(l\) = Jt(l) <) J:(T) . As
an induction hypothesis, assume that Jt(n) is a regular adapted process having an
estimate || J\" (z@e(f))ul[? < C{[e()|[P[(@@1 2 g - 2om VB ul[2, where C = 2¢7
and E™ : hg — ho @ L2([0, 7], H)®" defined as :

(BUu)(st,83,- - 80) = (D@1 0 oo Pl (BE D) (s, sn)@f (1)l fa ()1}

(n-1) __ « . (n-1)
where P, : hg ® L2(]0, 7], H)® R ko — hy R ko ® L2([0,7], H)® is the op-
erator which interchanges the second and third tensor components and E&O) = 1p.

(n+1)

Then by an application of the proposition 1.5.18 one can verify that J, also sat-

isfies a similar estimate, and is indeed an adapted regular process for each n. Thus,

if we put Jy =3y Jt(n), then

(2 @ e(f))ull < S (@ @ e(f))ull
n=0

Nt n _1 ——
< (IS O () 3 |(x @ 1z, o)) 3 B
n=0

w on\}
< — ® 1 ) E 1.5. 27
< lle(/)ll <nzo m) (@ @ 1y (r2(j0,7),10))) Erull, ( )

where we have set £, : hg — hg @ I't,(L([0,7],H)) by E,u = @;'Lozo(n!)%Eﬁn)u. It
is easy to see that

e}

1 n
1E-ull* = (nh)2 || ESul?

n=0

< [[ull® Z n)z||D|*"{ / dsy ... dsi||f(sa)l[*- - 11 f (s)I1"}

0<sn<sp—1<...s1<T

oo
_1
= [[ul[* Y ()2 DI g ()",
n=0
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where pg(t) = fg |f(s)||*ds. The estimate (1.5. 27) proves the existence of the
solution of equation (1.5. 25 ), as well as its strong continuity. The uniqueness of

the solution follows along standard lines of argument. O

Here we are omitting the proof that {j;} is a homomorphic family, in Chapter-4
we shall show that {j;} is a strong limit of a family of *-homomorphism {pgh)}bo,

called quantum random walks, and it follows that {j;} is a *-homomorphic flow.



Chapter 2

A Class of Quantum Dynamical

Semigroups on UHF (C*-algebras

In this chapter we shall discuss the class of strongly continuous QDS constructed in

[28] on the UHF C*-algebras of class N°°.

Let A be the UHF C*-algebra generated as the C*-completion of the infinite
tensor product &) jezd M ~(C), where N and d are two fixed positive integers with
the unique normalized trace, denoted by tr. For x € My(C) and j € 72, let 20
denote an element in A whose j-th component is = and rest are identity of My (C).
For a simple tensor element a € A, let a(;) be the j-th component of a. The support
of a, denoted by supp(a), is defined to be the set {j € Z< : a;) # 1}. For a general
element a € A such that a = 220:1 cpay with a,’s simple tensor elements in A
and ¢;,’s complex coefficients, we define supp(a) := U, > supp(a,) and we set |a| =
cardinality of supp(a). For any A C Z%, let Aj denote the *-subalgebra generated by
elements of A with support A. When A = {k}, we write Ay instead of Agy. Let Ajoc
be the *-subalgebra of A generated by elements a € A of finite support or equivalently
by {zU) : 2 € My(C),j € Z}. Clearly Ay, is dense in A. For k € Z%, the translation
7, on A is an automorphism determined by 7(2)) := 2U+K) vz € My(C) and
j € Z% Thus, we get an action 7 of the infinite discrete group Z? on A. For z € A

we denote 7i(z) by .

We also need another dense subset of A, which is in a sense like the first Sobolev

45
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space in A. For this, we need to note that My (C) is spanned by a pair of noncom-
mutative representatives {U,V} of Zy = {0,1---N — 1} such that UV = VN =1
and UV = wVU, where w € C is the primitive N-th root of unity. These U, V can be
chosen to be the NV x N circulant matrices. In particular for N = 2, a possible choice
is given by U = 0, and V = o0,, where o, and o, denote the Pauli-spin matrices. Let
G be the cyclic group Zy x Zy. For g = (o, 8) € G, its inverse is —g = (—a, —[3),
where —a and —f are inverse of o and 8 in G respectively. Now for j € Z%¢ and
g=(o,B) € G, weset W, = U(j)aV(j)B € A and an automorphism 7; 4 of A, given
by mjg(x) =Wz WS, . We define
0jg(@) = mjg(x) =z, Vo € A, and 2]y = [loj4(x)]-
39

Let C1(A) = {z € A: ||z||; < oo}. It is easy to see that ||z*[|1 = ||7j(x)|1 = ||z
and since C'(A) contains the dense *-subalgebra Ay, C'(A) is a dense 7 invariant
x-subalgebra of A.

Let G = Hjezd G be the infinite direct product of the finite group G at each
lattice site. Thus each g € G has j-th component gU) = (o, 35) € G. For g € G
we define its support by supp(g) = {j € Z* : g¥) # (0,0)} and |g| = cardinality
of supp(g). Let us consider the projective unitary representation of G given by G >

2.1 QDS generated by formal Lindbladian

For a given completely positive map T on A, we formally define a map £ associated
with T' by setting £ =), ya Ly,
where
Lrx = 1 Lo(T_gx), Vo € A

with

Lo(x) = —%{T(l),x} +T(), (2.1. 1)
and {4, B} := AB + BA.
In particular we consider the completely positive map

o
Tx = Zafﬂzl, Ve e A (2.1. 2)
=0
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with a sequence of elements {a;} in A, such that a; =} g ¢ ,,Ug and

0 el lgl? < oo (2.1. 3)

=1 geg

It is clear that the map L, associated with the above sequence {a;}, i.e. associated

with the completely positive map T' given by (2.1. 2), takes the form

L) =3 Lux)

kezd
with
Li(x) = %Z{[Tk(@l)*a )7y (ar) + () [z, T (ar)]}, Yk € Z°.
=1

Let us state and prove the main result obtained in [28].

Theorem 2.1.1. /28] (i) The map L formally defined above is well define on the
dense x-subalgebra C'(A).

(ii) The closure of (L,C'(A)) is the generator of a contractive conservative QDS
{T;:t >0} on A,

(iii) The semigroup {T;} leaves C'(A) invariant.

Proof. For simplicity let us prove the result for £, associated with CP map T'(z) =
rxr, where r =} ;cgUs € A such that |rly = 30 g lcqgl lg)* < oo. For L,
associated with CP map T given by (2.1. 2), condition (2.1. 3) on the sequence {a;}
will allow the proof to go through.

The map L associated with r, takes the form,

L)=Y Lulw)

kezd
with

1 * *
Li(z) = 5{[7%, xlry + rilx, rg) }, VE € 78,

Denoting these two bounded derivations [r},.] and [.,r;] on A by 6;2 and Jj, respec-

tively, £(z) = 3> 1cza (5}2(%’)7’;g + riox(x).
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(i) For z € C!(A), let us estimate the norm of £(z),

l@)l< 3 3 Ik + ridu)]

kezd
,
< IS~ (st + et
kezd
]l .
<5 D0 lel (HmeUgs 2]l + lmUg, 2] -
kezd geg
Since we have
1[Ugs 2]l = 1T ezaWy g2l < >0 IWpas2lll= D llog 0@,

Jj€supp(g) j€supp(g)
it follows that

1L@I< VS Sl X (oo 0@+l o0 @)

kezd geg Jj€supp(g)+k

<l Yo Dolegl > Y llogg @)l

kezd geg jEsupp(g)+k 9'€G

<Nl Y legllal D D g (@)l

geg kezd g'eG
<7l legl gl [l
geg

2
< [rf2”l2lh

(ii) Step-1. In order to apply Hille-Yosida theorem let us first observe the following.
Let A > 0 and let = be a self adjoint element in C!(A). Then there exists a bounded
operator I' on I'(Z¢ x G) such that

A =D)(lo. ()N, 9") < llojg (A= L)2)]. (2.1. 4)
In fact, I can be chosen to be an infinite positive matrix of the form,
=140

with the action of T(© and I'™) on f € I'(Z¢ x G) given by:

TOFGg)y=2>"legl > > > fi-k+1g")

9€G kesupp(g) lesupp(g) 9"€G
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and
TVrGg)=2> 0 D e lal D> D> fU+kg"
kEZL G>g:j—kEsupp(g) heg lesupp(h) g"€G

It may be noted that (2.1. 4) implies that for A > ||T'||;;, I' — X is invertible and one

has
o (@) < (A =T) " (lo.((A = L)2)1) (4, 9)- (2.1. 5)

To prove (2.1. 4) let us consider the following. For a fixed A > 0, a self adjoint
element = € C'(A), setting y := (A — £)x, we have for (j,¢') € Z¢ x G, ¢ = (o, B)

0jq(T) = i{ffj,g' (y) + 0,9 (L(2))}-

Now we have, by definition

0jq(L(x))
= % Z g (g, i) — [, e + 7). (]2, va]) — 73l2, 78]
kezd
= % Ak(gjag' (x)) + [UJ,Q’(TZ)v 33]7'(']‘79/ (Tk) + Tj.9' (T;;)[‘T’ O-j,g’(rk)]

o

m

N
Y

+r, 2logg (rk) + 0.9 (1) [z, 7i]- (2.1. 6)
Where,
Ap() = [mj,9 (ri), 2lmj g (i) + 7jg (i) [, 7.0 (7))

It is clear that for each k, Aj is a conditionally completely positive bounded map
and A (1) = 0. Thus Ay, is the generator of a contractive CP semigroup, say {Pt(k)}.

As z is self adjoint, so is ;4 (x), we can find a state 1) on A such that

(09 (@))] = llojg (@)

First let us assume,
(0),q(2)) = llojg ()] (2.1. 7)

Since {Pt(k)} is positive and contractive and x is self adjoint, we have,

(P (0 (2)))
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< (PP (04 ()]
< 1P (04 (@)l
< lojg (@) = B(PP (0,4 (2))).

Thus

%'tzW(P (010 (2)) = $(Ax(019(2))) < 0. (2.1. 8)

Now evaluating the state ¢ on o; y(x) and using (2.1. 7), we get

logg ()] = i{ﬂ)(%’,g'(y)) + (o9 (L(2)))}-

By (2.1. 6) and (2.1. 8), this gives

0.9 ()] < i{lﬁ(aj,g’ (y))v% Y Wl (i), almy g (i) + (7 g () [, 0, (ri)])

kezd

+([rs @)y (1)) + (0 () [, 7)) }

1 1 *
< losg Wl + 55 DAl o (s @Il + Il Hog.g (), 2]l
kezd
s 2]l logg (ra) | + +llogg ol e, =1} (2.1.9)
If Y(0j,4(x)) = —|loj¢(x)|, replacing x by —x, same argument as above gives the

inequality (2.1. 9).
Now in order to estimate the second term of (2.1. 9), let us take g € G with

J € supp(g) and observe that

a6 B n—a
llosg (Uy), alll = [T VO U, v o= _ g, )

= [|[(w =970 — 1)Uy, ]| < 2|[[Uy, ]
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So we have,

[loj.q (ri), ]|
= > S leglllog (mUy), all

kezZ? g:j—kesupp(g)

< 2 Z Z lcgll| [Tk Ug, 2]]|
kezd g:j—kesupp(g)

< 2 ) ST el DD opgan(@)]
kezd g:j—kesupp(g) l:l—kesupp(g)

<23 > el D D longr()
kezd g:j—kesupp(g) l:l—kesupp(g) g"'€CG

<2y N el DY D e (@)
kezd g:j+kesupp(g) Lil+kesupp(g) 9"'€G

< 2) el Yo > D ol
geg kesupp(g)—j lesupp(g)—k g"€CG

< 2> el Y > D lojmkrg (@)

geg kesupp(g) lesupp(g) g"€CG

Thus,
1 .
5 S Al s (), 2l + ) o (), 211} < TO o (@)D G o)
kezd
Similar estimate gives,
losg POl sl <42 D= e D lenl D D llovngr(x)
g:j—kesupp(g) heg lesupp(h) g"€G
So, we have,
1 :
2 > Ulosg DN e 2l + s 21l logg (r)l) < T o ()1 o)
kezd
A simple estimate now gives,

ICCHN < N2 legl LglPHAllrll+ D legl 19 HIF s

9€g 9€§g
Step-2. For each n > 1, setting £ Z|k|<n Ly, it is clear that £ is a bounded
CCP map on A. So L™ is the generator of QDS {7, n)} on A and for A > 0, ||(£(
A (@) > A|z|, ¥z € A and hence [|(£™ — X)~!|| < +. For A > ||T|;1, in order to
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show that Ran(L — \) is dense in (A, || - ||), we consider the following. Let y be a self
adjoint element in C'(A). Since (£ — )) is invertible for every n, we can choose
2, € A (in fact self adjoint) so that (£ — X)(z,) = y. Note that (2.1. 5) also
holds if £ is replaced by £(™ and thus we have

low @)l <> A =T) " Yaralloa®)- (2.1. 10)
Summing over ' it follows that
Iza)lls < [ =) flylh < o0
and so x,, € C}(A). Now setting y, = (£ — \)(zn),

lyn = ol = 1€ = L™zl = 7 Lalwn).
|k|>n
The above quantity is clearly dominated by

Do > el D Y loiaan)l

|k|>n  g€G g1€G  jesupp(g)+k

<Irl Yo D legl D Yo A=D e} G.g) (21 11)

|[k|>n g€ g1€G  jesupp(g)+k

Since

DD el Yo Z (A—F)_l{Ha(y)H}(j,gl)

|k|>1 g€g 91€G jesupp(g

< > egllgl D0 DY =D H{lle )} G, g1)
9€g jezd g1€G

< D legl gl IA=T) Y]yl < oo,
geg

(2.1. 11) goes to 0 as n tends to oo which shows that y,, converges to y. For a general
elements y € C1(A), using the above argument for the real and imaginary parts of 3
we can find a sequence v, € (£ — \)(C'(A)) such that approximate ¥, converges to

y. Thus Ran(L — \) as well as (£ — \)(C'(A)) are dense in C!(A) and hence in A

too.
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Now for y = (£ — A)(z) in the dense *-subspace (£ — \)(C!(A)), we have

L™ =N y) — (L - N W)
= [(£™ = N)7HL = L)L - N )|
<L =N L)

|k|>n

1> L@l

|k|>n

<

>| =

So [|(£™ — X)~1(y) — (£ — X\)"'(y)| converges to 0 as n tends to co and hence

I =27 W)l < syl

From the Hille-Yosida theorem it follows that L is the generator of a strongly contin-
uous contractive semigroup. Now by theorem 1.3.4, the contractive semigroups Tt(n)
converges to T; strongly as n tends to co. Thus T} is a contractive CP semigroup on

A as each Tt(n) is so.

The semigroup T} satisfies
t
Ti(zx)=x +/ Ts(L(x))ds, Yz € Dom(L).
0

Since 1 € C*(A) and £(1) = 0, it follows that T;(1) = 1,Vt > 0.
(iii) By (2.1. 5) for A > 3 := ||T||;» and self adjoint x € C'(A), we have

lojg(A = L) (@)l < A =T) o (@)[| (G, 9), V(s g) € 27 x G.
Summing over all (4,g) € Z¢ x G, we get
I = L) @) < (= 8)" el

Thus for z € C1(A),

ITe(2) 11 < 2 |21 < oo



54 Ch.2.A4 Class of Quantum Dynamical Semigroups on UHF C *-algebras

2.2 Ergodicity of the QDS

Following [28], we say that a contractive CP semigroup 7} is ergodic if there exists

an invariant state v satisfying
|T:(x) — ¥(x)1l|| = 0 as t — oo, Vo € A. (2.2. 1)

In [28], the author has discussed some criteria for ergodicity of the QDS T;. Some
examples of such semigroups associated with partial states on the UHF algebra and
their perturbation are given.

For a state ¢ on My(C) and k € Z%, the partial state ¢ on A is a CP map
determined by ¢ () = ¢( (1)) Tk}, for ¥ = T Ty, where 2y € Ap = Agy and
T(pe € Apge with {k}¢ stands for the complement set Z? \ {k}. Here, recall that
for any set A in Z¢, A denotes the sub-algebra of elements with support contain in
A. By (2.1. 1) the Lindbladian £? corresponding to the partial state ¢q is formally
given by

= Z Ef(a:), where L’ﬁ(:v) = ¢p(x) — 2. (2.2. 2)

kezd

For the state ¢ we can find vectors {& :1=1,2--- N} in CV such that

N
= (&, 28), Vo € My(C).
=1

Let us reindex the set {(n,l) : n,l =1,---N} by {m = 1,--- N?}. Now for a fixed
orthonormal basis {e, : n = 1,--- N} of CV, defining N? many rank one operators

L) = |§ >< e,| where index m corresponds to (n,1), we have
ZL , Yo € My(C), and ZL LM =,

For m = 1,--- N2, we consider the element Lém) € Ay with the zeroth component
being L™ . Now for k € Z¢, writing ngm) = Tk(Lgm)), the partial state ¢y, is given
by,

ZL 2™ vr € A
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So the formal Lindbladian £? takes the form

Loz) = Ly),

kezad
with
1 &
Lo(z) = 52 12" L™ 4 L g, L),
m=1

It follows from Theorem 2.1.1 that £? is defined on C*(.A). Moreover, the closure of
(£?,C'(A)) ( which we denote by same symbol £?) is the generator of a contractive
CP semigroup be on A.

From (2.2. 2), for any element mgc) € A with support {k}, by induction we have
(£¢)”(x,(€k)) = (—1)"[w§€k) — ¢(x1)] and hence

19 (@) = 30 S0y )

n>0
= d(xp) + e @l — olan)).

(@),.(7)

For simple tensor element, in particular for x =z, "2 5

()" (@) = (=" (o = o)) + 2l 2 — (ay)]

where
n—1 TL'
c(n) = 27':2"—2.

Thus

On simple tensor element z =[], . Ax,gk) with support A,

T (renzt?”) = [ien {6(an) + ¢ (2 — ¢lar))}
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and hence

Jim |77 (yerzt”) ~ Tiea(an)l] = 0.

Now setting @(erAa:gf)) = [[read(zr) and for any x = > 5 cqUy € Ao defining
P(x) = g cg®(Uy), it follows that

lim IT? (z) — ®(z)|| = 0,Vz € Al

Since, {Ttd)} is a CP contractive semigroup ||®(z)|| < ||z||,Vz € Ajoc and ® extends
as a state on A such that

lim TP (z) = ®(x),Vz € A.

t—o00

The dilation problem for this th5 will be addressed in the next Chapter.
Now we consider the perturbation of the contractive CP semigroup Ttd’. Let T3} be
the QDS with the generator £ appearing in the Theorem 2.1.1. For any real number

¢, let us consider

£ (z) = L@ e

It is clear that £(9) is the Lindbladian associated with the completely positive map

N2 00
T(x) = Z L,(Cm)*xL,(cm) + cZaZ‘xal,Vx € A,
m=1 =0
and by Theorem 2.1.1 it follows that the closure of (£(¢),C'(A)) is the generator of
a QDS Tt(c). From [28], here we shall state a result concerning the ergodicity of CP
)

semigroup Tt(c .

Theorem 2.2.1. [28] There exists a constant co such that for 0 < ¢ < ¢, the
)

above contractive CP semigroup Tt(C 18 ergodic with respect to the invariant state

() satisfying
1T ()1 < 2¢ & (2.2. 3)

c 4 _(q-=<
17 () = 2 @)1 < sz 70 Jlzl, Var € €' (A).

The following result determines the invariant state ®(©).
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Proposition 2.2.2. The invariant state (© corresponding to the ergodic QDS T, t(c)

s given by

) (z) = ®(x) + c/ooo B(L(T (x)))ds, YV € C*(A).

Proof. Since for any = € A, 1}(]5(33) converges to ®(z) as t tends to oo and for any
t>0,7 €CHA),

t
T(@) — T (x) = ¢ / T LT (2)ds,
0

it is enough to show that for z € C'(A),

t o0
im || [ 79 LT (@)ds — / B(L(T (z)))ds|| = 0. (2.2, 4)
0 0

s
t—o0

To prove (2.2. 4), we observe that

I TOerO @y [ (e )|

0

< / LT (z)ds|| + | / ©)(2)))ds].

Since Ts(c)(:):) € C1(A), we have by (2.2. 3) HE(TS(C)(x))H < Me #s||z||; for some
positive constants p and M independent of s. Thus the integrands in the first and
second terms are dominated by the integrable function f(s) = 2Me #*||z||;. Clearly,

the second term converges to 0 as t tends to oo. Since for fixed s > 0 and x € CI(A),
lim (%) — ®)£7() ()] = 0,¥5 > 0,

by dominated convergence theorem the first term goes to 0 as ¢t tends to oc. 0



Chapter 3

EH Dilation for a Class of QDS
by Iteration Method

In this chapter we investigate the possibility of constructing EH flows for the QDS
on UHF C*-algebras, discussed in the previous section. Although the question is not
answered in full generality, EH flows for a class of QDS are constructed.

Let r =3 cgcgUg € Asuch that 30 o cgllg|*> < oo. The Lindbladian £ associated
with the element r, i.e. associated with the CP map T given by T'(z) = r*zr takes
the form

L(x) =Y ol (@) +ridn(z), (3.0. 1)
kezd

where 7y := 71(r) and g, 6,1 are bounded derivations on A defined by
Ok(x) = [z, rg] and 6,1(93) = (0 (2™))* = [rL, z], Vo € A. (3.0. 2)

It follows from [28] that the closure of (£,C'(A)) is the generator of a QDS T;
on A. In order to construct an EH flow for the QDS T}, we would like to solve the
following qsde in B(L?(A,tr)) @ B(I'(L*(R,k))) :

dje(z) = > Je(8} (@) dar(t) + 7 Gi(Gk(@))dal(t) + je(L(x))dt,  (3.0. 3)
kezd kezd

Jo(z) =2 ®1p ;2 € Age.

58
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Let us first look at the corresponding Hudson-Parthasarathy equation in L?( A, tr) ®
T'(L*(Ry, ko)) given by

* ]‘ *
dU; = { > [rkda(t) — rpdal (1)) - 5 > rirrdt Uy, (3.0. 4)
kezd kezd

Uo(z) = 1r2gr-

However, though each rj, € A and hence is in B(L?(A,tr)), the equation (3.0. 4)

does not in general admit a solution since

(u, Y ripreu) = > |lrpull® Vu € LP(A, tr)

kezd kezd

is not convergent in general and hence ), ;47 ® e, does not define an element
in A ® k. For example, let r be the single-supported unitary element U € A for

some j € Z% so that ry, = U*1J) is a unitary for each k € Z¢ and hence

D lral® =) flul® = oo

kezZd kezd

However, as we shall see, in many situations there exist Evans-Hudson flows, even
though the corresponding Hudson-Parthasarathy equations (3.0. 4) do not admit
solution.

There are some cases when an Evans-Hudson flow can be seen to be implemented

by a solution of a Hudson-Parthasarathy equation.

Hudson-Parthasarathy type flow

Here we shall construct HP type flow for the QDS associated with self adjoint element
rin A, using the results in [30, 32]. This method is not applicable for CP semigroup
associate with non self adjoint elements of A. Let us recall some results from [30, 32]
which will be needed in the sequel.

Let Z be the collection of L = {L} : p,v > 0}, where L}, € B(hg) and for each v,3 a
constant C, depending upon L and v such that }_ -, | Lbul? < Cy|jul|?, Yu € ho,
furthermore, for any p,v > 0, L + (L4)* + Y551 (L) * L = 0. We define I={L=
{1y, = (LY)"}: L e T}
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Theorem 3.0.1. [30] Let L = {L} : u,v > 0} be a family of linear operator in hy
such that:

1. LY is the generator of a strongly continuous contractive semigroup with D as a
core and D C D(LY),Vu, v,

2. there exists a sequence L(n) € TN Z,n>1, so that for any uw € D

lim LY(n)u = Lbu,Vu,v.

n—oo

Then there exists a unique strongly continuous contractive solution Vi of the gsde

dVi = ViLLdAL; Vo= 1. (3.0. 5)
%

Moreover, if By = BA =0, for some X > 0, where By is
{X € B(ho)™ : (u, XLiv) + (Lju, Xv) + > (L{u, XLIv) = \u, Xv), Yu,v € D}
kezd

and BA is similarly defined corresponding to L, then V is a unitary process.
Next result give the sufficient condition for By = 3y = 0.

Theorem 3.0.2. [32] Let (Y, D) be the generator of a strongly continuous contractive
semigroup on hg and Sk : k > 1 be a family of densly define operator on hg such
that:
1. D C D(Sk),Vk and
2. (u, Yu) + (Yu,u) + 3351 (Sku, Spu) < 0,Vu € D.
Then the map L on B(hg) formally define by

Flx) = ;gz:d@skxsk — SSka — SkSk)
1s well define on a suitable domain and its closure generates a contractive QDS P;
on B(hy). Moreover, the following statements are equivalent:

(a). The semigroup Py is conservative.

(b). For any fized A > 0, the set

{x € B(ho)" : (u,2Yv) + (Yu,zv) + Z (Sku, zSKv) = Nu, zv),Vu,v € DY)}
kezd

contains only trivial element 0 € B(hy).
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Now let us consider QDS 7; on UHF C*-algebra A associated with self adjoint

element r € A. Here the generator L satisfies

L) = gzjd[rk, [k, 2] Va € C(A).
The UHF C*-algebra A is isometrically embedded as a dense subspace in the GNS
Hilbert space hg = L?(A, tr), with canonical embedding i. For any fixed @ and b € A
it is clear that Hi(amb)Hio < ||al/?||b||*tr (z* ), Vz € A. Thus for any k € Z<, the map
S on A defined by Si(i(z)) = i([rk, z]), Vo € A, extends uniquely to a bounded self

adjoint operator on hg. We define a family of operator L = {L}} given by

1
L= =5 > SiSe, for (w,v)=(0,0)
kezd
= —8;, for (M7 V) = (170)

= Sja for ()u’ V) = (07])

= 0 otherwise .

Theorem 3.0.3. Let L be describe as above, then there exists unique unitary valued

process on hg @ I, satisfying the HP type qsde
dVi= Y ViLLdAL V=1, (3.0. 6)
w,vE€ZAI{0}

Proof. From the definition of L we have D := i(Aj;.) C D(LY),Vu,v. Now let us

consider the sequence L(n) given by

Lin) = 5 3 kS, for (mv) = (0,0)

|k|<n
=—5;, for (u,v)=(3,0):i| <n

= §j,for (u,v) =(0,5) : [jl <n

= 0 otherwise .

It is clear that L(n) = {L4(n)} and L(n) = {L4(n)} belong to the class Z, and for
x € Ajoe one has lim,, oo Ly (n)(i(x)) = Ly (i(x)). Also, we note that

L(i(x)) = —% S SSk(i(x)) = i(L(x)) Y € Ape.
0#£kezZd
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From the proof of Theorem 2.1.1, it follows that Ran(L)—p) is dense in the subspace
i(A) and hence dense in hg, and ||(LJ —u) 7| < %,Vu > 0. So LY is the generator of
strongly continuous contractive semigroup on hgy. Thus by Theorem 3.0.1, it follows
that there exists unique contraction valued solution V; for the gsde (3.0. 6).
For any x € C'(A), we define a map £(x) by

1

(L(@))(i(y)) = 5 Y (2858 — SpSpx — 25,54 (i(y)), Vy € A.
kezd

Clearly £(z) extends uniquely to a bounded linear operator on hy and satisfies

(L(2))(i(y)) = i(L(z)y), Yy € A,

Since 1 € CY(A) C D(L), closure of £ generates a contractive conservative CP
semigroup Q; on B(hy). Now applying Theorem 3.0.2, it follows that 3y = {0}. By a
similar argument it can be shown that [y = {0} and hence the solution V; for above

gsde (3.0. 6) is a unitary value adapted process. O

Thus n; given by n.(z) = Vi*(z @ 1) V4, for x € A satisfies EH type flow equation,

dne(x) =Y m([Sk 2 dar(t) + Y m([x, S])dal,(t) + (L (z))dt,
jezZd jezd
no(z) =z ® 1.

3.1 EH dilation

Here we restrict ourselves to QDS T; associated with element r € A such that
translate rj, for different k € Z¢ are commuting. Let a,b € Zx be fixed and W =
UVt € My(C). We consider the following representation of the infinite product
group G’ := [[,ez4Zn, given by

)%

g >g-W, = HjeZdW(j ’, where g = (a;).

Foranyye€ A, y = deg cqgUy and for n > 1 we define

In(y) = legllgl™

geg
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Now we consider r € A, r =3 o cgW, such that 37 o [cgl l9]* < oc. It is clear
that J1(r) = > cg legl[g] < oo. We note that any o € A can be written as

T = Zheg cp Uy, with complex coefficients ¢, satisfying ¢, = 0 for all A such that
supp(h) () supp(z) is empty. So

Un(x) = Z len] [h]™" < oo for n > 1,
heg

and it is clear that

On(e) < Jo S fenl < €
heg
where ¢, = [2[(1 + ), cg |enl)- Let us consider the formal Lindbladian £ associated

with the element r,

L=> L

kezd
where Li(x) = %(5;2(@7’;@ + 170k (x). Now consider the conservative CP semigroup
T; with generator £. In order to obtain EH dilation for CP semigroup 7; we solve
the gsde 3.0. 3 by employing iteration method. For this we need some estimate on
product of structure maps. First let us fix some notations. For n > 1, we denote
the set of integers {1,2,---n} by I, and for 1 < p <n, P={l;,ly---1,} C I, with
li <lp <--- <1, , we define a map from the n-fold Cartesian product of Z4 to that

of p copies of Z% by
k(1) = (k1,ko - kp) — k(P) := (ki , ki, - ki)

and similarly, £(P) := (g1, €1, - - €1,) for a vector £(I,,) = (€1, €2, - - &,) in the n-fold
Cartesian product of {—1,0,1}.

For brevity of notations, we write £(P) = ¢ € {—1,0,1} to mean that all g, = ¢
and denote k(I,) and £(I,) by k(n) and £(n) respectively. Setting 05 = 6;2,Ek and
Sx depending upon € = —1,0 and 1 respectively, we write R(k) = 74,7k, - - - Tk, and
§(k,2) = 5Zi - 0p) for any k = (ki, kg ---kp) and & = (e1,e2- - &p).

Now we have the following useful Lemma,

Lemma 3.1.1. Let r,x and constant c, be as above. Then

(i) For any n > 1,

> I8(k(n), &) (@)I| < (201(r)er)" Va € Atge
k(n)
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where £(n) is such that e # 0, V 1 € I,,.
(ii) For any n > 1 and k(n),

where py(n) is such that & py(P) = —1 and & p)(P°) = 1.
(iii) For any n > 1,p < n,P C I, and &(n) such that &(P) contains all those

components equal to 0, we have,

D lI6(k(n), 2(m) (@)I| < I[P (201 (r)ex)"

< (4 IrD™ (201 (r)ex)™

(iv) Let mi,mo > 1; 2,y € Ape and &(mq),&"(mg) be two fized tuples. Then for

n > 1 and &(n) as in (iii), we have,

ST 00k, SO (1), & () @) - (K (ma). & (m2)) (9}
k(n),k' (m1) k" (mz)
<2 (L ) (203 () )

where ¢z = maz{cy,cy}.

Proof. (1) As r* is again of the same form as r, it is enough to observe the following

> Mk [re ] -1 < (291(r)ea)” Vo € Apge -
En, k1

In order to prove this let us consider
LHS = ) Yo legl - legl lenl | e, W, - [, Woy Unl] -+ 11l-
kn, k1 gn,-g1€G;hegG

We note that for any two commuting elements A, B in A, [4, [B,z]] = [B, [A,z]].

Thus, for the commutator 14, Wy, , - - [Tk, Wy, , Up]] - - - | to be nonzero, it is necessary
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to have (supp(g;) + ki) () supp(h) # ¢ for each i = 1,2, --n. Clearly the number of

choices of such k; € Z< is at most |g;| - |h|. Thus we get,

> ks [ al] -1
-

< > lcg, |-+ leg llenl|gnl - - - [g1]|R]"2"
gn,-g1€GhEG
< (299(r)eg)™.

k

(ii) The proof is by induction. For any k € Z¢ we have,

1 ,
Li(@) =5 Y L(@)re + ridu(x),
kezd

so it is trivially true for n = 1. Let us assume it to be true for some m > 1 and for

any kpy1 € Z4 consider Ly, . Ly, --- Lk, (z). By applying the statement for n = m

m—+1

we get,

Ekm+1£km e Elﬁ (:E)
= g X I (RGP SR m), <y () () ROE(P)

p=0,1---m PCIL,:|P|=p
+ o1 Ok {R(K(P)) 76 (

Paull
=
2
o
.

3
SN—
N—
—~

=
S~—
=

ol
=
=
=

Since ri’s are commuting with each other, the above expression becomes

g O S RGPS, S(k(m), () () (1) ROE(P) .,

p=0,1--m PCI,:|P|=p
1y ROE(P)) b1, (R (), &y (m)) () R(E(P))]

_ 273“ 3 ST R(P)) S(k(m + 1), &(p) (m + 1)) (2) R(E(P)).

p=0,1--m+1 PCI,,4+1:|P|=p

(iii) By simple application of (ii),
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where £q, p)(n) is defined to be the map from the n-fold Cartesian product of

{=1,0,1} toitself, given by &(n) + &g p)(n) such that &g py(Q) = —1,8Q,p)(P\ Q) =
1 and

g,p)(In\ P) =&(I, \ P). Now (iii) follows from (i).

(iv) By (3.1. 1) we have,

LHS

> > Y IRGRP\Q)

k(n),k' (m1),k" (m2) 4=0,1+P QCP:|Q|=q

3(k(n),&(q,py(n)) [6(K'(m1), & (m1))(x) - 6(K" (m2), " (m2))(y)] R(E@Q))]I-

Now applying the Leibnitz rule, it can be seen to be less than or equal to

D YD DD DD DD S

k(n),k' (m1),k"” (ma) ¢=0,1--p QCP:|Q|=q 1=0,1--n LCIn:|L|=l
16(k(L), &(@,p)(L)3(K' (m1), &' (m1)) ()]
10(R(L), (@) (LG (K" (m2), " (m2)) ()]

I

Using (iii), we obtain,

LHS

A+ D" p! n! I+ z
< — _ — (1 m1 (9.9 L)
- (P—a)'q z_%;.n oI R0 (r)e)

q=0,1---p
(L (IR (201 (r)ey )

2L )P (201 (r) g )R,
O

Now we are in a position to prove the following result about existence of an Evans-

Hudson flow for QDS T; associated with the element r € A discussed above.

Theorem 3.1.2. (a) Fort > 0, there exists a unique solution j; of the gsde,

djs(x) = Y Gi(dlw)day(t) + Y je(0jw)dal(t) + ji(La)dt, (3.1. 2)
jEZA j€ZA4

Jo(z) =2z ®1p, Vo € Ay,
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such that j,(1) =1, Vt > 0.
(b) For x,y € Ajpe and u,v € hg, f,g € C,

(ue(f), ji(zy)ve(g)) = (ie(z*)ue(f), ji(y)ve(g)). (3.1. 3)

(¢c) ji extends uniquely to a unital C*-homomorphism from A into A" @ B(T).

Proof. We note first that Aj.. is a dense *-subalgebra of A.

(a) As usual, we solve the gsde by iteration. For ¢ty > 0,¢ < tp and = € Ay, we set
jgo)(az) =z ® 1p and for n > 1,

(@) =2 ® 1

/ SV @) dag(s) + 3 IS ()dal(s) + 50D (L@)ds. (3.1, 4)

jez jeza

Then for u € hg and f € C, we can show by induction, that

15 () — 570 (@) Yue(f)]

(tocy)""?
< Hue MY ek (@), (3.1. 5)
\/> E(n) &(n)

where ¢ = 2¢7/ () (1 || f||2.), with v(to) = Oto(l +|1£(s)|?)ds. For n = 1, by the

basic estimate of quantum stochastic integral [33],

1M (@) = 59 (2) yue(f >||2
| / S 6t (@)daj(s) + 3 8(x)dal(s) + L(w)dshue( f)]?

jezZd jezd
< 267 le(f)) / 122 1@yl + 32 165(@)ul* + I£@)ul*H1+ £ ($)]])*d
JjEZ jezd
< crtolle( NP 105 @)ull + 116 ()l + 15 ()ull}>.
JjEZA

Thus (3.1. 5) is true for n = 1. Inductively assuming the estimate for some m > 1,
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we have by the same argument as above,

g @) — 5 (@ >}ue< >!!2

T / SO 61 @) — 50 (68 ()] da (5m)
jezd
3L 6; () — 500 (85(2))da (5m)
jezd
(L)) — D (L)) ds bue( f) 2
< 207(0) / (37 16 68 @) — 5606 @) ue( )]
JEZd
57 (E5() — 5 (55 we(£) 2
jEZA
I L)) — im 1)(£(x))]ue(f)||2}(1+||f(sm)||2)dsm
< o [ 1 1686 @) — a6 @uel )]
JEZA
5T (85() — 5070 (35()) ue £ |
jezd

HI G (L)) = 35V (L (@)ue(f)I]Pdsm.

Now applying (3.1. 5) for n = m, we get the required estimate for n = m + 1 and

furthermore by the estimate of Lemma 3.1.1 (iii),

c n/2
15 () — 57D (@) Yue(f)] < 3" (toj% lue ()L + (7)™ (L + 201 (r)es)™

Thus it follows that the sequence {jt(n) (x)ue(f)} is Cauchy. We define j;(x)ue(f) to
be lim, oo je™ue(f), that is

ji(xyue(f) = zu@e(f) + > (7" (x) - ji" V() bue(f) (3.1. 6)

n>1

and one has

RYY
e )] < ue )l el + 3= 3" =1 )1+ 203 (0)ea)). (31, 7)
n>1 :

Uniqueness follows by setting,

-/

a(x) = ji(z) — ji(x)
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and observing

da(z) = > qu(0}(x))da(t) + Y (s i(t) + @ (L(x))dt, go(x) = 0.

jeza jeza

Exactly similar estimate as above shows that, for all n > 1,

lae(@yue(f)] < “0“} e ()] ZZ 16(k @)

k(n

Since by Lemma 3.1.1(iii) the sum grows as n-th power, ¢;(x) = 0 Vz € Ajo., showing
the uniqueness of the solution. As 1 € Aj. with Lx(1) = 5,1(1) = 0r(1) = 0 it follows
from the gsde (3.1. 2) that j;(1) = 1.

(b) For ue(f),ve(g) € h® E(C) and x,y € Ajye, we have, by induction,

G (2% yue( ), ve(g)) = (ue(f), 1™ (x)ve(9)).
Now as n tends to oo, we get
(e )ue(f), velg)) = (ue(f), ju(x)ve(9)).
We define
Pz, y) = (ue(f), ji(zy)ve(g)) — (je(z")ue(f), jr(y)ve(g)).

Setting (Gu(1), (1)) = (O,id), (id, o), (8},id), (id,6)), (Ly,id), (id,Ly) and
(31, 0)

for [ =1,2,---7 respectively, one has

t Sn—1 S1
@uo ) <y D // /
Tn, 1 0 JO 0

Z Dy (G (In) -+ Gy (1) Mk, (Tn) -+ - 1y (L) y)|diso - - dsp—y Vo = 1, (3.1. 8)
kn’

where ¢y, = (14+t0"?)(||flloo + ll9]lo)- By the quantum Ito formula and cocyle
properties of structure operators, i.e. L(zy) = xL(y) + L(x)y + Y _jcz4 5£($)6k(y),
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we have,

Dy (z,y)

S DCXCIERER NERAO)TACEE
k

+ /0 SO {@4(61(2),9) + @s(, 5L(1)) 1k (5)ds
k

t
+/0 D {Ds(Lk(),y) + (@, Li(y)) + Ps(3L(x), r(y)) Hds,
k
which gives the estimate for n =1 :

el ey [ S 0G0, n0w)s 3.1 9)
1=1-770 "k
If we now assume (3.1. 8) for some m > 1, an application of (3.1. 9) gives the
required estimate for n = m + 1.
At this point we note the following, which can be verified easily by (3.1. 6), (3.1.
7) and Lemma 3.1.1 (iv).
(1) For any n-tuple (I1,la---1,) in {1,2---7}
D 155 T -+ Gy (1) () - 1 (Bn) - 111y (1) () v ()|

k1

< Coag{(L+ 7D (1 + 201 (r)ez y) " lve(g) |, (3.1. 10)
where for any g € C

o (toc m/2 .
Coa =1+ 3 3 L (14 1+ 201
m>1 :

(2) For any s < tg, p <n and &(p),

> 13s{0(E(p), &(p)) (y) Yve(g)l
k(p)

< Coayl(1+Ir])(X +201(r)cey) } " lve(g)]. (3.1. 11)
(3) Since ¥, (x) = ¥p(x*) and {6(k(p),2(p))(z)}* can also be written as 6(k(p), &' (p))(x*)

for some &'(p), we have

> {8 (k(p), (p)) ()} ue(f)]

k(p)
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< Crag{(L+ DL + 291 (r)cay) " lue(F)]- (3.1. 12)

For any fixed n-tuple (I1,---1y), it is easy to observe from the definition of ®4 that

D (G (In) -+ G (1), 1, () = 1 (1))
k(n)

< > llueCh)I - s (G (Bn) -+ Goy (1) - 1, (1) == 1y (11 )y )ve ()|

En,...k1

F15s{ (G ) -+ Gy (1) ()" Y ()] - M1 (O (In) < - 1k (1) (1) J0e(9) -

The estimates (3.1. 10), (3.1. 11) and (3.1. 12) yield :

D (G (In) -+ Gy (1), M, (In) -+ -y (1))

k(n)
<L+ 1P (L+ 201 () eay) )" ue ()] - [lve(9)|(Coaiy + Croy Couny)
= C{(L+[I7[)(L + 201 (r)eay) ",

with C' = [lue(f)[| - [[ve(9)(Cyay + CrayCory)-
Now by (3.1. 8),

@ (2, )| < C

Tt n
Tl 11 o)1+ 201 (e}, v 21,

which implies ®(z,y) = 0.
(c) Let £ =" cjuje(f;) be a vector in the algebraic tensor product of hy and £(C).
Ify € Afgc, y is actually an N¥ x NI-dim positive matrix and hence it admits a

unique square root \/y € Al . For any z € A} | setting y = \/[|z[1 — x so that

loc?

y € A | we get

loc?

1 )EN? = Ge()é, 3 (9)€)
= ac;(i(y)ue(f:), ji(y)uje(f;))
=Y aci(we(fi), ji([l[1 — x)uze(f;)) (by (b))
= [l - €)% = (& Ge()8),

where we have used the fact that 1 € Aj,. and j (1) = 1. Now let € Ay be
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arbitrary and applying the above for z*z as well as (b) we get,

7e(2)€11? = (je(@)€, jie(2)€)
=" aici(Gu(x)uie( fi), ji()uje(f;))
= Z@Cj (uie fi),jt(x*l’)uje(fj»
= (& Je(z"x)E)
< lz*a| - [1€1* = [l=)® - €)1
or [[je(x)&ll < [l - I€]]-

This inequality obviously extends to all £ € hy ® I". Noting that j;(1) = 1, V¢, we
get
[17:(@)] < llz]| and |lj.] = 1.

Thus j; extends uniquely to a unital C*-homomorphism satisfying the gsde (3.1. 2)
and hence is an Evans-Hudson flow on A with T; as its expectation semigroup. That

the range of j; is in A” @ B(T") is clear from the construction of j;. O

Now let us recall the the ergodic QDS Ttd) associated with a partial state ¢q
discussed in Chapter-2. It may be noted that the generator £? of Tt‘b satisfies

=35 Z + L™ [, L), V2 € Ape.
keZd m=1

We have also obtained an Evans-Hudson type dilation for these QDS T, t¢.

Theorem 3.1.3. Let Td) be the QDS associated with a partial state ¢o. Then :
(a) For each k € Z% and t > 0 there exists a unique solution nt for the gsde,

N2 N2
) = P (S )+l (Sl E )+ (ot
m=1 m=1

(3.1. 13)
no(zwy) =z ® 1r, Vg € Ay,

as a unital x-homomorphism from Ay, into Ax, @ B(I'). Moreover, for different k and

K, o (k) w

and ;" commute in the sense that, nik) (z()) and n, )(ack/) commute for

every xy € Ay and xp € Ay,
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(b) There exists a unique unital x-homomorphism n; from Ao into A” Q B(T') such
that it coincide with ngk) on Ay,

(c) m extends uniquely as a unital C*-homomorphism from A into A" @ B(T).

Proof. (a) For any k € Z¢ and t > 0 let us consider the gsde (3.1. 13). Here we
have only finitely many nontrivial structure maps on the finite dimensional unital
C*-algebra Ay, satisfying the structure equation. So there exists a unique solution
n,gk) as a unital *-homomorphism from Ay, into A @ B(I"). Since for different k£ and
k' the associated structure maps commute and for any z() € Ag and gy € Ap
Ito term absent in d(nfk) (x(k))ngk,)(x(k/))), it follows that nt(k) (z(x)) and ngkl)(x(k/))
commute.

(b) For any finite A C Z¢, ¢ > 0 and simple tensor element zx = [ cpz (k) € Aa,

the map an) given by

A k
7775 )(JUA) = szeAnvE )(x(k))
is well defined from Ap to Ax @ B(T) as ngk)’s commute. Differentiating ngA) (xp)

with respect to ¢, it follows that 77§A) (zp) satisfies the gsde,

N2

M (za) = > 0™ Z ADdag(t) + 3" g™ Z A, L)) dal ()

keA m=1 keA m=1
(3.1. 14)

—H7t ZE‘%A )dt, 770 )(a:A) =x\® 1r.
keA

We now want to show

77,§A) (xy) = 771$A) (x) - nEA) (y), for simple tensor elements z,y € Ajpe.  (3.1. 15)

Since each nt(k) is unital and nt(Al) agrees with nlgA) for simple tensor elements in A\

whenever A is a finite subset of A’, it is suffices to show ( 3.1. 15) for z,y € Aj,

where A C Z is a finite set. For z = [[,cxz@) and y = [Treak) € Aa we have,

(A)(

A
Y (@y) = 0 hen @) = e @)

= [Trean @)™ W) = Teeant” @a) reans” Wa)-

Similarly
A * A *
(@) = (™ ()", (3.1. 16)
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Noting that any element x € Aj,. can be written as a linear combination of simple
tensor elements {Uy : g € G}, say o = > 5 cgUy with ¢g = 0 when supp(g) is
outside supp(z) = A, we define
A
ml@) =Y cqn” (Uy).
g€eg

For z and y € Ay, with z = Egeg cgUy and y = >, <o cnUp, such that supp(z) =
supp(y) = A,

m(y) =m( Y coenlUyUn)

g,h€g
= 3 eV WU = Y coemnt™ (Uy)nt™ (U) (by (3.1.15) )
g,heg g,heg
= 771:(Z CgUg)Ut(Z chUn)
geg heg
= () (y)-

It follows from (3.1. 16) that m(z*) = (m(x))* Vo € Ape. Thus n; is a unital
*-homomorphism from A, into A” Q) B(T).
(c) We recall that Al'gc is closed under taking square root, as already noted in the

proof of Theorem 3.1.2(c). Thus for x € Ajee, /2|21 — 2*x € A . Since n; is a

loc*

unital *-homomorphism on A,
ne(||z]|*1 — 2*x) > 0
= m(a*z) < ||z
= [lne(2*2)|| < [l
= [ne(@)]| < |l=]-

So ¢ extends uniquely as a unital C*-homomorphism from A into A" @ B(T).

3.2 Covariance of the EH flows

Let B be a C* ( or von Neumann) algebra, G be a locally compact group with an

action o on B.



3.2. Covariance of the EH flows 75

Definition 3.2.1. A QDS {T; : t > 0} on B is said to be covariant with respect to
a, if
agoTi(x) =T oay(x),Vt>0,9 € G,z € B.

Given such a covariant QDS a natural question arises whether there exists a co-
variant Evans-Hudson dilation for {7}}. The question is discussed in [6] for uniformly
continuous QDS.

In this section we shall prove that the Evans-Hudson flows constructed in the

previous section are covariant. It can be easily observed that
(5ij = Tj(sk,j and (5Tk7'j = Tj(ﬂk,j, Vj, ke Zd, (3.2. 1)
and we have the following Lemma,

Lemma 3.2.2. (i)C7;(z) = 7;L(x) Yz € Dom(L),

(11)Tym; = 17T}, i.e. Ty is covariant.
Proof. (i) We note that C!(A) is invariant under 7 and thus for x € C'(A),

L)) = 5 3 S0+ ridi(ry(e))
kezd

1 *
T2 > 70k @)k 4 0k (x)  (by 3.2.2)
kezd

1 .
=57t Dok @)y + 0k (2)}
kezd
= 7j(L(x)).
For x € Dom(L), we choose a sequence {x,} in C!(A) and an element y € A such
that y = L(x), x, converge to x and L(x,) converge to y. As 7; is an automorphism
for any j € Z%, 7j(x,) and 7;L(x,) converge to 7j(z) and 7;(y) respectively. Since
Ty, € CL(A) and L(7j(x,)) = 75L(25), We get
7j(x) € Dom(L) and L7j(x) = 1;L(x).
(ii) By (i), for x € Dom(L) and 0 < s <t we have,
d
d—Ts orjoP_y(x)=TsoLoTjoP_y(x)—TsorjoLoP_y(x)=0.
s
This implies that Tso7;0P,_¢(x) is independent of s for every j and 0 < s < ¢. Setting
s = 0 and t respectively and using the fact that 7} is bounded we get Ty 7; = 7;7;. [
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We note that j; : A — A” @ B(I'(L*(Ry,ky))), where kg = [?(Z?) with a canon-
ical basis {e}, as mentioned earlier. We define the canonical bilateral shift s by
sjer = eptj, V], k € Z¢ and let v; = I'(1 ® s;) be the second quantization of 1 ® s,
i.e. v;e(X fil.)er) = e(X fi(-)er+;). This defines a unitary representation of Z% in T'.
We set an action o = 7 ® X of Z% on A" @ B(T), where \;(y) = vjyy—; Yy € B(D).

By definition of fundamental processes ay(t) given by ay(t)e(g) = fg grx(s)ds e(g), it

can be observed that

Ajar(t)e(g) = vjar(t)y-e(g) = var)e(d_(g(), eir)er)
_ /0 (g exs3)(8)ds 2 (34, erig)en))
:/0 (9, erss)(s)ds (> (g(), errj)ersy)
= ag+;j(t)e(g).

Since (e(f), A\jar(t)e(g)) = <AjaL(t)e(f),e(g)>, it follows that

Ajag(t) = ap4;(t) and )\jaz(t) = a2+j(t). (3.2. 2)

Theorem 3.2.3. The Fvans-Hudson flow j; of the QDS T} is covariant with respect

to the actions T and o, i.e.

ojjit—j(x) = ji(x) Vo € A, t >0 and k € Z°.

Proof. For a fixed j € Z% we set j| = 0;jtT—j, Vt > 0. Using the gsde (3.1. 2) and
Lemma 3.2.2, (3.2. 1), (3.2. 2) we have for x € Ay,
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(@) — db(a)
/Zwsnmm% /Zwmnmw%>

kezd keZd

+ [ oyl a)s
/ Z 0jsT—5(0 k+j ))dag;(s / Z 05JsT—j (Ot ))dakﬂ()

kezd kezd

+/t 0jsT—;(L(x))ds
/st 5T ))da(s /ZJS (Ok(x dak, s) + /tj;(ﬁa:)ds.

kezd kezd
Since jy(z) = ojjor—j(z) = 0j(1—j(z) ® 1Ip) = & ® 1Ir = jo(x), it follows from the
uniqueness of solution of the gsde (3.1. 2) that jj(x) = ji(z) for all ¢ > 0 and
x € Ajpe. As both ji and j; are bounded maps, we have j; = j;. O

Remark 3.2.4. By similar arguments as above, the Evans-Hudson flow for the QDS
Tt¢ associated with partial state ¢g can be seen to be covariant with respect to the

same actions T and o of Z°.

3.3 Ergodicity of the EH flows

Let us recall the ergodic QDS Tt‘b associated with the partial state ¢g, for which we
have constructed an Evans-Hudson flow 7; in section 3. It may be noted that Tf has
the unique invariant state ®. We have the following result on ergodicity of n; with

respect to the weak operator topology.

Theorem 3.3.1. The Evans-Hudson flow n; of the ergodic QDS Tf’ 1s ergodic with

respect to the invariant state ®, in the sense that
n(x) — @(z) ® 1Ip weakly Vo € A.

Proof. Since n; and Ttd) are norm contractive, Aj,. is norm-dense in A, and ths(@

converges to ®(x)1 for all x € A, it is enough to show that for = € Ajpe, ni(z) —
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T (z) ® 1p — 0 weakly as t — oo. Furthermore, it suffices to show that (&1, (1(z) —
Tf(m) ®1p)&2) — 0 as t — oo, where {1, &, vary over the linear span of vectors of the
form ve(f), with f = 37, fx ® e), for some n and fi’s are in LY(R) N LA(RY).

For notational simplicity denoting the bounded derivations on A,

N2 N2
x Z[x,Ll(Cm)] and © — Z[Lém) , ]
m=1 m=1

by pr and p,t: respectively, we note that 7, satisfies the gsde

dne(@) = Y me(ph(@)dan(t) + D mepu(@)daf (1) +me(L7(@))dt, (33 1)

kezd kezd

no(x) =z ® 1p, Vo € Aje.
For t > 0,u,v € hg and f,g € L*(Ry, ko) () L*(Ry, ko) such that f =37, fe @ex
and g = E\k\gn gr ® e, and x € Ajye, we consider the following,
|(ue(f), [ne(z) — T () @ Lrve(g))|
t
= e, L [ dnT? (o)lves)

(ue(f / Y el (T (@) Yal (q) + n{p (7 () }dar(q)]ve(9))]

kezad

<3 / (e ). g {ou(TE (@) }oe(@))] 9(a)llda

|k|<n

+> / [(we( ), na ol (T2 (@) }ve(a)] || F@)lldg

|k|<n

-3 / (el ), ngLor (T2 () — B(x)) }ve(9)] l9(a)]dg
[k|<n

+ 3 [ w2 o) - @)ool 110l
[k|<n

< Jue(H)lllve(g)] D </ lon(T o (x) = (@) lll9(a)lldg

[k|<n
+ /OOO loL(T () — ‘1>(«’E))||||f(Q)||dQ> :

Since py, pL are bounded linear maps and since f,g € L'(R4,ko), the integrands

above are dominated by an integrable function M (|| f(q)||+|lg(q)||) for some constant
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M independent of ¢. Now, since HTt‘b(x) — ®(x)1|| converges to 0 as t tends to oo, by
dominated convergence theorem both the integrals in the above expression tend to

0 as t tends to co. This completes the proof. O

Remark 3.3.2. n,(z) does not converge strongly, for if it did, then x — ®(z) ® 1p
would be a homomorphism, i.e. ® would be a multiplicative non zero functional
on the UHF algebra A, contradictory to the fact that A does not have any such

functional.

Now let us look at the perturbation of the semigroup Tt‘b by the semigroup 7
associated with some single-supported element r € Ag. Recall that the generator £

of QDS T; satisfies

L) = 5 Ik alre + rile, ), Vo € CL(A)

kezd

Setting LN — r, for any real ¢, the generator £ of the perturbed QDS Tt(c)

satisfies,
LO(z) = L) + eLlx) = Y £,
kezd
with
1 N24+1 . .
£ =5 L™ + L e L] e € CH(A).
m=1

So by the same arguments used in the construction of the Evans-Hudson flow for the
unperturbed semigroup Ttd) one can obtain an Evans-Hudson flow for the perturbed

)

QDS Tt(c). Moreover, for small perturbation parameter ¢ > 0 for which 7, t(c is ergodic
by Theorem 2.2.1, the associated Evans-Hudson flow is also ergodic with respect to

the same invariant state in the sense of previous Theorem 3.3.1.



Chapter 4

Toy Fock Space and QRW
Approach to the Construction of
EH flow

In Chapter-1, quantum stochastic calculus on the symmetric Fock space I'(L?(R,, ko))
is discussed. Here following [2, 3] we shall describe a family of subspaces of I'(L?(R, ko)),
indexed by some partition of R;. The subspace will be called toy Fock space asso-
ciated with the corresponding partition. Next, using basic operators on toy Fock
spaces, quantum random walks are defined as in [23], and then strong convergence
of quantum random walks associated with bounded structure maps is proved under
suitable assumptions, extendings the result obtained in [35] in case of one dimen-
sional noise. To handle infinite dimensional noise we have used the coordinate-free

language of quantum stochastic calculus developed in [15].

4.1 Toy Fock space and basic operators

First we note that, for any n > 0, the n-fold symmetric tensor product of K =

L?(R4, ko) and their direct sum can canonically be embedded in T'(K). We also have

Lemma 4.1.1. For any partition S = (0 = tg < t1 < to---) of Ry, the Fock space

I'(K) can be viewed as the infinite tensor product (X)n21 Iy, of symmetric Fock spaces

80
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{Tn = T(Kt,_,t.)) Jn>1 with respect to the stabilizing sequence Q = {Qy, : n > 1},

where Qp = Qg 4.1 18 the vacuum vector in I'y.

Proof. The set of all exponential vectors £(K) is total in I'. By definition we know
that the set W of all vector £ = ®,>1&, such that &, is an exponential vector in I',
and &, = (Q, for all but finitely many n > 1, is total in ®n21 T'y. It is clear that any
vector in W can be written as an exponential vector of the form e(f; ) ® Qy, for
some f € K and hence W C £(K). Thus it is enough to show that for any f € K can
be approximated in norm by a sequence {n,} in W. For a given f, let us consider

the sequence vectors {1, = e(f;,)) ® Q, }. Then we have

le(f) — mall?

le(fe.)II” ll(e(fe,) — s )

le(fe I (le(fie)I” = 1)
(
(

o)

IN

leCfe)I? L fre 121 (e (fe ) 12
leCHI* 1l e, 17

Since f € K, || fi, |I* = ftio |£(s)||?ds goes to 0 as n tends to co and
limp oo [l€(f) — mn = 0. u

Let {e;} is a fixed othonormal basis of ko as mentioned earlier. For any 0 < s <t
and i > 1 we define a vector X%Svt] = % € K5 It is clear that {X%s,t]}izl is
an orthonormal family in K(,; and hence in I'(; . Here we note that the Hilbert
subspace ks ¢) of I'(; s spanned by these orthonormal vectors is canonically isomor-
phic to kg. Let us consider the subspace lAc(SJ] = C Q) Dkes,y) of I' and denote
the space l;(tnfhtn] by Rn, which is isomorphic to Ro = C@Pko. Now we are in a

position to define the toy Fock spaces.

Definition 4.1.2. The toy Fock space associated with the partition S of Ry 1is
defined to be the subspace T'(S) = @),,> k,, with respect to the stabilizing vector
Q= ®n219n-

For notational simplicity we write x?, for the vector X% . Let ' be the set of all fi-

tnflytn]
nite subsets of NxN. Thus an element A € Mis given by A = {my,i1; ma,i2; - My, in}
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for some n with 1 < my < mo---m, < co. For A € ', we associate a vector
XA:Ql®92®“'Xi}L1®"'X;212®"'an®9mn+l'“

in the toy Fock space I'(S). Clearly this family {x4 : A € M} forms an orthonormal
basis for I'(S). Let P(S) be the orthogonal projection of I'onto the toy Fock space
I'(S). Without loss of generality now onwards let us consider toy Fock spaces I'(Sy)
associated with regular partition S, = (0,h,---) for some A > 0 and denote the
orthogonal projection by Pj. The projection P} is given by

1<mi<mo--<mp i1,i2-in>1

where Py is the orthogonal projection of the symmetric Fock space I' onto the one

dimensional Hilbert space CS). A simple computation shows that, for f € K, given

Ph(Q) = Qa
1 mh )
Pof = — fi(s)ds xb,,
" m%; Vh Jan-1)n (8)ds x
1 mh ]
Pre(f)=Qo @nz1ﬁ Z Z &=y \f/ f”(s)ds Xiny

1<mi<ma--<my i1,02-in>1

and furthermore,

Pre(f) = Phe(f(k—l)h})Phe(f[ 1) Pre(fikn) and

kh 1 ® e
Phe(f[k] =Qr® Z f f’(S)dS (K 1)%@ ‘
i>1

Now we define a family of operators {N/'[k] : p,v > 0,k > 1} on the Fock space T,

given by

= Pylk] for (u,v) = (0,0),

P k] for (u,v) = (0,4),
N 1[k] for (u,v) = (0,7) @1 1)

= P for (,) = ,0)

Py[K)(A5[K]) LK) Pa[k] for (p,v) = (i,5),
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where Pylk] and P;[k] are the orthogonal projections from I'y onto the one dimen-
sional subspace spanned by Q and L2([(k — 1)h, kh], ko) respectively. We have
used the notations AL[k] for AU((k — 1)h, kh] and P,[k] for the associated toy Fock
space orthogonal projection restricted to the interval [(k — 1)h, kh]. These operators
N/'[k]’s act nontrivially only on T’y and as identity on the other components and
they leave the subspace I'(Sy) invariant. For simplicity let us denote the interval
((k — 1)h, kh] by [k] and write fi for f(x—1)nkn- From the definitions we have, for
any f € L*(Ry, ko),

NQ[Kle(f) = e(fu—1yn) e (fien ),
N}[kle(f) = \/15 /[k] fi(s)ds e( f—1)n) e fien )

. 1 e;
NilHe() = el )= el fn).
. 1 1 ® e
Nylklels) = 7 [ 15(5) ds elfu-am) Felfun)
It can easily be observed that
(NJ[E])" = N/[K]
N [KIN5[K] = 6, Nk (K] (4.1. 2)

> " SUNE(E] = Pylk).
W,V
Here we also note that

1ASIKe(fu)l = Rlle(fu)
1A% He(fu)l = | /[k] fi(s)dsllefu)

IAG [K)e(fu)lI* = <h+\/[k} fi(S)dS\Q) le(fup)II?
1A5(Kle(f)|* = [/M fj(s)\stJrl/[k] ﬁ(s)fj(S)dSP] le(fupl*-

Let us consider the subspace M of L?(R,kq), given by

M={fecL*Ri,ko): fi € CL(R}) and f; = 0 for all but finitely many i}.
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Clearly M is a dense subspace, so the algebraic tensor product hy @ E(M) is dense
inho @T'. For f € M we define a constant ¢y := > ;- sup, | f;(7)| where f/ denotes

the first derivative of the function f;. Now we have the following estimates.

Lemma 4.1.3. (a). For any f € M,k > 1,

11 = Pulk]) e(fu)ll < hlep + [|f lloo) | €(Si) -
(b). For any k>1 and f € M,

L[| {h N§[K = ASRI e(fupll < B2 (£ llsolle(fup)l
2. [{Vh NO[k] — A%k Ye( fig)Il < 2 [ £11 2 e(fpp
3. I{Vh Ni[k] — Ag[E]} e( il < 201 flloolleC i,

4 [KN; K] = Aj[R]Ye(fipg)ll < hea(f)llefi) I,
where ¢ (f)* = 2|| flI5 + ¢zl flloo-

(c). For any k> 1 and f,g € M,
1. |{egp), {h NTK] — AS[K] Y e fi))] < 12 | flloo el eCgpap) -
2. |(elgp), {vh N9K] — A[K] Ye( fi))| < b2 (| 112l e )l egpp)

3. [(e(gp), {Vh Nk — Aj[E]}e( fi)]
< 20| flloo | glloo 1% €( fi) 117 | (g 117,

4. [egm), {N;IK] — A5 (K]} e f))]
< h2ca(f, 9)lle(fin) ]| e(gpp) I, where ca(f,9) = (I £llscllglloc)? + crllglloo-

Proof. (a). We have

11 — Pu[k])e(fu)ll

= [[(Po+ 1 — Pu)e(firy) + [1 — Po— Prle(f) |l
/i) = Prfie + [ — Po — Pile(fiw)l
< N = Pafiwll + I[L = Po = Prle(fw)ll-
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85

It is clear that ||[1— Py~ Pile(fiu)|l < hllfl3lle(fx

)||- Let us consider the first term,

I~ Pafig

- 1w [ e

= X g FalE

= X [ @l = / fi(s)dsl?
- ;m/ dr\/ (fi(r (s)ds|?
< Y [ a1 - ststas?

1>1

< — dr/ hsup | fl (T ds]?
QML]HM £1(r)ds]

< c?:h?’.

This completes the proof.

(b) (1). By definitions we have
I{h NO'[K] — Ag[K]Ye( fix)l
= hlQp —e(fiw)l-
First let us estimate,
12 — e(fu)I?

= 1+ [e(fu)l* -2

= elfml® _1 < Hf[k]”2 el ful1?

A

< bl flZe(fm)l®.

So we get

120 — e(fupll < VAl flloce(fig)

and the required estimate follows.

(4.1. 3)
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(2). By definitions,
VA N0 — Aok Ye(fu)
~ /[k] £3()ds( @ — e )l

Thus required estimate follows from (4.1. 3).

(3). We have
4V Nifk] — b (k] el f) 2
= |l1w ® e — Aj[kle(fi) 17
= b+ bkl f) |2 — 2Re(lyy @ ei, AblK]e(fi))
— h+ hlle(fi) 2+ / fi(s)ds[2lle(f)I12
—2Re(AVK](Lyy @ 1), e(fi)
— b Blei)IP +1 [ fidsPle(u)? - 2
(K]

= h{fle(fu)l? — 1} +| /W fi(s)ds | le( )1

< 207 flI3 (1%

(4). Let us consider the following,

NG K] = A5 (kT e (fu) I
= [INIkKle(fu)l® + A5 [Kle(fiu) I — 2Re(Nj[k]e(fi), Aj [Kle(fix)))

- / fi(s)ds[? + (/ 1F(s)[2ds + | / FiGs dSF) el

- *Re (/[k} fi(s)ds((1py @ 61),A§[k]e(f[k])>> :
Since (AJ[k](1jy @ €:), e(fi)) = (1) @ €5), = Jiry fi(s)ds, we get

IR — AR Ye( i)
- {/ 1555 |ds+|/ T f5(5)ds Y el fy) |2—|/ f3(s)ds?

[, FE s+ / ,(5) sl 1y

/ F()ds{ / (f5(3) — £3(@)da}

h? 2HfH4 +h20foHoo)He( )\!2

IN
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(c). The estimates in (1) and (2) immediately follow from (a).

(3). From the definitions,

e(ap), IV NilK] — Ab[K]Ye(fip))]
- \/gz Jds||1 — {e(gu)s e(fiu)]

/ ‘gz<3>‘d8’1 —e () S1x)) |
(k]

In order to estimate |1—e!9%718}| | we note that for any complex number z, |1 —e?| <

IN

2|z|el?l. Thus
11— e<9[k17f[k]>‘
= 9ik]» f[k]>| |91 fim) |
= / g s))|ds elomll 17wl
< 2 /m lo(s)] 1£(s)lds el
Which gives
1 elomTil| < 2hllglloc £ oclle(gp) I lle( i) (4.1 4)

and the required estimate follows.

(4). From the definitions,

(e(gw): {IN;[k] — A%k e fix))

1 -
= h/[k gi(s fi(s )ds—/[k] 9i(s) f;(s)ds(e(gm), e(fir))
= 3 [ o / (@) — £(5) da

+/[k] gi(s ds (1 — (e(gp),e(fir)))) -

Thus we get

), {NGIk] — Ak }}e(f[k)>|

(e(on
s% / s [ \fta) — fi(9)ldg

/ 6i(9)] 1£3()1ds |1 — (e(apy) e(fu).
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Using the inequality (4.1. 4 ) the required estimate follows.
O

The toy Fock spaces I'(S},) approximate the Fock space I' in the following sense [3]:

Lemma 4.1.4. (a). The family of othogonal projections Py converges strongly to
identity operator in I' as h tends to 0.
(b). For any f € M, k> 1 and for any t > 0, setting n = [£] + 1

1. limy g [|[X05—, RNG[K] — A()]e(f)ll =0,

2. Tty [, VAN[K] — AY(D)]e()]| = 0,

3. limp_o ||[Sfq VRNG[K] — Aj(t)]e(f)]| =0,

4 T |52y Nilk] = Ad(t)]e(f)] = 0.

Proof. (a). It is enough to show that for any f € M,t >0

Lim [[(1 = Pr)e(far)ll = 0,

where n is as in part (b) of the Lemma. We have

(1= Pr)e(fum)l?

n

= D e(fu—nym) (L — Pulkl)e(fig) Pre(finnm)|I?

k=1
n

= le(fa—1ym) 12111 = PulkDe(fu) I 1 Pre finnm) |12
k=1

n

+2 Re Z«l — Ph)e(f(k_1)h])7e(f(k—l)h])>

=1
(Pre(fig)s (1 = Pulk)e(fy))| Pae(fipnnn) 1.

Here (Pne(fx)), (1 — Pu[k])e(fr))) = 0 and using Lemma 4.1.3 (a) we obtain,

11 = Pr)e(fum)l®

<Y REer + 112 eI

k=1
< th(cy + |1f13) le(f)I.
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This completes the proof.
For (p,v) = (0,0) and (0, j), convergence follows directly from Lemma 4.1.3 (b)

(b).
and for other processes it is necessary to give a better estimate. Let us write
n
> VANGIK] - Aj(t)
k=1

n

= D [VANG[E] — Aj[k]] + Af(nh,t).

k=1
Now for m > 1, setting
X = Y _[VRNG[k] = AG[K]],
k=1

we get

I VRNG[K] = Ab(D]e(H)]”
k=1
< 2{|IXnne(H)I” + |A (nh, te(£)]I*}-

It is clear that ||A{(nh,t)e(f)| tends to 0 as h — 0 and by Lemma 4.1.3(a)
||X(k_1)he(f(k_1)h]) || < C, for some constant independent of h and k. Now we consider

the first term,

| Xnne(f)]?
= Y IIVAN§[E] = Aj®)le(fu)Plle(f = full?
k=1
—2Re > (Xe—1yne(f—1yn))s e(fr-1)n)))

k=1

(e(fi), [VANG[E] — A[K]le( fu)) le(fun) I

Since || X(x—1)ne(f(k—1)n))|l is uniformly bounded in h and k, by (a.3) and (b.3) in
Lemma 4.1.3 it follows that ||[>_7_; VANG[K] — A} (t)]e(f)| goes to 0 as h — 0. By
O

a very similar argument the convergence of (7, j)-th term can be proved.
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4.2 Quantum random walk

Let A C B(hg) be a C* or von Neumann algebra. Let {#(h) : h > 0} : A —
A® B(kg) be a family of x-homomorphisms. For any x € A, it can be written as

ﬁ(h,.l?) = Zﬁﬁ(h,«f) ® ’ell >< €I/|v
TR

where the components 3/ (h) are contractive linear maps on A satisfying
o Bu(h,z*) = (B(h,x))",
o B(h,zy) = Y B (h,2)B5(h,y).

Now for any h > 0 and k > 1 we define a linear map pg(h) by
p(h)(x) = pr(h, @) := Y Bl (h,x) @ NL[k],Va € A.
w,v
It follows from the *-homomorphic property of 3(h) and the relations (4.1. 2) among
the basic operators N/'[k]’s that the map py(h) is a x-homomorphism from A to
AQ B(T';,). Here we note that the toy Fock space I'(Sy) is invariant under pg(h, z).
Now we consider the family linear maps pgh) A — AQ B(T), given as follows:

p(()h) (x) =z ® 1
h h h
(@) = P (@) = X, o)1) (B (R, ) © NE[n),

for t € ((n — 1)h,nh].

(4.2. 1)

It is clear from the definition that

P (@) = pi(h) -+ pulh)(z)

and hence pgh) is a *-homomorphic family. Clearly, pgh) leaves the toy Fock space

['(Sy) invariant. We call this family a quantum random walk in short QRW.
It is an intersting question that when such a quantum random walk converges as
h tends to 0. For any finite dimensional noise space kg, adapting the proof of strong
convergence from [35], under bounded assumption on structure maps {6} and
such that
185 (h, ) — xdl) — her+ 0l (z) || < Ch'Foe||z||, Vo € A
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for some constant C independent of x and h, it can be proved that the quantum
random walk pgh) constructed above is strongly convergent. In Chapter-5, we shall
explore the same question for the UHF model. There, we shall construct quantum
random walk associated with a QDS and discuss the convergence issues related to
dilation of the QDS.

Let us conclude this Chapter by showing, (in the next section) under suitable as-
sumptions on the x-homomorphic family {8(h) : b > 0} : A — A® B(ko), but noise
dimension is not necessarily finite, the associated quantum random walks converges

strongly. Thus it follows in particular that the limit j; is a family of *-homomorphism.

4.3 EH flow as a strong limit of Quantum random walk

Here, we shall use coordinate-free language of quantum stochastic calculus to handle
infinite dimensional noise. We first recall the basic operators on the toy Fock space in
the coordinate-free formalism [15] and then use them to prove the strong convergence
of quantum random walks under the assumption of boundedness of the structure

maps extending the result in [35]

4.3.1 Coordinate-free basic operators and Quantum random walk

Here we redefine basic operators associated with toy Fock space [3] I'(Sy) using
the fundamental processes in coordinate-free language of quantum stochastic cal-
culus, developed in [15] and obtained some estimate as in previous section. For
S € B(hg), R € B(ho,hg @ ko) and T € B(hy @ ko) let us define four basic opera-

tors as follows, for k > 1,

Nk = SRik = AR 2,
A% [K]
Nz[k] = B2 P (K],
Al == il (4.3. 1)
5 A [K]
Ni[k] = Pi[k]
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where
A§[K] = Zs((k — 1)h, kh),
A%L[K] = ap((k — 1)k, kh),
AR[K] = aly((k = 1)h, kh),
AZ[k] = Ap((k = 1)h, kh).

All these maps B(hg) > S — AL[K],

(4.3. 2)

B(ho,hg @ko) > R — A%[k], ALkl and B(hg@ko) > T +— A}[k] are linear, and
hence the maps B(hg) 3 S — NL[k], B(hg,ho@ko) > R — Nilk], N3[k] and
B(hy@®ko) > T — NH[k] are so. It is clear that the subspace I'(Sy) is invariant

under all these operators N* and their action on hg @ I" : for u € hg, f € L? (Ry, ko)

are given by

Ng[klue(fig) = Su @ Q,
2

Np[kJue(fi)) = A%]U ® fik)

1

— —— [ R (uf(s))dsy,

Vh Jig

Ny[klue(fgg) = A7[k]) Palk] firg
= (Iny ®@ 1) Tu @ P f ().

(4.3. 3)

For any S1,S2 € B(hy), R1, R2 € B(ho,hg @ ko) and T1, T, € B(hg @ ko) we observe

the following simple but useful identities, which are easy to derive.

o (NR[K])? = (Nj[K])? =0,

o Ng,[k] Ng,[k] = Ng,, [K],

N2, K] N3, [k = Nhe g, K],

NY[k] N3[k] = N3s. K,

N3[] NA[K] = N ],
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N[kl Ng[k] = Ngg(kl,

o Ni[k] N3[k] = N3g[k],

Nz?%l [£] NJQ%Q [k] = N;%R; [£],

o Ni, [k] Ni, [k] = Ni,,[K],

o NI[K]+ N§®1k0 (k] =S ® Pylk]
From (4.3. 3 ) we have

IN[klue(fi)ll = [|Sul,

INAElue(fupll < VRIR| [ull [|£]loo
(4.3. 4)

INE[KJue(f)I| < || Rul

INZ[KJue(fup)ll < VRIT|llll|f]-
Here we also note the following which can be verified easily using Lemma 1.5.12
1AT: [Klue(fu) |12
= [|(thow ) Rull*lle(f) I + | /k R*(uf(s))ds|*[le(f) %,
1] (4.3. 5)
1T [K]ue( fix)II?

= [ 1TusOPastetIP + 1 [ 56, Ty ds wel ol
For the basic operators N'’s we have the following estimates:

Lemma 4.3.1. (a). For any k> 1 and u € hy, f € M,

1. | {h N&[K] — Ab[RI ue(fu)ll < B2 (| Sull|£]lool e fiap)

2. |{Vh N[k — A} [K] ue(fup)| < 2 |IR] [l £11% ] e fup)]l
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3. I{Vh Nj[K] — AR[K] e fig)ll < 2R Rull]| flloo | e fia) I,

4. [KNZ[k] — AT (K] bue(fu) | < 2RI (ep + [1F13) el fip)l-

(b). For any k> 1 and u,v € hg, f,g € M, we have

1. [(ve(g), {h Nglk] — Ag[k]}ue(fi))|

< = [[Sull| £ lloo e fi) Il lvelgu)

o

(velgpy), {Vh NE[k] — AR[k]}ue(fi)]

< B2||R]| [ull| £11Z g0l fup) llvelgu)l

3. [(ve(g), {Vh Nj[K] — A% [k ue(fi))]

< 202||Rul| [[o[| [flloo llgllso leCfi)II* [leCap)lI?,

4 [(velgpm), {N7[k] — A7[K]}ue(fim))|

< B2 [(IF o+ ep)llgllod® ITI el N0l TSl llegp).

Proof. a.(1) It is clear from the definition that

1{h N&k] — ALk ue(fu)|l = hllSu(Qu — e(fu))|
= h||Sul||Q — e(fi)|
< B || Sull|| flloo le(fix)II-

(2) From the definitions, we have
{Vh NE[K] = ARk ue(fup)] = | /[k] R (uf(s))ds (Quy — e(fim))l
< /[k] 17 (uf (s))llds [[(Qw) — e(fw)))]

3
< h2|[R] [ulll 1% ]le(fu)ll-
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(3) We have

I{Vh NE[k] = A k] bue( f) |1
= [(1no ® 1) Ru — Ax[k]ue(fi)||”
= [[(1ny ® 1)) Rull? + | A% [k]ue(fi)?
— 2Re((1n, ® 1)) Ru, Ax[k]ue(fiy))

Now using (4.3. 5) and the definition of A% the above quantity is equal to

1(Lhy ® 1) Ruul|? + || (1o © 1) Ruul|lle(fiag) |12
+ | /[k] R*(uf(s))ds|*le(fu) 1> — 2/l (1ny ® 1) Rul®

= [[(1ho ® 1pg) Rul*[lle(fi I* = 1] + ] /[k] R*(uf(s))ds|*lle(fip I

< 202 R|P[[ul || 112 le(fu) I
(4) We have

I{N7 (k] = AT[k] ue(fu)l®
= [[(1he ® 1) T(w ® Buf ())|* + [|AT[K]ue( fix) I
— 2Re((1n, @ 1) T(u @ Py f()), A7[Klue(fi))-

By the definition of A%,

((Ing ® 1) T (u @ P f(-)), AT[k]ue(fi))
= ((1ny @ 1p)T(w @ P (), al (T} yue( fy))
= {(Iny @ 1) T(u @ Paf (), T} (ufp)))

- /[k]<T(uPh(f)(8)),T(Uf(S))) ds.
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Thus using (4.3. 5) we obtained

{NT[K] — Azlk ]}ue(f[k])ll2
/ | T (wPy(f)(s))||*ds

/ 1Tt () 2dslle( fup) 12 + | / $), Tyy) ds ue( fi)|I
~2Re / (T(uPy(f)(5)), T(uf (5)))ds
[¥]
/ 1T f () Pds(lle fu) |2 — 1) + | / o) ds ue(f)|?
IT(w® (1 - Pu)(f)(s))|ds

[k
< 212 T fllc lue(fu) 17 + T 112wl /[k] 11 = Pu)(f)(s))l[Pds

< 20| T1|| Fll 5o llue (Fu) 12 + Il [ (L = Po) (Fu) 1%
Since [|(1 — Pp)e(fi)|I* < h%cy, the required estimate follows.

(b). The estimates (1) and (2) follow directly from (a).
(3) From the definitions

(velgu), (VA NilK] — Nyli]hue( i)
= (velgp), Vi Na[EJue(fu) — (ve(giuy), A [klue(fi)))
= (ve(g), (Ino ® 1) Ru) — (AR[KJve(gp), ve(fiy))
- /W (Ru, vg(s))ds(1 — (e(gu), e(fu)))-

Thus we have obtained the required estimate,

|(ve(gp), {Vh NR[K] — AR k] ue(fx))]
< B2 Rull [lo]l £ llsollglloo I*e(fu) I lleCap 1.

4. By definition of N4 and A%

(ve(gw), {N7[k] — AT [K]}ue(fir)
= (ve(gy), Nrklue(fi))) — (ve(gp), Ap[k]ue(fi))
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= (ve(gpg): (Iny ® 1p) TP f(-))) = (ve(gp), al (1] yue( fq))

- / (vg(s), T(u(Prf)(s)))ds — / (vg(s), T(uf (5)))dste(g). e(f)).
(%] k]
- /[k] (0g(s), Tl (P — 1)f) (s)])ds
4 /[k] (vg(s), T(uf ()))ds[1 — (e(g), e(fu)))-

So we get

|(ve(gp), {N7[k] — AT [k]}ue(fix))|

(/ lvg(s !!2d8) (/ 17 [u((Ph = 1) fig ()] ds>

+/ log ()T (wf(s))llds |1 = {e(gpr), e(fiw)l

(k]

< hlwlllgllooITIwullI Pk = 1) fwl
+hllollliglloo 1T Il flloo 1T = (&), e( S ) I-

Using the estimates of ||[(Py[k] — 1) fix|l and [|1 — (e(gpx)), e(fix))) || the required esti-

mate follows. O

Remark 4.3.2. The estimates in the above Lemma will also hold if we replace
the initial Hilbert space ho by ho QT (x_1)n) and take S € B(ho@T _1)n)), R €
B(ho @ T (x—1)n), ho @ T (1) ko) and T' € B(ho @I (x—1)n @ ko)-

Quantum random walk

Let A C B(hg) be a von Neumann algebra. Let us consider the Hilbert von Neumann
module A Q) k. Suppose we are given with a family of x-homomorphisms {3(h)} >0
from A to A® B(ko). For h > 0, 5(h) can be written as
h, h,x))*
B(h,z) = fulh, ) (Bo(h, 2)) ,Vx € A, where the components (;(h)’s are
Bs(h,x)  Balh,z)
contractive maps and £1(h) € B(A),Bs(h) € B(A, AQ B(ko)) and [a(h), B3(h) €
B(A, AQkp). The x-homomorphic properties of S(h) can be translated into the

following properties of 5;(h)’s.

i ﬁl(h7x*) = (/Bl(h7$))*7
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o Ba(h,z%) = (Ba(h, x))",

o O3(h, ") = Ba(h, x),

o Bi(h,zy) = Bi(h, x)Bi(h,y) + (B2(h, )" B3(h, y),

o Ba(h, wy) = Br(h, x)(Ba(h,y))* + (Ba(h, ) Ba(h, y),
o B3(h,zy) = B3(h, x)B1(h,y) + Ba(h, x)Bs(h, y),

o Pa(h, zy) = B3(h, x)(B2(h, y))* + Ba(h, x)Ba(h, y).

We define a family of maps Pt AR EK) — AQT as follows. We subdivide the
interval [0,¢] into [k] = ((k — 1)h,kh], 1 <k < nso that t € ((n — 1)h,nh| as earlier
and set forx € A, f €K

P (ze(f)) = we(f)

(4.3. 6)
Pa (@e( 1) = Sty P 1yu NG .oy Kl ()
and P = P,
Now setting a family of linear maps pt A - AR BT, b
P (2)ue(f) = P (ze(f))u, Yu € hy we have
Py (x)ue(f) = zue(f)
(4.3.7)

pi" (@)ue(f) = pyy) (w)ue(f) = Sy N,

Pn— 1)h(ﬂz(h z)) [n]ue(f)

(h)

As per our convention P(n—1), APpear above are identified with their ampliations
(h) (h)

1 11 1 .Fork>1,1=1,2,3 and 4, N k

Pln—1)n @ liy as well as pi.” 4y, @ 1p(k,). For an PEZ) i z))[ ]

are defined in terms of

Al k], A?

P 1 (B1 (k) o

k], A? k
(p(k) 1)h®1k0)(/82(h7x))[ ]7 (pEZ) 1)h®1k0)(ﬁ3(h’m))[ ]

and A? [k] where, for example A?
vl 1)h®ls<k0))(ﬁ4(hﬂf)) (Pr1yn®Lig) (B2 (h.x))

[k] with initial Hilbert space ho @ I (1—1)s)-

[k] carries the

meaning of a'
& OL AL | @l (Baha))
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For notational simplicity, for any bounded *-preserving map

. ay(h,z) (ag(h,x))*
a:A— AR Bk, afz)= [ :
X Bko). ) (a?,(h,x) ) )

we write N,z (k] for S Ncl”(h o[kl and Ay 1) [K] for Zl 1 al(hx [k]. Now for

each k > 1 defining a linear map pi(h,z) = Nﬂ ha) k), p h can be written as p(h) =

p1(h) - - pn(h). By the properties of the family {3;(h)} and {N'[k]}, each py(h) is a

*-homomorphism and hence pgh) is so.

Lemma 4.3.3. For anyt > 0,t € ((n — 1)h,nh| for somen > 1 and x € A,u € hy
and f € K

P (we(f))u = zue(f) + > P 1 Naha) - [Kle(f)u+ F(h,z,u, f), (43.8)
=1

x>

[ bi(x) (ba(2)) —z®1s an
where b(z) = ba(e)  bale) ) =xr®1; and

F(hyz,u, f) == 1_ 173(]}; 1)h(.’IJ(1F — Pylk])e(f))u. Moreover, for any f € M
IF(h, z,u, £)|? < hoe(f, )|z (lull, (4.3.9)

where c(f,t) = 2t(cs + || flloo)lle(F)]-

Proof. Since for any k > 1,
Nb(ﬂf ZNél Nl[k] N;l@lk [k]=$®Ph[/€],

We get

= zue(f)+ Z(P,EZ) - P((Q),l)h)(xe(f))u

=1
= zue(f)+ Z P((Z)_l)hNB(h,m)—b(z) [kle(f)u
k=1

P © 1r — Ny [B]e(f)u
k=1

= zue(f) + P4 1, Natha) b Kle(F)u+ F(h,z,u, ).
k=1
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In order to obtained (4.3. 9) let us consider the following. For any 1 < m < n
setting Z, =Y ;- pEle)h(x)(l — Pylk]), we have

m h
1 Zmue(Frn)ll < S0y P01 @ue( Famny) Il 11 = PalkDe(fup) e fnamn)

Now using Lemma 4.1.3(a) and the fact that pg;l)’s are homomorphisms,

| Zmue(fmm)l

<D hleg+ If o)l l[ue(frmm)]

< t(cq + [[flloo) Izl lue(frn)l-

By (1.5. 4 ) we have
||F(h z,u, )|

= Z ([ - 121 = PulkDe(fupl® le( )1

n

+2Re > (Zi-yue( fnyn) D1y (@) we( fmnym)
k=1

(e(fi)), (1 — PalkDe(fu)) lle(fun)l?
H35||2Hue(f(k71)h])HQ||(1 — PulkDe(fu)ll? lle(fun)I?

?T‘

ZHZk: 1we(fi—v)ll 1zl [lue(fr—1ym)
k=1

1L — PulkDe(fupll? lleCfuwn)II.
Using the uniform bound for || Z;_jue(f(x—1)n)|| and Lemma 4.1.3(a) the required

estimate follows. O

(h)

By above Lemma and the definition p, ’ we have

P (we(1)u = pi" (w)ue(f) = wue(f)

+)> N () —b(ay 1w () + F(h,z,u, f) (4.3. 10)

4.3.2 Strong convergence of Quantum random walk: with bounded

structure maps

Here, we shall prove the strong convergence of quantum random walk pgh) extend-

ing the ideas in [35], where the strong convergence was obtained under bounded
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assumption on structure maps in one dimensional noise situation.
Let T; be a uniformly continuous conservative QDS on von Neumann algebra A

with the generator £. Then by Theorem 1.5.14 and Lemma 1.5.15 (for detail see
15)):

(i) There exists a Hilbert space ko and structure maps (£, d,0) satisfying the hy-
potheses (S1), (S2) and (S3).

01 (62(-))* L ot .
(ii)The map © = 1 (80) = : A — AR B(ko) is a bounded
93 94 0 o

CCP map with the structure (1.5. 18)
0(z) =V (@@ I )W+ W@l )+ (@l )W Ve e A

where V,W € B(hg ® ko), and the estimate (1.5. 19).

(iii) Let 7 > 0 be fixed. There exists a unique solution J; of the equation,
t
Jy =1idagr +/ Jsho(ds), 0<t<T (4.3. 11)
0

(here we have written Ag(ds) for Aél (ds) + A§3 (ds) + Ags(ds) + A34(ds))

as a regular adapted process mapping A &) £(C) into AQT" and satisfies

Sup |1 Je(z @ e(f))ull < C"(NHI(z @ Lry 20,710 Erull,

where f € C, E; € B(hg,hg @ T (L*([0,7],H))), C'(f) is some constant and
It (L2([0,7],H)) is the free Fock space over L([0, 7], H).

For m > 0, let us consider the ampliation

O(m) A®B(1A<g@) — A®B(f<g@)®8(l§0) of the map © given by

Oy (X) = Q2 (@ @ id,, (RS@)(X)) Qm (4.3. 12)

where @, : ho Q) R(@ X ko — hy (03] ko X l;é)@ is the unitary operator which inter-
changes the second and third tensor components. From the structure (1.5. 18) of

the map ©,

O (X) = Qi (V* & 1,@)Qm(X © 14, )0 (V © 1,@)Qn
FQ(W 9 1,@)Qn(X 1) + (X © 1, JO5 (W © L,@) Qo
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For ¢ € hy@kP Qko,
1© e (X)¢I2 <3 [HVIIQII(X & 1) (V & L,@)Qnt?
HIWIRIX © 1 )2 + (X © 14, )Qn(W* @ 11;0@>me\2] .
Setting
Dt = V3 [uvucz:;(v 8 1,0)Qné & W ® Q" © 11;(@)%5] ,
D € B(ho®@kD ®ko, ho@kE @) (where H = ko & ko @ ko as earlier) and
1©m (X)E] < (X © 1) D | ¥X € AQBED). (4.3. 13)

Thus [|©n)ll < [|Dmll, by definition ||Dy[* < 3(||V[[* + [W]?),¥m > 0 and
hence © can be extend as a map €P,,>o O(m) from A® BT (ko)) into itself with
1 B,>0 ©myll < 3(IV[* + [[W]]), we denote this map by same symbol ©.
For any fixed m > 0 let us look at the following gsde on A Q) B (f{é@ )QT

t
Nt = sz®B(R@)®F —i—/o Nm,sNe(ds),0 <t <71 (4.3. 14)
Since we have the estimate, for any X € A@B(f{(@), Eehy @ Ré@ R ko
1O(X)EN = 18 ¢m) (X)EN < [[(X @ 1) D,

by a simple adaptation of the proof of Theorem 1.5.19, it can be shown that

(i) the gsde (4.3. 14) admit a unique solution 7,,; as an adapted regular process
mapping A® BkD) @ £(C) into AQ BED) Q.

(ii) 7, satisfies the estimate

Sup [0t (X @ e()E]] < C(NHIIX @ Iry 22 (0.7,1)) ErEll, (4.3. 15)

where f € C and C'(f) is some constant. The operator E, appears above is an
element of

B(hy @ l;é)@, hy ® R()@ QR T(L3([0,7],H))), define as follows:

E ¢ = PN,

n>0
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where B € B(hy ®Rg@, hy ®R(@ R (L*(Jo, T],H))@) given by, for £ € hy ®R()®

(EQ)&)(S) =D(® f(s)|]f;](s)|\) and iteratively
(BME) (1,52, 50) = (Dm® 1, (01705 )9n
{(BUDu) (s, 50) @ fs1)]| Fy(s1)]1}

(0 ho@KP @ L2(0.7, 1) @ko — ho QkL @k @ L2((0,7), 7% "
is the unitary operator which interchanges the third and fourth tensor components).
It is clear that J; © idy @ (= T (Jt @ idy (@) T AR BEPY® () -
ARQBED)® T, where T h0®k QT — h0®r®k@)
satisfies the gsde (4.3. 14) and hence 1y, = J; ® de (R(@)' By definition of E,, it
can be easily seen that ||E.| uniformly bounded for m > 0 and hence the estimate
(4.3. 15) allow us to extend {J;} as a regular adapted process {€D,,,~ Jt ® id, @ }
mapping A& BT (ko)) ® £(C) into AR B(Ig (ko)) @T', we denote this famlly by
same symbol J;. For a given f € C this J; satisfies

17:(Xe(Hel < DIIXg]l. VX € AR) B(Tt(ko)) and & € ho (X) s (ko))
(4.3. 16)
for some constant D’ independent of X and &.

To obtain the *-homomorphic property of the family j; : A — AQ) B(T")
(je(x)ue(f) := Je(xe(f))u) we shall prove that the {j;} is a strong limit of a family
of quantum random walks {pgh) : h > 0} associated with a family g(h) : A —
A® B(kg) of x-homomorphism under the following assumption on {3(h) : h > 0}.
Here first we note that since each $(h) is a *-homomorphism from A into A& B(ko),
as © it can be extend as a bounded map from A& B(I'g (ko)) into itself.

Assumption:

e Al. The family of linear maps E(h) : A — A® B(ko) given by, for z € A
Bha) | B e —hai@)] A (Ba(h,2) — VRG(@)"
’ h=2(Bs(h,x) — VRO3(x)] B [Ba(h,z) — 2 ® Ly, — Oa(z)] |

is uniformly norm bounded, also as maps from A &) B(I'g (ko)) into itself, have

uniform norm bound i.e. ||[E(h)| < M, for some constant M independent of h.
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In particular, it follows from assumption (A1) that for any [

161, X) — bi(X) — h0,(X)]| < MIX||h=, VX € A @BES) (43, 17)
where ¢1 = 1,69 = e3 = % and g4 = 0.
Here it may be noted that one can find a x-homomorphic family {3(h)},~o with

assumption Al starting from the generator of a uniformly continuous QDS T} on a

von Neumann algebra A, for example with generator £ satisfying
1 1
L(z) =R (z® lk,)R — §R*Ra: — ixR*R, Ve A (4.3. 18)
for some Hilbert space ko and R € B(hg, ho & ko).

Theorem 4.3.4. Let L be given by (4.3. 18). Then there ezists a x-homomorphic
family {B(h)} >0 with assumption Al.

0 0 * L St
Proof. Here the map © is given by O(z) = i(z) (6a() = () (z)
O3(x)  O4(x) d(z) o(x)
Vo € A, where §(z) = (z ® 1y, )R — R, 67 (z) = (6(2*))" = R*(z ® 1),) — *R* and
~ 0o —R* N ~
o = 0. Setting R = from hy @ ko to itself. It is clear that R is a
R 0

bounded skew symmetric operator thus it generate a one parameter unitary group
{etﬁ”}. For h > 0, we consider the unitary operator U(h) = eVhE which can be

written as | CSYHED SVAD(ETN D) = sin(VEIR) (AR and

VhRD(h)  cos(vh|R*|)

|R|, |R*| denote the positive square root of R*R and RR* respectively. It can easily
be observed that
h
| cos(VR|R]) — 1n, + §|R|2|| < 1?||R|*,
| cos(Vh|R]) = Ln, || < hI|R|,
hR*|) -1 < h||R|?

Jcos(VAIR']) ~ Tngetall < BRI -

ID(h) = 1n, || < AR,

[ cos(VRIR])|| < 1,

ID(R)|| < 1.
Now we define a *-homomorphism (k) from A to A® B(ko) implemented by the
unitary U(h), i.e. for 2 € A, B(h,z) := B(h)(z) = (U(h))"(z ® 1 )U(h). So for any
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x €A, B(h,x)= ( Bi(h,z)  (B2(h, )" )

Bs(h,z)  La(h,x)
{cos(vVh|R|)x cos(vh|R)) {—Vhcos(vVh|R|)xD(h)R*
+hD(h)R*(x @ 1i, ) RD(h)} +VhD(h)R*(z ® 1x,) cos(Vh|R*])}

{—vVhRD(h)x cos(vV'h|R|) {hRD(h)xD(h)R*

+Vhcos(VRIR|)(x © 1)) RD(R)}  + cos(VhIR|)(x @ 1i,) cos(vVh| R*|)}
We have

Bi(h,x) — x — hb1(x)
= cos(Vh|R|)z cos(Vh|R|) + hD(h)R*(z ® 1y, )RD(h)
ek (R*(m i) R — %|R|% - ;x|R|2>
= [cos(\/ﬁ]RD — 1p, + ;|R|2] x cos(Vh|R)|)
+x [cos(\/mR\) — 1p, + ;\RP} + %\R[Qm [lho — cos(\/mR\)]
+ h[D(h) — 1y |R*(z @ 1k, )RD(h) + hR*(x ® 1x,)RD(h).
By (4.3. 19) we get
1B1(h, @) — 2 — ho1(x)|| < 5R?(|R||*||2]. (4.3. 20)
By definition we have
Ba(a*) = Vhb(x*) = Bs(x) — Vhs()
=Vh [—RD(h)xcos(\/Ean + cos(Vh|R*|)(z @ 1y, ) RD(R) — (x ® 11, )R + Rg;}
=vh [—Rp(h)x[cos(\/ﬁym) ~ 1n] = RID(h) — 1n, ]z
+ cos(VAIR*[) (& @ i )RID(R) = Tny] + [cos(VAIR]) = Tng)(z @ 1) B]
Using (4.3. 19) we get
1B2(2*) = VRl ()| = ||Bs(x) — Vhb3(z)]
<Vh [HRD(h)x[cos(ﬁlR\) = Ino]l| + |R[D(h) — 1n,)2]|

I cos(VAIR"]) (@ & Tig) RID(R) = ]| + lllcos(VRIR]) = Tngeio)(@ @ Li) R
< 4h3||R|P ).
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Now let us consider f4(x) — 04(x), we have

1B4(x) — b4 ()|

= |RRD(h)zD(h)R* + cos(Vh|R*|)(z & 1), ) cos(VA|R*|) — (z @ 1y,

< h||RD(h)aD(h)R*|| + |[[cos(Vh| R*|) = Inysko) (¢ ® 1i,) cos(VR|R*|)|
+ [|(x @ Ti)[cos (VR R*]) = Tngsko]l

< 30| R ||]-

Thus for [ = 1,2,3 and 4,

18y(h, ) — by(z) — R0 (z)|| < M|jz||h' e, Vo € A, (4.3. 21)
where constant M = 5(||R|> + || R||> + || R||*).
For m > 0, let us consider the ampliation of the maps ©,b and § as maps from
A® B(Ig (ko)) into itself. For X € A®B(f{é@)

O(X) = B (X) = Q. (© @ idy @, (X)) O

where @, : ho Q) R(@ (0% ko — hy X ko X R(@ is the unitary operator which inter-

@ DPn
R @ R @ ho @ ko
where ¢, : ho @ ki~ @ ko — ho @ ko Q@ ki~ is define as Q,,. By definition we have

changes the second and third tensor components. This operator Q,,, = 1

LX) = (B © 1,@)an(X © 1y )in(R S 1, @) - SR ® 1,@®)X - SX(R| 1,®)
(X" = [ X" © 1,0~ (1 1,000 (X 9 1)

u(X) = i | (R0 L)X ~ (X & 11 )i (R0 1,0)]
6,(X) =0

and components of 3(h, X) are



4.3. EH flow as a strong limit of Quantum random walk 107

B1(h, X) = (cos(Vh|R|) @ 1. @ )X (cos(Vh|R|) @ 1. @)
+h(D (h)R*®1ﬁ@)qm(X ® Ly )@ (RD(h )®1ﬁé@)

Ba(h, X)* = | ~Vh(cos(VAIR]) © 1, @) X (DR’ ©1,@)
FVRDIOR & 1,0 (X & 1) cos(VEIRD & 1,8)| 4

B3(h, X) = ¢, | ~Vh(RD(h) & 1R@)X(cos(\/ﬁ|RD ®1,0)

+Vh(cos(VAIR']) @ 1@ )am (X @ Lo ) (RD(R) @ 1@)]

Ba(h,X) =q}, |h(RD(h) ® 1§(@)X(D(h)R* ® 1§(@)

Heos(VAIR') @ 1,0 ) (X & L )i (cos(VAIR']) 1@)] G
By same argument as for (4.3. 21) one has
1611, X) = (X) = hOL(X)| < O X, X € AR B,

for some constant C’ independent of h > 0,m > 0. Thus ||[E(h)(X)| < M||X|,VX €
A® B(I'(ko)), for some constant M independent of h. O

Let B = AQ BT (ko)) ® B(I), which can be decomposed as

B = (A® D0 B(l;é)@ )) P B. for some subspace B.. Now let us consider the
extensions of all these maps ©, 3(h), b, pgh) and Pt(h) as bounded linear maps from B
into itself, given by, for example extention of pgh) is @mzo pgh) ® idB (RO@) @ 0p,. We
denote these extentions by same symbols as the original maps. From the assumption

A1 it follows that

1B1(h, X) — bi(X) — h¥6;(X)|| < C|| X || T, VX € A®B(f<é@). (4.3. 22)
o1 h3(62())" )
For h > 0 we define a map O(h) := L ! :(820)) from A to AQ B(ko),
h203 04

as the map ©, O(h) also extend a bounded map from B into itself. Here we have

the following observations which will be needed later for proving the convergence of

quantum random walk pih).
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Lemma 4.3.5. For any [, X € A@B(f{f@),ﬁ € h0®l;f)@ and f € M we have

1| Zk:l NPEZ)—l)h[5(h’X)*b(X)7@(h7X)] [kle()]l < \/Eol(fv OIXNIE]

2. ”ZZ:l NpEle)h(@(h,X))[k] APE:) " (e(X))[k] §e(f)||2
< hCy (£, OIIX P 1EN1%,
3. || oy P (X)L = Palk))€e()II2 < b e(f,1)I1X |21

where constants c(f,t) is as in Lemma 4.3.3, C1(f,t) = t(1 + || flloo)lle(f)] and
Ca(f,t) = (1412 f oo + 1F12)2 (1 + O1)[[e()]1*.

Proof. (1). For any | we have

z
”;NpEZth[ﬁl(h,X)bz( )y EIEe)l
z
< ZHNp(k B X) by ()~ nere, o0y F1Ek—1€ fiup ) Te (S )
i1

where {1 = e(f—1)p)) is a vector in the initial Hilbert space

hy Q@ I (ko) ® [ (4—1)n)- For any [, from (4.3. 22) and contractivity of pgh), we get
Iy [Bu(h, X) = bi(X) = B (X)]|| < CR=1| X

hence by (4.3. 4) the above quantity is dominated by
Y ohet h2C(1+ [|f]lso) I X I€e(£)]| and required estimate follows.
(2). By Lemma 4.3.1 the terms correspond to [ = 1,2 can be estimated as,

I3 [0yl Ny ] €60

Pk—1)n (6:(X)) p(kfl)h(el X

IN

SN B 8 ] e et

P(— 1)h P(k—1)n

IN

Z B2 p{ 1y OCOME1 (1 Flloo + £ 120 leCFr—nyn)
k=1

IN

(1 lloo + 112101 D" 2 X [[ge(P]l

k=1
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Thus the required estimate follows. Now consider other two terms correspond to
[ =3 and 4. Setting for 1 <m <mn

Zn=3" [\/ENZ(M

1 p(k_l)h(gl(x))

k] — A k
4] pgzg)hwmx»[ ]]’

by Lemma 4.3.1 (a), we have

| Zue( )
l l
D SN L R AR | EE [ el

A
NE
=

=

k- )p O (X))l [ flloo (S IIle(f enmn) I

Thus
| Zmue(frmm)ll < O [ flloo [ X € frnn) |- (4.3. 23)

We have the following equality,

|Znge(£)]*

[k] — A! (]

P 1y (0:(X))

+2 Re > (Zn1&—1e(fi), [\/ENZUL)

1 p(kfl)h(el(x))
Ee—re(fi))lle(fun )1

By the estimate in Lemma 4.3.1,

n l l ,
| ; |:\/EN (h) (Hl(X))[k] — A (QZ(X))[IC]:| Ee(f)

P=1)n Plk—1)n

< S R2IpG) 1 OO &P Il ey I
k=1

+2 " W2 Zia&r Py, OO gkl 117 1% ey
k=1

Now using (4.3. 23), above quantity is less than or equal to

>RSI X1 ge(h))
k=1

+2) B3O (11X €e(f)I1?

k=1
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and required estimate follows.

(3.) The proof is same as for estimate (4.3. 9) in Lemma 4.3.3. O

Now we shall prove the strong convergence of the quantum random walks pgh). Note

that J; : AQEL) — AQT is the unique solution of the gsde
¢
Jt = idA@F +/ JSA@(dS). (43 24)
0

We define a family of maps Jt(h) by

I (@e(f))u = wue(f)

I (@e(f))u =I5 (we(f))u = zue(f) + > Jon(Aow Kle(f))u
k=1

for t € ((n — 1)h,nh]. Thus by definition

n

T (we(f))u = IS (we(f))u = zue(f) + 3 Aj, @@ lklue(f). (4.3, 25)
k=1

For u € hg, f € M the adapted process J; satisfies

Ji(we(f))u = zue(f) + /0 Jo Ao (ds) (ze(f))u

and the map t — Jy(ze(f))u is continuous. Thus by definition of this integral
lim [Ji(we(f))u — I (xe(f))ul = 0

and hence
lim i (x)ue(f) - ji" (@)ue(f)] = 0. (4.3. 26)

Under the assumptions Al we have the following result:

Theorem 4.3.6. Let pgh) be the quantum random walk associated with 3(h). Then
for each v € A and t > O,pgh)(x) converges strongly to jy(x). Thus j; : A —
AQ B(T') is a x-homomorphic flow.

Proof. In order to prove

lim [|p}" (2)ue(f)) = ji(w)ue(f)]| = 0, Yu € ho, f € M, (4.3. 2)
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by (4.3. 26) it is sufficient to show that
lim 12" (2)ue(f)) — i (z)ue(f)| = OVu € hy, f € M. (4.3. 28)
For any fixed h > 0, f € M let us define a family of bounded linear maps
Wi A— AQT
given by, for x € A and u € hy,

W (@yu = p{M (@)ue(f)) — i (z)ue(f)

Here, recall that {.J;} extend as a regular adapted process mapping A ® B(I'x:(ko)) @ £(C)
into A ® B(T':(ko)) QT and hence for each X € AQ B(I' (ko)) the family {j;(X)}
define by ji(X)ée(f) = Ji(X ® e(f))E,VE € hg@Tu(ko), f € C, is a regular

(hg @ I't;, K)-adapted process. For a given f € M C C by estimate (4.3. 16), t(h)
extend as a bounded linear map from A& B(T (ko)) into A® B(Ts (ko)) @T.

Viewing A® BT (ko)) and AQ B (ko)) QT as subspaces of B, let us de-
note by same symbol Wt(h) to the canonical extentions of Wt(h) as linear maps from

B into itself preserving the norm.

In order to prove (4.3. 28) we shall show that HWt(h)H (as maps from B into
itself) converges to 0 as h tends to 0. For any X € A(X)B(f{f@) and £ € hy ®1A<g@
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by (4.3. 25) and (4.3. 10), we have

(A (h) (@(X))[k] - Aj<k1)h(9(X))[k]> fe(f)]

P(k—1)n
n

=3l (X0 = Pulk))ge(f)

k=1

Using linearity of N¢)[k] and A,[k],

1w (x0)e|?
2
(H Z N EZ) 1)h 7b(X)7@(h7X))[k]gk—le(f[(k—l)h)H
2
I Z [Npg’,? (e = Ay U,L(e(x»[’f]] Su-1e(fi-vn)l

+1I ngzzl)h<x><1 — PulED&—re(fig—y) I

2
+ ”ZA [P =i 1>h]<e<X)>[’“]£"ffle<f (VL )

k=1
AL+ 1+ I3+ 1y).

By Lemma 4.3.5 we have
Ii + I + Iy < const(f, 1)|| X |||

Now let us consider the terms in I;. We have by estimate (1.5. 24) in Proposition
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1.5.18

2
” ; A[pgzg)h*j(kﬂ)h](@(x)) [k‘]fe(f) ||

= > ekl Xe(f)E]?
k=1

nh
| /0 Y Ae (ds) Xe( )¢

<21+ |72 /0 " @ 1) (%) 1 el H)IElds.
It can be easily seen that
(Vo1 )O(X) o) = (VP Sidgy, ) OX)e(f)] 1) = VI OX)e(f)]10)
so the above quantity is equal to

nh
264(1 -+ [|]12.) / 1Y P(O(X)e( £)] €113,
nh R
— 21+ | fI2) / W @©(X))E ® f(s)|ds

< 2e' (1 + || FI2)2 Y AW IR0 ) PlE]
k=1

= h
< e WL POl 1X 1P €]
k=1
Combining all the above estimates, we obtained

I (X)) (4.3. 29)
= h
< RCIXIPIENR + DY W IR Rl

k=1

for some constant C' and D independent of h. For any X € Band & € ho @ T’ fr(Ro) QRT
we can write X = €P,,50 Xm ® X' with X, € A®B(§()@),X’ € B. and £ =
Do ém @ & with &, € ho®f<(@ and & belong to orthogonal complement of
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hy ®f<£@ for all m > 0. Using the estimate (4.3. 29) we have

W (X)e|?

= Z HW fm“2

m>0
< WO S X2 \|£m||2+DZh|| 00 P ST X2 P
m>0 m>0
h)
< hC[X]| ||E||2+DZhIIW( oallPIX 2 1EN?

k=1
Taking supremum over all £ € hg @ I'r.(ko) @ T, X € B such that ||¢]| < 1,[X]| <1
we get

(h (h
w2 = Hwnh>u2<hc+wzuw ol (4.3. 30)
k=1

By definition [ |2 = 0 so (4.3. 30) gives |[W\" |2 < hc and
W12 < he + hD|W |12 < ch(1+ hD).
Then by induction it follows that
W12 = [WPI2 < O + hD)"t < hCeP!
and hence
lim [ W[ = 0, inparticular lim [|p}") (x)ue(f)) — ji" ()ue()]| = 0.

Which says that for any u € hy and f € M, {pgh) (x)ue(f)) : h > 0} is Cauchy in
hy ®T. Since Hpgh)( ) < HxH and algebraic tensor product hy &) £(M) is dense in
hy QT it follows that {pt ( )¢+ h > 0} is Cauchy for all £ € hg@T" and hence
for each x € A, {pt ()} converges strongly to ji(z). Thus j; : A — AQ B(T) is a

contractive *-homomorphic flow. O

Remark 4.3.7. (i) It may be observed that in the above quantum stochastic dilation
{jt} of the dynamical semigroup {T;} there is no “Poisson” term since 04(x) = 0
for all x € A. This is only to be expected since the choice of representation of A

is * ® g, for all x € A. The more general case of dilation using the convergence
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of quantum random walks where the representation is non trivial (and therefore will
have non zero “Poisson” component) is being investigated.

(ii) The method of proof employed above does not seem to be amenable to adaptation
for a dynamical semigroup with unbounded generator. On the other hand, one has
example of the convergence of random walks to diffusion processes (which of course,
has unbounded generators ) in the classical case. For the handling of these cases,

one may have to find different method to replace the proof of Theorem 4.3.6.



Chapter 5

Weak Stochastic Dilation of
UHF Dynamics by QRW Model

In Chapter-3, EH flows are constructed for a class of QDS associated with relatively
simpler elements of A. There, we have followed the standard iteration method to
obtain the EH flow as a solution of the gsde (3.0. 3). In this chapter, we shall
discuss the same question in a greater generality and consider a larger class of QDS T
associated with r € Aj,.. Here, our approach is different form the standard method.
Following [23], we adopt the idea of constructing the EH flow as a limit of the
associated quantum random walks. Starting from an r € Aj,., we construct a x-
homomorphic family {8(h) : h > 0} : A — A® B(ko) and then prove that the
family of quantum random walks {pgh)} associated with 3 converges weakly as h
tends to 0. From which it follows that the weak limit {j;} is a CP flow and satisfies
the required gsde.

5.1 Quantum random walk on UHF Model

For a fixed r € Ay, the closure of the associated Lindbladian (£,C'(A)), generates
a QDS {T; : t > 0} on A. Here L takes the form:

L(x)= Z Ly(z), Yz € C1(A) with Ly(z) = é{[r,’g,:ﬁ]rk + iz, 7]}, Vk € Z2
kezd

116



5.1. Quantum random walk on UHF Model 117

For n > 0, let R(,) be the bounded operator from hg to hg Q ko, given by R,y =

2 |kj=n Tk ® ex. Now we define,

5(x) =Y b(ny(x), Where 5(,)(2) = (x ® Ligg) Ry — Rz = Y _ 0(x) @ s
n=20 |k|=n
and
0T(x) =8, (x), where & \(x) = Rj,(z ® 1) — xR}y = > 6l(x).
n>0 |k|=n
The Lindbladian £ can be written as
L= L), where Ly, (z) =R}, (x®lk0R(n)—%R?n)R(n)x—%fon)R(n) = > L

n>0 |k|=n

It is clear that all these maps £, and 87 are well define on A and for a fixed

x € Ajoe there exists an n, > 1 such that
Limy(@) = 8y (x) = 8]\ (x) = 0,n > n,.
Let us recall the family of maps {6/} given by

0k =L, for (u,v) = (0,0),
= 9;, for (M,U) = (Z,O),
st _ ;
_5]7 for (/L,V)—(O,j),

= 0, otherwise.

We are looking for a solution of the gsde

dje(x) = Y je(0(x))dAL (), (5.1. 1)

w20
]0(:1,’) =z ® 1lp, Vo € Ajge.

In order to construct QRW let us consider the following. For each n > 0 we define

an operator

~ 0 —R* . ~
R, = " from hy @ k to itself. It is clear that R, is a skew symmet-
R, 0

ric bounded operator and hence is the generator of a one parameter unitary group
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{etﬁn : t € R}. For h > 0, let us consider the unitary operator Uy(h) := eVhEn
cos(Vh|R,|) —vVhD,(h)R%

which can be written as where |R,|, |R}| are the

VhR,Dy(h)  cos(Vh|R|)
square root of R)R,, R,R} respectively and D, (h) is the self adjoint element
sin(\/E|R7L|)(\/E|Rn\)71 € A. We can rewrite Uy (h) as
1= 2R, [2+ h2E,(h) —VhR + b3 Fu(h)
VhR, + h2Gy(h) 1+ hH,(h)
and H,(h) are bounded operators given by,

Un(h) = , where By, (), Fy(h), G (h)

o By(h) = =D

. Hn(h) _ cos(\/ELRiL\)—l

o Gu(h) = —(Fu(h)* = R, 2nlh=L,

By 4.3. 19) all these operators are uniformly bounded in h (but not in n). Now we

have the following.

Lemma 5.1.1. For each n >0, Up(h)--- Ui (h)Up(h)
1 B0 G IRif? + W2EM(h) —VR Yo Ry + b3 F™) (1)
VhYh_o R + h2G™ (h) 1+ hH®™ ()

where E™ (h), F™ (h),G™(h) and H™(h) are bounded operators with uniform

norm bound in h.

Proof. We prove the result by induction. For n = 0, the statement is valid. Now

suppose that it is true for some n > 1. We have U, 11)(h)Uy(h) - - - U1 (h)Uo(h)
b (1 B R 4 BB VRS R+ O
= 1
i) VEY 0o Ry + kG (h) 1+ hH® ()
n n n * 3 n
[ 1 ST IR BT (M) VRS R hIEC@R)

VR Ry, 4+ h2 GO (1) 1+ RH®+D ()
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EC+D(p), FOD(R), G+ (h) and H™D(h) are bounded operators, given by:
E(n+1)(h)

= E(n)(h) + En+1(h) + h2E(n+1)(h)E(n)( n+1 Z |Rk|2
h 2 () 1 e 2 e (0
—§’Rn+1\ E (h)+1\Rn+1\ > IR = Ry G (h)
k=0

+Fn+1(h) Z Rk + thJrl(h)G(n)(h)?
k=0

FO ) (p)
o I7int k o I1tn+
k=0
W Enia(h) 3 R+ W Ena (W) F™) (k) — By HO (h)

k=0
+FOFD(h) + hECHD (R)H ™ (h),

G(n+1)(h)

1 . n
= —2Rn+1kZ_O\Rk’2+hRn+1E( J(h) + Grya(h) = hGrya(h Z\Rk’2

+h2Gry1 (W) E™(h) + G™ (h) + Hpyy () Z Ry + hHy i1 (R)G™ (R),
k=0

and
H(n-‘rl) (h)

= —Ru Z R} + hRy 1 F™ (h)
k=0

~hGry1(h) > Ry + h*Gria(h)F™(h)
k=0
+Hyp 1 (h) + H™ (R) + hHy o (h)H™ (h).
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This enable us to obtain the required identity for n + 1, thereby completing the
proof. O

Now we shall prove the following result which will be needed for proving the weak

convergence of the QRW pgh) .

Proposition 5.1.2. There exists a family of x-homomorphism B(h) : A — A B(ko),
satisfying, for any p,v € Z¢ U {0}

18 (h, ) — 8o — hwv 9 (z)|| < Coh™ " Vo € Apoc. (5.1. 2)

Proof. For any n > 0 we consider the *-homomorphism 8™ (h) : A — A B(ko),
implemented by the unitary U, (h)---Uy(h), i.e. for z € A,

BT (h,x) = (Uo(h)* -+ (Un(h)*(x @ 1 )Un(h) - Uo(h).

A simple computation shows that

’ VIR 6 (x) + h2 Cp(h, ) 2 ® ly, + hDy(h, 7)
(5.1. 3)

Here A, (h,.), By(h,.),Cy(h,.) and D,(h,.) are bounded maps, given by

n 1 - 2 g 2
An(h,z) = 2E >(h)+4kZ_OyRk\ ka_O\Rk!

n

> IR PaEM (h)

k=0

h . . -
—SE W)z Y[R+ (GO ()" (@ @ 1) Y B
k=0 k=0

h

+EW (h)x + h2E™ (h)xE™ (h) - 5

+ zn: Ri(2 © 1,)G™ (h) + h(G™ (b)) (z ® 11 )G (),
k=0
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By(h,z) = 2F™ ZyRkPxZRk
Z | R |2z F ™ E(”)(h)xZR};

+R2EM (R)zF™ (h) + (G™ (h))* (z ® 1i,) ZRk ® 1) H™ (h)

+h(G™ (h)* (& © 1, H™ (),

ZkaZ |Ri|? — hZkaE
k=0

HFM (W) — 2 xZ | Ry,|?
+h2(F(")(h))*xE(")(h) +(z® 1kO)G( )(h)

+H™ (h)(z @ 1y,) zn: Ry, + H™(h)(z @ 11,)G™ (h)
k=0

and

Z Ry Z Ry —h Z RexF™(h
k=0

J(h))* Z R, + R2H™ (h)(z © 1k,)

+(z ® Ly, )H™ (h + H™ (h)(z @ 13, ) H™ (h).

In order to define a s-homomorphism 3(h) : A — A® B(kg), we first note that for

any fixed x € Ajoc, there exists an integer n, such that
(Umy (W) (2 @ 1 JUmy(h) = 2@ 1y,

so B (h,z) = ™) (h,z),¥Ym,n > n,. Now setting 3(h)(z) = B(h, z) := =) (h, x),
we get a x-homomorphism 3(h) from Aj.. into A &) B(Ro). Since Aj,. is norm dense
in A, the map 3(h) extends as a *-homomorphism from A into A® B(ko). By 5.1.

3 for any = € Ajo. we have,
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8. ) z + hL(x) + h2 A, (h,z) VAt (x) + h2 B, (h, )
y L) =
Vhé(z) + h2Cp, (h,x) @ lx + hDy, (h, )
where A, (h,.), Bn,(h,.), Cp,(h,.) and D, (h,.) are bounded maps with uniform

norm bound in A. Thus we obtain the required estimates 5.1. 2.

O]

Now we define QRW
p" A~ AQB(T)
associated with ((h) as in previous Chapter. First subdivide the interval [0, ¢] into

[k] = (k —1)h,kh], 1 <k <nso that t € (n — 1)h,nh| and set

P (@) =z @1,

(5.1. 4)
P (@) = 0,0 b (B () @ NETH]

and pgh) = pgg

5.2 Weak convergence of the QRW

Here we shall discuss the weak convergence of QRW constructed in the previous

section. Let S be the collection of all simple function f € L?(R,,kq)) such that

n
f = Z 1[“q’bq] ® €kq
q=1
for some n > 1 and partition (0 < a; < by < az < by---a, < b, < oc0) of Ry. It is
clear that S is total in L?(R,kq) and hence hy @ £(S) is dense in hg @T.

We have the following approximation result.

Theorem 5.2.1. Let pgh) be the QRW associated with B(h). Then
(i). For each x € Ay

lim (&1, pf" (2)€2) exists, V&1, & € ho@E(S).

(ii). For x € Ajoc setting a map ji(x) by

(€0,Gu(@)2) = lim (619" (2)62). V61, & € Bo®E(S).



5.2. Weak convergence of the QRW 123

Ji(z) extends uniquely as a bounded operator from ho QT to itself. For eacht > 0
the map ji extends to a unique bounded CP map from A to A" @ B(T') satisfying
17 (@)]| <[]l Vo € A.

(iii). The CP flow j; satisfies the required gsde 5.1. 1.

Proof. Note that except the generator 6 of the contractive QDS P; all other struc-
ture maps 0’s are bounded and in particular 9} =0,Vi,j € Z* Thus by Theorem
1.3.3 the closure of each of the operators (98 + 9?, 08 + 96 and 98 + 0? + 96 + 9} gener-
ates a Cp-semigroup of contraction on A. In fact, for any locally bounded functions

f,g € K by Theorem 1.3.6 the evolution equation

de g Fa "
=0

admits a unique solution.
(i). Let {T}"" : p,v > 0}, be the family of contractive Cp-semigroup on A given
by
T =T, = e for( ,v) = (0,0)
D, for (u,v) = (0,)
= et +60) | for (1, v) = (4,0)

_ OB o () = (5, ),

Let 7 > 0 be fixed, 0 < ¢t < 7 and f,g € L?*(Ry,kg). For z € A and u,v € hg we
have
(uee(f),p" (@) v@elg)) (52. 1)
= (u®e(f),p1(h) - pn(h,z) v©e(g))
= (u, A1 - An(@)v)(e(flnn), €(gpnn));

where Aj’s are bounded linear maps from A to itself given by,

Ap(z) = Z (e(fi), N [Kle(gi)) B (h, x).

w20

For f=¢9g=0 5.2. 1 gives

(w® Q" (x) v e Q) = (ue, (B3(h)"()v).
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Since we have by (5.1. 2)

0 _
lim 7@] (h2) —

_ 0
lim . = 0y(z),Vr € Ak,

theorem (1.3.5) gives,
lim (35 (h))" (z) = Ti(w)Vz € A
Thus we obtain
}llli%w ® Q,pgh)(x) v Q) = (u, Ty(z)v), Vo € A.

Now for f =1 ®e;,9=1)9,®e; €S and u,v € hy, we have,

(wee(f),p" () v@e(g))

= <u’ Ayp--- An(l‘)U> <e(f[nh)> e(g[nh)>7

where

Ar() = Y (e(fu), Ni [Klelgu)) B (h, @)

w,v>0
= Qg+ 1y © eq, Qi) B (h, )

Q) + 1 © s, VI 87 (h, )

I @ ety
+ D (Qupy + Ly ® es, — =) By (h, )
>1 \/E

+Z<Q[k] -+ 1[k] X €4, 1[k] & €l>,3é-(h, :L‘)
I>1

= B(h,z) + VR (h, z) + VhG(h,x) + hBi(h, z).

So we get
(weoelf), " (z) veelg))

= (u, (B3 (h) + VR (h) + VRE5(h) + hi3; (1)) (@)v) (e fun)s e(gpn)) -

Since pgh) is a homomorphic family, we have

1(83(R) + VRhBI(h) + VhBy(h) + hi(h)"|| < e,
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It follows from 5.1. 2 that for all x € Ajqe,
N i i i pi s
lim Hﬁ[ﬁg(h) + VhBY(h) + VhB(h) + hBi(h) — Lz — 0] + 69 + 0} + 0% + 5'1]z|| = 0
hence by theorem (1.3.5),
Tim (38(h) + VRBY(R) + VRG(R) + h}(n)" (2) = T () = PO (), Ver € A
Thus
lim (u & e(f), pf") () v @ e(9)) = (u, eI Ty (w)v). (5.2. 2)
Similarly, one can see (5.2. 2) for the cases f =0,9 = 19 ;] ® ¢;
and f =1, ®ei,g=0.
Now for f = (1j9,q @ eiy) © (1js5] @ ei,) and g = (19, @ €jy) D (1}5,7] @ €j,) such that

s <t <7 let ng = [£] and ng = [%5%], let us compute the inner product,

(wee(f),p"” () v @ e(g))
= (u, (B3 (h) + VhBY), (h) + VRS (h) + BB (h)™ (50 (h)
+ VR, (h) + VhBE (h) + hBE2(h))" (z)v).

Since  [|(68(h) + VRBY, (h) + VRB (h) + hEj (R)" || < [e9)] we get
lim (u @ e(f),py" (@) v® elg)) = (u, P ITHNT2E (@)o),
Now let us consider arbitrary f,g € S. For any f,g € S we can choose a partition

0=ty <ty--- <ty =t) of Ry such that on the interval [0,¢],
* /= ZZ=1 1[tq—1vtq] ® ey,

¢ g= 22:1 ]‘[tqfhtq] @ €y,

Here f14, v4 include the index 0 with the convention (strictly restricted to here only)

that eg = 0 € kg. Now we set contractive maps,
fvg — M1,V 12,V HnVn
1—;‘/ - 1—;‘/11 11—;‘/2277; T J—;‘/ftn_l
as in [1], then it can be easily shown from the above observations that

lim (u @ e(f), pf") () v @ e(g)) = (u, e"ITI (@)v).
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Now let us consider arbitrary vector in the algebraic tensor product hg ®alg (S).

For & =377 ur ®e(fi), &2 = >[_ v @ e(g1) € ho @), E(S)

(€, p" (@)&) = > (ur @ e(f), p"” (x)v1 @ e(gn)).

k.l

This implies that limhﬂo(fl,p,gh)(x)f’ﬁ exists.
(ii). For & € Ajpe, 0 <t < 7, let us define j;(x) by

(&1, Jt(x)&2) = %@)(&mﬁh)(ar)fz),vﬁ,fz € hoQE(S).

(h)

Since p; ’ is a contractive family we obtain

(€1, e (@)E2)| < N2l ]l-[I€2]]-

Thus j;(z) extends uniquely to a bounded operator on hy @I, with [|j(z)] <

l|z||, V& € Ajpe. Since Ajo. is norm dense in A for each ¢t < 7, j; extends uniquely to

a contractive map from A to A” Q) B(T') satisfying ||ji]| < 1. As the weak limit of a
(h)

*-homomorphic family p, ”, j; is a family of completely positive contractions.

(iii). For 0 <t <7, € Ajoc, we have,

(u@e(f), ji(@)v @ e(g)) = (u, eI (@)v), Yu @ e(f), v @ e(g) € ho®E(S)

and th () satisfies the evolution equation

deg
=T/ qu 9u(6)0% (2)), TJ (2) = ez
p,v=0

Thus the family j; of completely positive contractions satisfies the gsde (5.1. 1). O
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