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Notations

N Set of natural numbers

Z Set of all integers

R+ Set of positive real numbers

C Set of complex numbers

Re(z) real part of the complex number z

C1
c (R+) Space of all complex valued once continuously differentiable

function on R+ with compact support

A,B ∗-algebras

B(X,Y ) The space of all bounded linear operators from Banach space

X to Banach space Y

a(t) Annihilation operator

a†(t) Creation operator

Λ(t) Conservation operator

H,h etc. Hilbert spaces

Γ(H) The symmetric Fock space over the Hilbert space H
Ω The vacuum vector in symmetric Fock space Γ(H)

B(H) The algebra of all bounded operators on H
|u >< v| Rank one operator H 3 w 7→ 〈v, w〉u
D(T ) Domain of the operator T

Ran(T ) Range of the operator T

Mn The algebra of n× n matrices with complex entries

Γ(Sh) toy Fock space associated with the regular partition Sh of R+

with width h

Ph Orthogonal projection of symmetric Fock space Γ onto toy Fock

space Γ(Sh)
iv



Introduction

In the theory of classical dynamical system, Markov processes, or equivalently, the

associated expectation semigroups (Markov semigroups ) are often used to model

the irreversible time evolution of the system. Here, the Markov processes describe

the evolution of the total (along with the environmental) system which is given by

a stochastic differential flow equation and the evolution within the original system

is obtained by taking conditional expectation with respect to the filtration of the

above stochastic process. However, in accordance with theory of quantum mechanics,

semigroups of completely positive (CP) maps acting on algebra of observables of the

system make a natural appearance and the dynamics of an irreversible quantum

dynamical system is modeled by a CP semigroup on some appropriate algebra. Here

the algebra need not be commutative in contrast to the classical situation and such

semigroups are of great interest from physical as well as mathematical point of view.

A linear map T between two ∗-algebras is said to be completely positive if T ⊗
idMn(C) is positive for each n ≥ 1. Let A be a C∗-algebra. A one parameter

C0-semigroup {Tt} of CP maps on A is called a quantum dynamical semigroup

(QDS). A QDS on a von Neumann algebra A, is a one-parameter C0-semigroup

{Tt} of normal (continuous with respect to ultraweak topology) CP maps on A. A

QDS is said to be conservative if it preserves the identity element. Given a QDS

on a C∗ or von Neumann algebra A ⊆ B(h0) (h0 is the initial Hilbert space ) a

natural question arises whether it can be dilated, that is, whether we can find a

family of ∗-homomorphisms jt : A → B where B is a ∗-algebra containing A with a

conditional expectation E0 : B → A, such that E0jt = Tt, ∀t ≥ 0. Motivated by the

classical case, it is natural to look for a quantum analogue of classical probability

theory and then obtain a time indexed family jt of ∗-homomorphisms from A to

1



2 Introduction

the larger algebra B, modeling the total system, consisting of the original system

and some “quantum noise”, so that jt satisfies a suitable differential equation. With

the theory of quantum stochastic calculus as developed by the pioneering works of

Hudson and Parthasarathy [19] and improved by a number of authors, a notion

of quantum stochastic differential flow was formulated by Evans and Hudson [11],

[10] and subsequently studied by many authors [31, 34, 12, 13]. In this formulation

B is given by A⊗B((Γ(L2(R+,k0)))) for some separable Hilbert space k0 where

Γ(k) denotes the symmetric Fock space over the Hilbert space k. The family of ∗-
homomorphisms jt is obtained as the solution of Evans-Hudson (EH) type quantum

stochastic differential equation (qsde)

djt(a) =
∑

µ,ν≥0

jt(θµ
ν (a)) dΛµ

ν (t), j0(a) = a, ∀ a ∈ A∞,

where A∞ is a dense ∗-subalgebra of A, θµ
ν are linear maps (called structure maps)

on A with θ0
0 as the infinitesimal generator of the QDS Tt and {Λµ

ν} is the family

of fundamental processes associated with an orthonormal basis {ei : i ≥ 1} of k0

[33, 29]. Here, E0 is the vacuum conditional expectation. Such a family {jt} of ∗-
homomorphisms is called an Evans-Hudson (EH) dilation for the QDS {Tt}. In some

situation one can obtain a ∗-homomorphic flow {jt}t≥0 implemented by a unitary

valued process Ut on h0 ⊗ Γ(L2(R+,k0)) (i.e., jt(x) = U∗t (x ⊗ 1Γ)Ut) satisfying

Hudson-Parthasarathy type equation

dUt =
∑
µ,ν

UtL
µ
ν dΛ

µ
ν (t), U0 = 1,

for a suitable family of operators {Lµ
ν} on the initial Hilbert space h0. Such a dilation

is called Hudson-Parthasarathy (HP) type dilation.

In order to obtain a solution of EH or HP type flow equation, one may encounter

all sorts of technical difficulties, arising due to possible unboundedness of the struc-

ture maps or the possible infinite dimension of noise space. There is a considerable

amount of literature related to the existence, uniqueness and characterization of HP

type flows [31, 32, 13, 14] and EH type flows [15, 24, 18, 25, 1, 26, 27] under various

analytic assumptions on structure maps.

Given a QDS Tt on a C∗ or von Neumann algebra the question of obtaining an

EH or HP dilation is investigated by many authors and answered in some situations,
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for example when the QDS is uniformly continuous. The infinitesimal generator L
of a uniformly continuous QDS is a bounded and conditionally completely positive

(CCP) map, i.e. for n ≥ 1,

n∑

i,j=1

b∗iL(a∗i aj)bj ≥ 0, for any ai, bi’s in A such that
n∑

i=1

aibi = 0.

Such a map L admits unique structure given by Christensen and Evans [7]. Starting

from this bounded generator one can define structure maps. In [15], a coordinate-free

language of quantum stochastic calculus is developed and a canonical EH dilation for

arbitrary uniformly continuous QDS on von Neumann algebras is obtained. Later in

[18], construction of EH flow is extended to uniformly continuous QDS on separable

C∗-algebras. This sums up the situation about QDS with bounded generators.

On the other hand, in case of strongly continuous QDS, the generator is un-

bounded and does not admit structure as in case of uniformly continuous QDS. The

infinitesimal generator can be describe as a form [8]. There is no general method

to to obtain an HP or EH type flows. Many authors have worked in this direc-

tion under suitable analytic assumptions and some partial success has been achieved

[12, 14, 30, 32, 17].

In this thesis, we have investigated the possibility of constructing EH dilation

for a larger class of QDS with unbounded generators. Restricting ourselves to a

particular model [28] of Uniformly Hyperfinite C∗-algebra A = ⊗j∈Zd MN (C),

where N and d be two fixed positive integers, we consider the strongly continuous

QDS generated by formal Lindbladian associated with an element r ∈ A. Let tr be

the unique normalized trace on A and h0 = L2(A, tr), the GNS space for the pair

(A, tr).
For x ∈MN (C) and j ∈ Zd, let x(j) denote an element inA whose j-th component

is x and rest are identity of MN (C). For a simple tensor element a ∈ A, let a(j) be

the j-th component of a. The support of a, denoted by supp(a) is defined to be the

set {j ∈ Zd : a(j) 6= 1}. For a general element a ∈ A such that a =
∑∞

n=1 cnan with

an’s simple tensor elements in A and cn’s complex coefficients, we define supp(a) :=
⋃

n≥1 supp(an). Let Aloc be the ∗-subalgebra of A generated by elements a ∈ A with

finite support.



4 Introduction

We note that MN (C) is spanned by a pair of noncommutative representatives

{U, V } of ZN = {0, 1 · · ·N − 1} such that UN = V N = 1 and UV = wV U, where

w ∈ C is the primitive N -th root of unity. Now let us consider the infinite group

G :=
∏

j∈Zd ZN × ZN and the projective unitary representation of G given by G 3
g 7→Ug =

∏
j∈Zd U (j)αj

V (j)βj ∈ A where j-th component of g, gj = (αj , βj). It is

clear that any element a ∈ A can be written as x =
∑

g∈G cgUg with coefficients

from C.

For a given r ∈ A, formally we define the Lindbladian L =
∑

k∈Zd Lk, where

Lkx = 1
2{[r∗k, x] rk + r∗k [x, rk]}. Here rk = τk(r) with τ : Zd → Auto(A) induced by

the coordinate translation on the lattice Zd.

For a suitable class of element r =
∑

g∈G cgUg so that
∑

g∈G |cg| |g|2 < ∞,

the associated Lindbladian L is defined on a dense ∗- subalgebra containing the ∗-
subalgebra Aloc and its closure is the generator of a conservative contractive QDS

Tt [28] on A. We define a family of maps {θµ
ν : µ, ν ∈ Zd ∪ {0}} given by

θµ
ν = L, for (µ, ν) = (0, 0),

= δk, for (µ, ν) = (k, 0),

= δ†k, for (µ, ν) = (0, k),

= 0, otherwise,

where δk, δ
†
k are bounded derivation on A given by δk(x) = [x, rk] and δ†i (x) :=

(δk(x∗))∗ = [r∗k, x], ∀x ∈ A. In order to construct an EH dilation for the QDS Tt, we

would like to solve the following qsde in B(h0)
⊗B(Γ(L2(R+, l

2(Zd)))),

jt(x) = x+
∫ t

0

∑
µ,ν

js(θµ
ν (x))dΛµ

ν (s), ∀x ∈ Aloc.

In full generality the problem of obtaining an EH flow satisfying the above qsde seem

to be intractable. However, EH flows for a class of QDS are obtained by standard

iteration method. In order to dilate (EH type) more general QDS we follow a different

path using the idea of constructing EH flow as a limit of associated quantum random

walk [3, 23, 35].

In order to define a quantum random walk we use toy Fock spaces and basic

operators on them [3]. Let Γ be the symmetric Fock space Γ(L2(K)) where K is
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L2(R+,k0) with k0 is a complex separable Hilbert space. Let Λµ
ν : µ, ν ≥ 0 be

the family of fundamental processes on Γ with respect a fixed orthonormal basis

{ei : i ≥ 1} of k0 and Ω be the vacuum vector in Γ. For any partition S ≡ (0, t1, t2 · · · )
of R+ the symmetric Fock space Γ can be viewed as infinite tensor product

⊗
n≥1 Γn

with respect to the stabilizing vector Ω = ⊗n≥1Ωn, where Ωn = Ω(tn−1,tn] is the

vacuum vector in Γn = Γ(K(tn−1,tn]). For any 0 ≤ s ≤ t and i ≥ 1 we define a vector

χi
(s,t] := 1(s,t]⊗ei√

t−s
∈ K(s,t]. It is clear that {χi

(s,t]}i≥1 is an orthonormal family in K(s,t]

and hence in Γ(s,t]. Here we note that the Hilbert subspace k(s,t] of Γ(s,t] spanned

by these orthonormal vectors is canonically isomorphic to k0. Let us consider the

subspace k̂(s,t] = C Ω(s,t]

⊕
k(s,t] of Γ which is isomorphic to k̂0 = C

⊕
k0 and we

denote the space k̂(tn−1,tn] by k̂n. Now we define the toy Fock space Γ(S) associated

with the partition S, to be the subspace, infinite tensor product
⊗

n≥1 k̂n with respect

to the stabilizing vector Ω = ⊗n≥1Ωn. Let P (S) be the orthogonal projection of Γ

onto the toy Fock space Γ(S). Without loss of generality let us consider toy Fock

spaces Γ(Sh) associated with regular partition Sh ≡ (0, h, 2h · · · ) for some h > 0 and

denote the orthogonal projection by Ph. As the width h of the partition tends to 0,

the orthogonal projection Ph converges strongly to identity on Γ. Now we define a

family of operators {Nµ
ν [k] : µ, ν ≥ 0, k ≥ 1} on the Fock space Γ, given by

Nµ
ν [k] = P0[k]

Λ0
0[k]
h

= P0[k] for (µ, ν) = (0, 0),

=
Λ0

j [k]√
h
P1[k] for (µ, ν) = (0, j),

= P1[k]
Λi

0[k]√
h

for (µ, ν) = (i, 0),

= P1[k](Λi
j [k])P1[k]Ph[k] for (µ, ν) = (i, j),

where P0[k] and P1[k] are the orthogonal projections from Γk onto the one dimen-

sional subspace spanned by Ωk and L2([(k−1)h, kh],k0) respectively. Here, we have

used the notations Λµ
ν [k] for Λµ

ν ((k − 1)h, kh] and Ph[k] for the associated toy Fock

space orthogonal projection restricted to the interval [(k − 1)h, kh]. Clearly these

operators Nµ
ν [k]’s act non trivially on Γk and as identity on the other components

and they leave the subspace Γ(Sh) invariant.

Given a ∗-homomorphic family {β(h) : h > 0} : A → A⊗B(k̂0), for each h we
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define a family of ∗- homomorphism j
(h)
t : A → A⊗B(Γ), as follows. For a given

t ≥ 0, we subdivide the interval [0, t] into [k] ≡ ((k − 1)h, kh] , 1 ≤ k ≤ n so that

t ∈ ((n− 1)h, nh] and set

p
(h)
0 (x) = x⊗ 1Γ,

p
(h)
kh (x) =

∑
µ,ν

p
(h)
(k−1)h(βµ

ν (h, x))⊗Nµ
ν [k]

and p
(h)
t = p

(h)
nh . This family {p(h)

t : t ≥ 0} is called the quantum random walk asso-

ciated with the ∗-homomorphism β(h).

Let us summerize the main observations, made in this thesis:

1. We construct EH flow for QDS Tt associated with r ∈ A such that rk commute

for different k’s [16]. Covariance of the EH flow with respect to τ is proved.

2. For QDS T φ associated with partial states φ on A, EH flows are constructed

and ergodicity of such flows are discussed.

3. Various estimate on toy fock space Γ(Sh) for the operators hεµ,νNν
µ [k]− Λν

µ[k]

with ε0,0 = 1, ε0,i = εj,0 = 1
2 , εi,j = 0 for i, j ≥ 1 are observed.

4. In coordinate-free language of quantum stochastic calculus similar estimate for

basic operators as in 3 are established and quantum random walks are defined.

5. Strong convergence of the quantum random walk, associated with bounded

structure maps, is proved under certain assumption using coordinate-free lan-

guage of quantum stochastic calculus.

6. For a larger class of QDS Tt associated with elements r ∈ Aloc, ∗-homomorphic

family {β(h) : h > 0} : A → A⊗B(k̂0) are constructed. Which satisfies, for

any (µ, ν), limh→0
βµ

ν (h,x)−δµ
ν x

hεµ,ν = θµ
ν (x), ∀x ∈ Aloc. By using basic operators

Nµ
ν quantum random walks are defined.

7. Weak convergence of the above quantum random walk is proved and observed

that the weak limit satisfies the qsde with structure maps θµ
ν .
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Contents of the thesis are in following order:

In Chapter-1, background materials for the thesis are briefly recalled. We begin

with most basic objects, namely C∗ and von Neumann algebra. Some basic results

and concepts from theory of operator algebras, including a short description of UHF

C∗-algebras [9] are given. In the end of this section completely positive maps are

introduced and Stinespring’s dilation [36] theorem is mentioned. Next section is

devoted to semigroup theory and evolution equation on Banach space [37]. The

Hille-Yosida theorem and results on perturbation are stated without proof. From

approximation theory of semigroups Chernoff’s theorem [5] and Trotter-Kato the-

orem [20] are recalled. Finally, the characterization of the generator of uniformly

continuous QDS due to Christensen and Evans [7] is given. In section 3 Quantum

Stochastic Calculus on symmetric Fock space, including a coordinate free description

[15], is briefly recalled.

In Chapter-2, the class of QDS [28] on UHF C∗-algebra A = ⊗j∈Zd MN (C) is dis-

cussed in detail. For an element r, formally we define the Lindbladian L =
∑

k∈Zd Lk,

where Lkx = 1
2{[r∗k, x] rk + r∗k [x, rk]}. For r =

∑
g∈G cgUg :

∑
g∈G |cg| |g|2 < ∞ the

associated Lindbladian L is defined on a dense ∗- subalgebra C1(A) containing Aloc

and by Hille-Yosida theorem it is shown that the closure L is the generator of a

conservative contractive QDS Tt on A. Moreover these QDS are covariant with re-

spect to the action τ of discrete infinite group Zd. For a particular class of QDS,

namely, the QDS T φ associated with partial state φ on A, ergodicity properties are

established.

In Chapter-3, we construct EH flows for a class of QDS {Tt} of the Chapter-2.

Here we consider the QDS associated with r ∈ A such that translates rk for different

k ∈ Zd are commuting. In this situation we control the growth of ‖θµ1
ν1 · · · θµn

νn (x)‖
for x ∈ Aloc and employ iteration technique, to obtain a unique solution for EH

flow equation. Exploiting the commuting properties of rk’s, we show that jt is a

weak ∗-homomorphism and then by standard method we conclude that jt is a ∗-
homomorphism. Thus we obtain an EH dilation for QDS {Tt}. We also observe that

the EH flow jt is covariant with respect to τ. In last section of the chapter, QDS {T φ
t }

associated with partial states φ are considered. These QDS are ergodic in the sense
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of [28]. Here, the element r ∈ A whose associated Lindbladian is the generator of

the QDS {T φ
t } is supported on only one lattice point. An EH dilation for such QDS

is obtained with a simple argument. As for the QDS, ergodicity of the corresponding

EH flows are discussed.

In Chapter-4, we begin with a brief description of the toy Fock space Γ(S) as

a subspace of the symmetric Fock space Γ(L2(R+,k0)) associated with a partition

S of R+ [3]. The toy Fock space Γ(S) associated with the partition S, is defined

to be the subspace, infinite tensor product
⊗

n≥1 k̂n with respect to the stabilizing

vector Ω = ⊗n≥1Ωn. Without loss of generality we consider the toy Fock space Γ(Sh)

associated with a regular partition Sh ≡ (0, h, 2h · · · ) for some h > 0 and denote

the orthogonal projection by Ph. The approximate basic operators Nµ
ν are defined

and various estimates on the Fock space for operators hεµ,νNν
µ [k] − Λν

µ[k], where

εi,j = 0, ε0,i = εj,0 = 1
2 for i, j ≥ 1, are obtained.

For a given ∗-homomorphic family {β(h) : h > 0} : A → A⊗B(k̂0), for each h

we define a family of ∗-homomorphism family quantum random walk p
(h)
t : A →

A⊗B(Γ), by setting

p
(h)
0 (x) = x⊗ 1Γ,

p
(h)
t (x) = p

(h)
nh (x) =

∑
µ,ν

p
(h)
(n−1)h(βµ

ν (h, x))⊗Nµ
ν [n]

for t ∈ ((n − 1)h, nh]. We call this family {p(h)
t : t ≥ 0} as quantum random walk

associated with homomorphism β(h).

In one dimensional noise case [35] EH flows are constructed by using quantum ran-

dom walk model following [23, 3]. There an EH flow (with bounded structure maps)

is obtained as a strong limit of associated quantum random walks. Here, we have

discussed the strong convergence of quantum random walks in the situation with in-

finite dimensional noise. To handle the presence of infinitely many noise components

we have used coordinate-free language of quantum stochastic calculus developed in

[15]. For S ∈ B(h0), R ∈ B(h0,h0
⊗

k0) and T ∈ B(h0
⊗

k0) we define the operators



Introduction 9

as follows, for k ≥ 1.

N1
S [k] = SP0[k]

Λ1
S [k]
h

= SP0[k],

N2
R[k] =

Λ2
R[k]√
h
P1[k],

N3
R[k] = P1[k]

Λ3
R[k]√
h
,

N4
T [k] = P1[k](Λ4

T [k])P1[k]Ph[k]

where

Λ1
S [k] = IS((k − 1)h, kh),

Λ2
R[k] = aR((k − 1)h, kh),

Λ3
R[k] = a†R((k − 1)h, kh),

Λ4
T [k] = ΛT ((k − 1)h, kh).

Similar estimates on Fock space for these operators hεlN l[k] − Λl[k] ( where, ε1 =

1, ε2 = ε3 = 1
2 and ε4 = 0) are obtained as earlier.

Let {β(h)} be a ∗-homomorphic family from a von Neumann algebraA toA⊗B(k̂0).

For x ∈ A, β(h, x) = ((βµ
ν (x))) =


 β1(h, x) (β2(h, x))∗

β3(h, x) β4(h, x)


 with respect to direct

sum decomposition k̂0 = C
⊕

k0. Now using the basic operators N l we define a

quantum random walk p(h)
t associated with β(h).

Let Tt be a uniformly continuous conservative QDS on von Neumann algebra A
with the generator L. Then by results in [15] there exists a Hilbert space k0 and struc-

ture maps (L, δ, σ) where, L ∈ B(A), δ ∈ B(A,A⊗
k0) and σ ∈ B(A,A⊗B(k0)) so

that the map

Θ = ((θµ
ν )) =


 θ1 (θ2(·))∗

θ3 θ4


 =


 L δ†

δ σ


 : A → A⊗B(k̂0) is a bounded CCP

map with the structure

θ(x) = V ∗(x⊗ 1k̂0
)V +W (x⊗ 1k̂0

) + (x⊗ 1k̂0
)W ∗,∀x ∈ A,

where V,W ∈ B(h0
⊗

k̂0). The qsde,

jt(x) = x⊗ 1Γ +
∑

µ,ν≥0

∫ t

0
js(θµ

ν (x))dΛµ
ν (s) , ∀x ∈ A
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admit a unique strongly continuous solution jt.

To obtain ∗-homomrphic property of the family {jt} we shall make the following

assumption. Let {β(h)} be a ∗-homomorphic family from A to A⊗B(k̂0) satisfying

for l = 1, 2, 3 and 4,

‖βl(h, x)− bl(x)− hεlθl(x)‖ ≤ C‖x‖h1+εl , ∀x ∈ A,

where bl’s are linear maps given by b1(x) = x, b4(x) = x ⊗ 1k0 , b2(x) = b3(x) = 0 ∈
A⊗

k0. Moreover, this estimates extend uniformly for m ≥ 0, ampliating Θ, b and

β as maps from A⊗B(k̂m©
0 ) into A⊗B(k̂m©

0 )
⊗B(k̂0) i.e for any l

‖βl(h,X)− bl(X)− hεlθl(X)‖ ≤ C ′‖X‖h1+εl , ∀X ∈ A ⊗B(k̂m©
0 )

for some constant C ′ independent of m ≥ 0.

Using various estimates on the Fock space and the estimates in the above as-

sumption we have shown that p(h)
t converges strongly to jt and it follows that jt is a

∗-homomorphism.

In Chapter-5, we focus once again on the UHF model discussed earlier. Here

we consider a larger class of QDS associated with elements r ∈ Aloc. Using local

structure of the algebra we have constructed a ∗-homomorphic family {β(h) : h >

0} : A → A⊗B(k̂0), and we obtain a quantum random walk p
(h)
t associated with

β(h) using basic operators Nµ
ν appear in previous Chapter. It is observed that for

any (µ, ν), limh→0
βµ

ν (h,x)−δµ
ν x

hεµ,ν = θµ
ν (x), ∀x ∈ Aloc. Next, using the above fact we

prove that for any x ∈ Aloc, p
(h)
t (x) converges weakly and the weak limit jt satisfies

the EH type qsde on Aloc with structure maps θµ
ν , but we are not yet able to conclude

wheather jt is a ∗-homomorphism.



Chapter 1

Preliminaries

Here basic results and concepts from theory of operator algebras, including a short

description of UHF C∗-algebras are given , for detail we refer to [9, 5, 20, 37, 36].

In the last section Quantum Stochastic Calculus on symmetric Fock space [33], in-

cluding a coordinate-free description [15], is recalled. Let us begin with most basic

objects, the C∗ and von Neumann algebras.

1.1 C∗ and von Neumann algebras

1.1.1 C∗-algebras

Definition 1.1.1. A complex ∗-algebra A, equipped with a C∗-norm, i.e. ‖x∗x‖ =

‖x‖2, is called a pre-C∗-algebra. Furthermore, if A is complete with respect to C∗-

norm, then it is called a C∗-algebra.

A C∗-algebra is called unital or nonunital depending upon the existence of iden-

tity element on it. For any Hilbert space H, the space of all bounded linear operators

on H with operator norm and its closed ∗-subalgebras are some concrete examples of

C∗-algebra. For a locally compact Hausdorff spaceX, the space C0(X) of all complex

valued continuous functions on X, vanishing at infinity, with supremum norm and

with complex conjugation as the ∗-operation forms a commutative C∗-algebra under

pointwise addition and multiplication. In particular for compact X,C0(X) = C(X),

the space of all continuous functions on X, is a unital C∗-algebra. The following

11
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result completely characterizes the commutative C∗-algebras :

Theorem 1.1.2. (Gelfand-Naimark) Let A be a commutative C∗-algebra. Then

there exists a locally compact Hausdorff space X such that A is isometrically iso-

morphic to the C∗-algebra C0(X). Moreover if A is unital, then X is compact.

Any nonunital C∗-algebra can always be isometrically embedded as a two sided

ideal in a unital C∗-algebra canonically. So for rest of the section we consider A to

be a unital C∗-algebra. For a ∈ A, the resolvent of a, denoted by ρ(a), is the subset

{λ ∈ C : (a−λ)−1 ∈ A}; and its complement is called the spectrum of a, denoted by

σ(a). The spectral radius spr(a) of a is defined to be, spr(a) = sup{|λ| : λ ∈ σ(a)}.
It is a basic fact of theory of C∗-algebras that the norm on a C∗-algebra is uniquely

determined by the algebraic structure. For any element a, ‖a‖2 = spr(a∗a).

There is a rich functional calculus which enables one to form functions of elements of

the C∗-algebra A. For any function f which is holomorphic in some domain contain-

ing σ(a), one obtains an element f(a) ∈ A by the holomorphic functional calculus.

Furthermore, for any normal element x, there is a continuous functional calculus

sending f ∈ C(σ(a)) to f(a) ∈ A where f 7→ f(a) is a ∗-isometric isomorphism from

C(σ(a)) onto C∗(a), the C∗-subalgebra of A generated by a. In particular, for any

positive element a ≥ 0, i.e. a can be written as a = b∗b for some b ∈ A, we can form

a positive square root
√
a ∈ A satisfying

√
x

2 = x. A linear functional φ on A is said

to be positive if φ(a∗a) ≥ 0 for all a. This is a remarkable and useful result that an

element a ∈ A is positive if and only if φ(a) ≥ 0 for every positive functional φ on

A. It can be shown that the algebraic property of positivity implies the boundedness

of φ, in particular ‖φ‖ = φ(1). Any positive linear functional φ with φ(1) = 1 is

called a state on A. It is said to be faithful if φ(a∗a) = 0 implies a = 0, pure if any

state ψ satisfies 0 ≤ ψ ≤ φ must be of the form ψ = λφ for some λ ∈ [0, 1] and trace

if φ(ab) = φ(ba) ∀a, b ∈ A. . Here we state the celebrated theorem due to Gelfand,

Naimark and Segal, known as the GNS construction for a state.

Theorem 1.1.3. Let A be a C∗-algebra. Given a state φ on A, there exists a Hilbert

space Hφ, a ∗-representation πφ of A into B(Hφ) and a vector ξφ ∈ Hφ which is cyclic
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in the sense that {πφ(a)ξφ : a ∈ A} is total in Hφ, satisfying

φ(a) = 〈ξφ, πφ(a)ξφ〉, ∀a ∈ A.

Moreover, φ is pure if and only if πφ is irreducible.

This triple (Hφ, πφ, ξφ) is called the GNS triple for (A, φ) and Hφ is called GNS

Hilbert space for the pair (A, φ) and it is denoted by L2(A, φ).

1.1.2 UHF C∗-algebra

(Ref. [9]) A special class of C∗-algebras, namely approximately finite dimensional

C∗-algebras (in short AF C∗-algebra) are built out of the class of finite dimensional

matrix algebras. These algebras are well understood and arise in the study of quan-

tum statistical mechanics. Before going to give the definition of AF algebra, let us

note the following useful facts.

Theorem 1.1.4. Any finite dimensional C∗-algebra A is ∗-isomorphic to a direct

sum of full matrix algebras, i,e.

A 'Mn1(C)
⊕ · · ·Mnk

(C) for some n1, n2, · · ·nk ≥ 1.

So, in particular, every finite dimensional C∗-algebra is unital.

The following result describe how one finite dimensional algebra fits into another.

Lemma 1.1.5. Let A,B be two finite dimensional C∗-algebras such that

A 'Mn1(C)
⊕ · · ·Mnk

(C)and

B 'Mm1(C)
⊕ · · ·Mml

(C).

Then a ∗-homomorphism φ : A → B is uniquely determined upto unitary equivalence

by an l × k-matrix ((λij)) with entries from non negative integers such that

k∑

j=1

λijnj ≤ mi, ∀i = 1, 2, · · · l. (1.1. 1)

Moreover, in case of φ is unital, equality holds in 1.1. 1.
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So, given any two finite dimensional C∗-algebras A and B, the lower dimensional one

can be embedded isometrically in the higher dimensional algebra in various ways.

Now let us define the Inductive Limit of C∗-algebras and the AF C∗-algebras we are

interested in.

Definition 1.1.6. Let {Aα}α∈I be a directed family of C∗-algebras, i.e. for any

α < β in the directed set I, there is an isometric isomorphism iα,β from Aα into Aβ

and iα,β = iγ,β ◦ iα,γ when α < γ < β. Then there exists a universal C∗-algebra A,
called Inductive Limit of the directed family (Aα, iα,β) and isometric isomorphism iα

from Aα into A such that iα = iβ◦iα,β and such that A =
⋃

α∈Iiα(Aα). The Inductive

Limit has universal property that for any C∗-algebra B with isometric isomorphisms

jα from Aα into B such that jα = jβ ◦ iα,β, there exists an isometric isomorphism

k : A → B and following diagram

Aα

A

Aβ

B

-

-

6

@
@

@
@

@
@

@@I6

¡
¡

¡
¡

¡
¡

¡¡µ

iα,β

k

jβiα iβjα

commutes.

Definition 1.1.7. A C∗-algebra A is said to be an AF C∗-algebra if it is the In-

ductive Limit of a family of C∗-subalgebras {An : n ≥ 0} with isometric imbeddings

in : An → An+1 for n ≥ 0. Here A0 = CI in case of A is unital and A =
⋃

n≥0An,

the norm closure.

Example 1.1.8. For any complex separable Hilbert space H, let us consider the C∗-

algebra A = C I+B0(H), where B0(H) is the space of all compact operators on H. For

an increasing sequence of orthogonal projections Pn with rank(Pn) = n, converging

strongly to the identity, we set An = C P⊥n + Pn B0(H) Pn ' C + Mn(C),A is

the closure of
⋃

n≥0An with the canonical imbedding of Mn(C) into Mn+1(C), which

sends A 7→

 A 0

0 0
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The union
⋃

n≥0An will be not effected if we take a subsequence instead of this

chain of subalgebra An. In fact the union is unique upto unitary conjugation, more

precisely:

Theorem 1.1.9. Let A be an AF C∗-algebra, such that it can be written as the

closure of the increasing union of two chains

A =
⋃

m≥0Am =
⋃

n≥0Bn.

Then for any ε ≥ 0 there exists a unitary operator W in the unitization of A with

‖W − I‖ < ε such that
⋃

m≥0Am = W (
⋃

n≥0Bn)W ∗.

In particular there are subsequences {mi} and {ni} of N so that Ami ⊆WBniW
∗ ⊆

Ami+1 , ∀i ≥ 1, i.e. Ami ↪→ Bni and in Bni ↪→ Ami+1 isometrically.

As an immediate consequence of this theorem we obtain that If A =
⋃

m≥0Am

and B =
⋃

n≥0Bn are two ∗-isomorphic AF C∗-algebras, then
⋃

m≥0Am and
⋃

n≥0Bn

are also ∗-isomorphic.

Next we discuss about a particular class of AF C∗-algebras called Uniformly

hyperfinite C∗-algebras (in short UHF C∗-algebras).

Definition 1.1.10. An AF C∗-algebra is said to be a UHF C∗-algebra if it is an

increasing union of unital subalgebras which are isomorphic to full matrix algebras

{Mkn(C)} for some sequence of positive integers {kn}.

Since a unital imbedding of Mm(C) into Mn(C) requires m/n (m divides n), we

have an increasing sequence k1/k2 · · · . So for a prime number p there exists a unique

number εp ∈ {1, 2, · · ·∞}, given by εp = sup{l : pl/kn as n→∞}. Now we define a

number δ(A) associated with the UHF C∗-algebra A, known as supernatural number,

by a formal product:

δ(A) =
∏

p:primep
εp .

This number gives a complete invariant for the class of UHF C∗-algebras by the

following result of Glimm:

Theorem 1.1.11. Let A and B be two UHF C∗-algebras. Then A is isomorphic to

B if and only if δ(A) = δ(B).
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In particular, we are interested in the class of N∞ UHF C∗-algebras obtained

as infinite tensor product of finite dimensional matrix algebra MN (C). For a fixed

pair of positive integers d and N first let us consider the infinite lattice Zd. For

j = (j1, j1, · · · jd) in Zd let |j| denote max{|ji| : i = 1, 2, · · · d}. For a finite subset Λ of

Zd we define |Λ| to be the cardinality of Λ. Now, let us consider the infinite algebraic

tensor product
⊗

j∈Zd MN (C), with respect to the stabilizing sequence of identities

I ∈MN (C). For an increasing sequence of finite subsets {Λn}n≥1,Λn = {j : |j| ≤ n}
of Zd, let An =

⊗
j∈Λn

MN (C) and A0 = CI. It is clear that An = Mkn(C), where

kn = N |Λn|, |Λn| = (2n+ 1)d and An is isometrically embedded in An+1 by sending

An 3 a 7→ a⊗I, where I is the identity element in M
N2d (C). Thus A is an increasing

union of full matrix algebra An and is called N∞-UHF C∗-algebra.

1.1.3 von Neumann algebras

For a Hilbert space H, the space of all bounded linear operators B(H), as a Ba-

nach space equipped with the operator-norm topology. There are many other useful

topologies with respect to which B(H) is a locally convex topological vector space.

The most useful ones are weak, strong, ultra-weak and ultra-strong topologies. How-

ever, although B(H) is complete in each of these topologies, a general C∗- subalgebra

A of B(H) need not be so. It is easily provable that A is complete in all of the above

four locally convex topologies if and only if it is complete in any one of them, and in

such a case A is said to be a von Neumann algebra. Furthermore, the strong (respec-

tively weak) and ultra-strong (respectively ultra-weak) topologies coincide on norm-

bounded convex subsets of A. For a σ-finite measure space (X,F , µ), L∞(X,F , µ),

the space of all bounded measurable functions on X is a commutative von Neumann

algebra. For any subset M ⊆ B(H), we denote M ′, the commutant of M in B(H),

i.e. {a ∈ B(H) : am = ma,∀m ∈ M}. The following fundamental result due to von

Neumann, known as the “Double commutant theorem” is of fundamental importance

in the study of von Neumann algebras.

Theorem 1.1.12. Let A be a C∗-subalgebra in B(H) with trivial null space. Then

A′′(= (A′)′) = Āw = Ās, where Āw and Ās are closure of A in weak and strong

operator topologies of B(H) respectively.
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Thus, in particular, any unital C∗-subalgebra B(H) is a von Neumann algebra if

and only if A = A′′.
A state φ on a von Neumann algebra A is said to be normal if whenever {aα} is

an increasing net in A such that 0 ≤ aα ↑ a, one has φ(aα) increases to φ(a). More

generally, we call a linear map Φ : A → B (where B is a von Neumann algebra) to be

normal if whenever 0 ≤ aα ↑ a in A, one has Φ(aα) ↑ Φ(a) weakly in B. It is known

that a positive linear map is normal if and only if it is continuous with respect to

the ultra-weak topology mentioned earlier. In view of this fact, we shall say that a

bounded linear map between two von Neumann algebras is normal if it is continuous

with respect to the respective two ultra-weak topologies. Normal states, and more

generally normal positive linear maps (in particular, normal ∗- homomorphisms) play

a major role in the study of von Neumann algebras. The following result describes

the structure of a normal state.

Theorem 1.1.13. [5] φ is a normal state of a von Neumann algebra A ⊆ B(H) if

and only if there is a positive trace-class operator ρ on H such that φ(a) = tr(ρa)

for all a ∈ A.

1.2 Hilbert modules

A Hilbert space is a complex vector space equipped with a complex valued inner

product. A natural generalization of this is the concept of Hilbert module, which

has become quite an important tool of analysis and mathematical physics in recent

times. Let us briefly introduce the concept of Hilbert von Neumann modules. For a

comprehensive study of such structures we refered to [22].

Hilbert C∗-modules

Definition 1.2.1. Given a C∗ algebra A, a semi-Hilbert A-module E is a right

A-module equipped with a sesquilinear map 〈., .〉 : E × E → A satisfying 〈x, y〉∗ =

〈y, x〉, 〈x, ya〉 = 〈x, y〉a and 〈x, x〉 ≥ 0 for x, y ∈ E and a ∈ A. A semi-Hilbert

module E is called a pre-Hilbert module if 〈x, x〉 = 0 if and only if x = 0; and it is
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called a Hilbert C∗-module if furthermore E is complete in the norm x 7→ ‖〈x, x〉‖ 1
2

where ‖.‖ the C∗ norm of A.

It is clear that any semi-Hilbert A-module can be made into a Hilbert module in a

canonical way : first quotienting it by the ideal {x : 〈x, x〉 = 0} and then completing

the quotient.

The A-valued inner product 〈., .〉 of a Hilbert module shares some of the impor-

tant properties of usual complex valued inner product of a Hilbert space, such as

the Cauchy-Schwarz inequality. However, some of the crucial properties of Hilbert

spaces do not extend to general Hilbert modules : the most remarkable ones are the

projection theorem and self-duality. Closed submodules of a Hilbert module need

not be orthocomplemented, that is, given a closed submodule F of E, there need

not exist any closed submodule G such that E = F
⊕
G. Furthermore, the Banach

space of all A-valued, A-linear, bounded maps on a Hilbert A-module E may not be

isometrically anti-isomorphic to E, in contrast to the Riesz’s theorem for complex

Hilbert space. For example, a bounded A-linear map from one Hilbert A-module

to another may not have an adjoint. For this reason, the role played by the set of

bounded linear maps between Hilbert spaces is taken over by the set of adjointable

A-linear maps.

Definition 1.2.2. Let E and F be two Hilbert A-modules. We say that an A-linear

map L from E to F is adjointable if there exists a bounded A-linear map L∗ from F

to E such that 〈L(x), y〉 = 〈x, L∗(y)〉 for all x ∈ E, y ∈ F . We call L∗ the adjoint

of L. The set of all adjointable maps from E to F is denoted by L(E,F ). In case

E = F , we write L(E) for L(E,E).

It may be noted that an adjointable map is automatically bounded.

Let us fix two Hilbert A-modules E and F . For t ∈ L(E,F ) and x ∈ E, it is

easy to prove that 〈tx, tx〉 ≤ ‖t‖2〈x, x〉, where ‖t‖ denotes the map-norm of t. The

topology on L(E,F ) given by the family of seminorms {‖.‖x, ‖.‖y : x ∈ E, y ∈ F}
where ‖t‖x = 〈tx, tx〉 1

2 and ‖t‖y = 〈t∗y, t∗y〉 1
2 , is known as the strict topology. For

x ∈ E, y ∈ F , we denote by θx,y the element of L(E,F ) defined by θx,y(z) = y〈x, z〉
(z ∈ F ). The norm-closed subset generated by A-linear span of {θx,y : x ∈ E, y ∈ F}
is called the set of compact operators and denoted by K(E,F ). It should be noted
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that these objects need not be compact in the sense of compact operators between

two Banach spaces, though this abuse of terminology has become standard. It is

known that K(E,F ) is dense in L(E,F ) in the strict topology. In case F = E, we

denote K(E,F ) by K(E). Note that both L(E) and K(E) are C∗ algebras.

Hilbert von Neumann modules

If A is a concrete C∗ algebra in B(h) for some Hilbert space h, then for any Hilbert

spaceH, the pre-Hilbert module A⊗
algH may be viewed as a subset of B(h,h

⊗H)

and A⊗
C∗ H is the closure of this subset under the operator-norm inherited from

B(h,h
⊗H). Instead, we may inherit one of the locally convex topologies from

B(h,h
⊗H), e.g., the topology of strong convergence, and close A⊗

algH under

that topology. This will lead to another topological module, in general bigger than

A⊗
C∗ H. We denote the closure by A⊗

sH or simply by A⊗H when there is no

possibility of confusion. A⊗
sH has a natural A′′ module action from both sides

and has a natural A′′ -valued inner product. In view of this, we assume that A
itself is a unital von Neumann algebra in B(h). We note a few simple but useful

facts about the Hilbert von Neumann module A⊗H. For this, let us first introduce

some notations. Let H1 and H2 be two Hilbert spaces and A ∈ B(H1,H1
⊗H2).

For each f ∈ H2, we define a linear operator 〈f,A〉 on H1 such that,

〈〈f,A〉u, v〉 = 〈Au, v ⊗ f〉,∀u, v ∈ H1. (1.2. 1)

We shall denote by 〈A, f〉 the adjoint of 〈f,A〉, whenever it exists. Clearly, if A

is bounded, then so is 〈f,A〉 and ‖〈f,A〉‖ ≤ ‖A‖ ‖f‖. Similarly, for any T ∈
B(H1

⊗H2) and f ∈ H2, one can define Tf ∈ B(H1,H1
⊗H2) by setting

Tfu = T (u⊗ f),∀u ∈ H1. (1.2. 2)

With the above notations, let us recall some properties of A⊗H.

Lemma 1.2.3. Any element X of Hilbert von Neumann module A⊗H can be

written as, X =
∑

α∈J xα ⊗ γα, where {γα}α∈J is an orthonormal basis of H and

xα ∈ A. The above sum over a possibly uncountable index set J makes sense in the
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usual way: it is strongly convergent and ∀u ∈ h, there exists an at most countable

subset Ju of J such that Xu =
∑

α∈Ju
(xαu)⊗γα. Moreover, once {γα} is fixed, xα’s

are uniquely determined by X.

Corollary 1.2.4. Let X,Y ∈ A⊗H be given by X =
∑

α∈J xα ⊗ γα and Y =
∑

α∈J yα⊗γα as in the lemma above. For any finite subset I of J , if we denote by XI

and YI the elements
∑

α∈I xα⊗γα and
∑

α∈I yα⊗γα respectively, then limI〈XI , YI〉 =

〈X,Y 〉 where the limit is taken over the directed family of finite subsets of J with

usual partial ordering by inclusion.

Proof. The proof is an easy adaptation of Lemma 27.7 in [33].

Here, we note a convenient necessary and sufficient criterion from [15] for verifying

whether an element of B(h,h
⊗H) belongs to A⊗H.

Lemma 1.2.5. Let X ∈ B(h,h
⊗H). Then X belongs to A⊗H if and only if

〈γ,X〉 ∈ A for all γ in some dense subset D of H.

In case H = Γ(k), we call the module A⊗
Γ(k) as the right Fock A-module over

Γ(k), for short the Fock module, and denote it by A⊗
Γ.

1.3 Some general theory of Semigroups on Banach spaces

Here, we recall some standard and useful results from the theory of semigroups of

bounded linear operators on a Banach space [20, 37]. Let X be a Banach space. A

semigroup on X is a one parameter family of bounded linear operators {Tt : t ∈ R+}
on X satisfying Ts.Tt = Ts+t,∀s, t ≥ 0, T0 = I. If limt→0 Tta = a,∀a ∈ X, then

the semigroup is called strongly continuous (or C0-semigroup). For a C0-semigroup

{Tt}, we define a linear operator L on X, with domain

D(L) = {x ∈ X : lim
t→0

Tt(x)− x

t
exists}

given by

L(x) = lim
t→0

Tt(x)− x

t
.

This operator (L,D(L)) is called the infinitesimal generator of the semigroup {Tt}
and D(L) is dense. A semigroup {Tt} is called uniformly continuous if limt→0 ‖Tt −
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I‖ = 0. For such a semigroup the generator is bounded. Any C0-semigroup {Tt}
on X is quasi-bounded, i.e. there exist constants M ≥ 0 and β ≥ 0 such that

‖Tt‖ ≤ Meβt ∀t ≥ 0. Semigroup {Tt} is called isometric or contractive according to

each Tt is. For any contractive C0-semigroup {Tt}, resolvent of the generator L is

given by Laplace transform of the semigroup,

(λ1− L)−1 =
∫ ∞

0
e−λtTt dt,∀λ > 0.

The following useful theorem due to Hille and Yosida characterizes generators of

C0-semigroups.

Theorem 1.3.1. (Hille-Yosida theorem ) Let (L,D(L)) be a densely defined closed

linear operator on X. Then (L,D(L)) is the generator of a quasi-bounded C0-semigroup

{Tt} such that ‖Tt‖ ≤Meβt ∀t ≥ 0 for some constants M ≥ 0 and β ≥ 0 if and only

if L satisfies

‖(L − λ1)−1‖ ≤ M

Re(λ)− β
, for some λ ∈ ρ(L) with Re(λ) > β. (1.3. 1)

Let G(M,β) denote the class of all linear operators (L,D(L)) on X satisfying 1.3. 1.

Thus in particular the generator of a contractive C0-semigroup is belong to G(1, 0).

Now we recall some useful results for analyzing perturbation, convergence and

approximation of C0-semigroup. First let us introduce the notion of relative bound-

edness.

Definition 1.3.2. Let L and A be two operators with same domain space X with

D(L) ⊆ D(A). Then the operator A is said to be relatively bounded with respect to L
if there exist nonnegetive constants a and b such that

‖Ax‖ ≤ a‖x‖+ b‖Lx‖, ∀x ∈ D(L). (1.3. 2)

The infimum of all possible constants b in 1.3. 2 is called relative bound of A with

respect to L.

The following theorem gives stability condition for perturbation of contraction

semigroups.
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Theorem 1.3.3. [20] Let L, A ∈ G(1, 0) and let A be relatively bounded with respect

to L with relative bound less than 1
2 . Then the perturbed operator L + A is also in

the class G(1, 0).

Following results give the convergence of C0-semigroups.

Theorem 1.3.4. [20]

Suppose {T (n)
t }n≥1 and {Tt} are C0-semigroups on a Banach space X with the gen-

erators L(n) and L in G(M,β) respectively, for some fixed M and β. Then T
(n)
t

converges strongly to Tt if and only if L(n) converges strongly to L in the generalized

sense, i.e. (L(n) − λ)−1 converges strongly to (L − λ)−1 for every Re(λ) > β.

Theorem 1.3.5. (Chernoff’s theorem [5]) Let Pt be a contractive C0-semigroup

on a Banach space X with generator (L,D(L)). Suppose F : R+ → B(X) satisfies

F (0) = 1, ‖F (t)‖ ≤ 1 and limn→0 ‖F (t)−1
t x − L(x)‖ = 0,∀x ∈ D, where D is a core

of L. Then for any t ≥ 0,

limn→0 ‖(F ( t
n))n(x)− Pt(x)‖ = 0, ∀x ∈ A.

Evolution equations on Banach spaces

Let X be a Banach space. We look for a solution x : R+ → X of the differential

equation
dx(t)
dt

= A(t)x(t), x(0) = x0, (1.3. 3)

where A(t) is a one parameter family of operators on X with domain D(A(t)).

Theorem 1.3.6. Let A(t) = L + B(t) such that (L,D(L)) is the generator of a

contractive C0-semigroup Pt on X and t 7→ B(t) ∈ B(X) is locally bounded. Then

the differential equation

dT (t)(x)
dt

= T (t)A(t)x, T (0)x = x, ∀x ∈ D(L)

admits a unique solution T (t).

Proof. Let T > 0 be fixed real number. Then for 0 ≤ t ≤ T, we can find a constant

M <∞ such that

sup
0≤t≤T

‖B(t)‖ ≤M.
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For n ≥ 0, we set bounded operators T (n)(t) as follows

T (0)(t)(x) = Pt(x)

T (1)(t)(x) = Pt(x) +
∫ t

0
B(s)Ps(x)ds

T (n+1)(t) = Pt(x) +
∫ t

0
T (n)(s)B(s)Pt−s(x)ds.

Now, for any n ≥ 1

‖T (n+1)(t)(x)− T (n)(t)(x)‖ ≤
∫ t

0
‖(T (n)(s)− T (n−1)(s))B(s)Pt−s(x)‖ds.

Taking supremum over {‖x‖ ≤ 1} we get

‖T (n+1)(t)− T (n)(t)‖ ≤M

∫ t

0
‖T (n)(s)− T (n−1)(s)‖ds. (1.3. 4)

Repeatedly estimating right hand side, we obtained,

‖T (n+1)(t)− T (n)(t)‖

≤Mn+1

∫ t

0

∫ s1

0
· · ·

∫ sn

0
dsn+1dsn · · · ds1

= Mn+1 tn+1

n+ 1!
,

which implies {T (n)(t)}n≥0 is Cauchy in B(X) and the limit, say T (t), is given by

T (t) = Pt +
∑

n≥0

[T (n+1)(t)− T (n)(t)]

and ‖T (t)‖ ≤ etM .

1.4 Completely positive maps and Quantum dynamical

semigroups

Completely positive maps

Let A,B be two unital ∗-algebra.



24 Ch.1.Preliminaries

Definition 1.4.1. A linear map T : A → B is said to be positive if T (a∗a) ≥ 0

in B for all a ∈ A. T is called completely positive (in short CP) if, for each n ≥
1, T ⊗ idMn(C) : A⊗

Mn(C) → B⊗
Mn(C) is positive, where idMn(C) is the identity

map from the finite dimensional matrix algebra Mn(C) to it itself.

Any ∗-homomorphism is a CP map but converse is not true in general. However,

due to Stinespring’s theorem we have the following characterization of CP map on

∗-algebras.

Theorem 1.4.2. (Stinespring’s Dilation Theorem) [36] Let A be a ∗-algebra and H
be a complex Hilbert space. Let T : A → B(H) be a CP map. Then there exists a

Hilbert space K, a representation π : A → B(K) and V ∈ B(H,K) with the minimality

condition that the span of {π(a)V u : a ∈ A, u ∈ H} is total in K, and the map T is

given by:

T (a) = V ∗π(a)V, ∀a ∈ A,
Such a triple (K, π, V ) is called the ‘Stinespring’s triple’ associated with T , is unique

in the sense that if (K′, π′, V ′) is another such triple, and then there is a unitary

operator Γ : K → K′ such that π′(a) = Γπ(a)Γ∗ and V ′ = ΓV. Furthermore, if A is

a von Neumann algebra and T is normal, π can be chosen to be normal.

The following result shows that the distinction between positivity and completely

positivity appears only for noncommutative algebras.

Theorem 1.4.3. Let A and B be two C∗-algebras. Then any positive map T : A 7→ B
is CP if either of A or B is abelian.

Now let us introduce conditionally completely positive maps.

Definition 1.4.4. A linear map L : A → A is said to be conditionally completely

positive (in short CCP) if

n∑

i,j=1

b∗iL(a∗i aj)bj ≥ 0, for any ai, bi ∈ A, i = 1, 2, · · ·n, n ≥ 1

such that
∑n

i=1 aibi = 0.

The CCP maps play an important role in study of CP semigroups.
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1.4.1 Quantum dynamical semigroup

Let A be a C∗-algebra.

Definition 1.4.5. A one parameter C0-semigroup {Tt} of CP maps on A into itself

is called a quantum dynamical semigroup (in short ‘QDS’). On a von Neumann

algebra A, a QDS is a one parameter C0-semigroup {Tt} of normal CP maps.

Any bounded CCP map L on a C∗-algebra A is the generator of uniformly

continuous QDS {Tt = etL}. Conversely, the generator of a uniformly continuous

QDS is a bounded CCP map. The important and very useful structure theorem of

Christensen and Evans [7] asserts that:

Theorem 1.4.6. Let A ⊆ B(H) be a C∗ or von Neumann algebra, {Tt} be a uni-

formly continuous QDS on A with the generator L. Then there exists l ∈ A′′ and a

Hilbert space K, R ∈ B(H,K) and a ∗-representation π : A → B(K) with the mini-

mality condition: that the span of {(Ra−π(a)R)u : a ∈ A, u ∈ H} is total in K such

that

L(a) = R∗π(a)R+ la+ al∗, ∀a ∈ A.

In case of A is unital, L(1) = 0 and l = iH − 1
2R

∗R for some self adjoint element

H ∈ A′′ and L takes the form,

L(a) = R∗π(a)R− 1
2
R∗Ra− 1

2
aR∗R+ i[H, a], ∀a ∈ A.

1.5 Quantum stochastic calculus on symmetric Fock space

All the Hilbert spaces appearing here are assumed to be complex and separable with

inner product 〈·, ·〉 which is linear in the second variable. Let us first recall the

definition of infinite tensor product of Hilbert spaces.

Infinite tensor product of Hilbert spaces

Let {Hl, 〈., .〉l}l≥1 be a family of Hilbert spaces with {e(l)nl }nl≥1 be an orthonormal

basis for Hl. Let S be the set of all sequences n = {nl} of positive integers. We
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define a vector space W spanned by finite linear combinations of elements from the

set W0 = {en = e
(1)
n1 ⊗ e

(2)
n2 ⊗ · · · : n ∈ S}. A typical vector in u ∈W is given by

u =
∑

n∈S

c(n)en,

for some function c : S → C such that c(n) = 0 for all but finitely many n ∈ S

and the zero vector 0 ∈ W corresponds to c with c(n) = 0,∀n ∈ S. We define

an inner product 〈., .〉 on W by setting, for two elements u =
∑

n∈S c(n)en and

v =
∑

n∈S d(n)en ∈W,
〈u, v〉 =

∑

n∈S

c(n)d(n). (1.5. 1)

It is clear that ‖v‖ := 〈v, v〉 = 0 iff v = 0.

Definition 1.5.1. The completion of the inner product space (W, 〈., .〉) is called

the infinite tensor product of the family of Hilbert spaces {Hl} and it is denoted by
⊗

l≥1Hl and vector en ∈
⊗

l≥1Hl is denoted by ⊗l≥1e
(l)
nl .

By definition {en : n ∈ S} form an orthonormal basis for infinite tensor product
⊗

l≥1Hl.

In order to define the infinite tensor product of the family of Hilbert spaces {Hl}
with respect to a sequence of unit vectors {u(l) : l ≥ 1}, u(l) ∈ Hl, for each l ≥ 1, let

us consider an orthonormal basis {e(l)nl }nl≥1 for Hl such that e(l)1 = u(l).

Definition 1.5.2. Let us consider the closure of the subspace spanned by orthonor-

mal vectors en ∈
⊗

l≥1Hl such that nl = 1 i.e. e(l)nl = u(l) for all but finitely many

l ≥ 1. This Hilbert subspace is called the infinite tensor product of the family of

Hilbert spaces {Hl} with respect to the stabilizing vector {u(l)}.

1.5.1 Symmetric Fock space

For any Hilbert space K and n ≥ 1, let K n© stand for the n-fold symmetric tensor

product of K and K 0© be the one dimensional complex Hilbert space C. We denote

the symmetric Fock space
⊕

n≥0K n© over K by Γ(K) or simply by Γ. For f ∈ K, we

denote by e(f) the exponential vector in Γ associated with f :

e(f) = ⊕n≥0
1√
n!
f (n),



1.5. Quantum stochastic calculus on symmetric Fock space 27

where f (n) = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
n−copies

for n > 0 with the convention f (0) = 1. The exponential

vector e(0) = 1 ⊕ 0 ⊕ · · · , associated with f = 0, is called the vacuum vector in Γ

and it is denoted by Ω. For any subset M ⊆ K, the family of exponential vectors

{e(f) : f ∈ M} is a linearly independent set in Γ(K). Let E(M) be the subspace

spaned by above exponential vectors. For a dense set M, E(M) is dense in Γ(K).

For f ∈ K and U ∈ U(K), the space of unitary operators on K, the Weyl operator

W (f, U) associated with the pair f, U is defined by,

W (f, U)e(g) = e−
1
2
‖f‖2−〈f,Ug〉e(f + Ug), ∀g ∈ K.

For any operator H ∈ B(K), the second quantization Γ(H) of H is given by,

Γ(H)e(g) = e(Hg)

Now we consider the following operators a(f), a†(f) and λ(H), obtained from the

Weyl operators. On the finite particle vectors, we have

• a(f)g(n) =
√
n〈f, g〉g(n−1)

• a†(f)g(n) =
∑n

r=0
1√
n+1

g(r)fg(n−r)

• λ(H)g(n) =
∑n−1

n=0 g
(r)Hgg(n−r).

In view of these properties a(f), a†(f) and λ(H) are called the annihilation operator

associated with f, the creation operator associated with f and the conservation

operator associated with H respectively. The space E(K) is contained in the domain

of all these operators and we have,

• a(f)e(g) = 〈f, g〉e(g)

• a†(f)e(g) = d
dt |t=0

e(g + tf)

• 〈e(g1), λ(H)e(g2)〉 = 〈f,Hg2〉〈e(g1), e(g2)〉 = 〈e(g1), a†(Hg2)e(g2)〉

• 〈a†(f)e(g1), e(g2)〉 = 〈e(g1), a(f)e(g2)〉 = 〈f, g2〉〈e(g1), e(g2)〉.

Let k0 be a complex separable Hilbert space with an orthonormal basis {ei}i≥1. Let

K = L2(R+,k0) ' L2(R+)
⊗

k0. So that any f ∈ K decomposes as f =
∑

k≥1 fkek
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with fk ∈ L2(R+). We take the freedom to use the same symbol fk to denote the

function in L2(R+,k0) as well, whenever it is clear from the context. For any 0 <

s < t <∞, let Ps], P(s,t] and P[t are the canonical orthogonal projections 1[0,s], 1(s,t]

and 1[t,∞) respectively. Denoting by Ks],K(s,t] and K[t , the range of projections

Ps], P(s,t] and P[t respectively, we have K = Ks]

⊕K(s,t]

⊕K[t . Thus any function f

in K decomposes as f = fs] ⊕ f(s,t] ⊕ f[t , where fs] = 1[0,s]f, f(s,t] = 1(s,t]f and

f[t = 1[t,∞)f. The symmetric Fock space Γ(K) over K can be written as a tensor

product Γ(K) = Γs]

⊗
Γ(s,t]

⊗
Γ[t and the vacuum vector in the Fock space Γ(K)

can be written as Ω = Ωs] ⊗ Ω(s,t] ⊗ Ω[t , where Γs] = Γ(Ks]),Γ(s,t] = Γ(K(s,t]) and

Γ[t = Γ(K[t ) with vacuum vectors Ωs],Ω(s,t] and Ω[t respectively.

For the latter part of the thesis let us fix the convention that for two vector spaces

V1 and V2, V1
⊗
V2 denotes the algebraic tensor product as long as at least one of

the two spaces involved are not completed, but when both are complete spaces,
⊗

stands for topological tensor product and
⊗

alg stands for algebraic tensor product.

1.5.2 Quantum stochastic integration

Let h0 be a Hilbert space and H̃ = h0
⊗

Γ(K). For 0 < s < t <∞, we write

H̃0] = h0, H̃s] = h0
⊗

Γ(Ks])

H̃(s,t] = Γ(K(s,t]), H̃[t = Γ(K[t ).

Let D0 and M be two dense subspaces of h0 and K respectively. The algebraic

tensor product D0
⊗M is a dense subspaces of H̃.

Definition 1.5.3. A family of operators {Lt}t≥0 on H̃ is said to be a (D0,M)-

adapted process if,

1. D0(Lt) ⊇ D0
⊗M, ∀t ≥ 0,

2. For t ≥ 0, u ∈ D0 and f ∈M,

Lt ue(f t]) ∈ H̃ t] and Lt ue(f) = Lt ue(f t])⊗ e(f[t ).

It is said to be regular, if in addition, for every u ∈ D0 and f ∈ M, the map

t 7→ Lt ue(f) from R+ into H̃ is continuous. An adapted process is called bounded,
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contractive, isometric, co-isometric or unitary if the operator Lt’s are so. Let B =

B(H̃) ' B0
⊗B(Γ), where B0 is stands for B(h0). For 0 < s < t < ∞, B can be

written as B = Bs]

⊗B(s,t]

⊗B[t , where Bs] = B0
⊗B(Γ(Ks])),B(s,t] = B(Γ(K(s,t]))

and B[t = B(Γ(K[t )). These von Neumann algebras are canonically embedded in B.
For any operators L ∈ B0 and T ∈ B(s,t] can be identified with their ampliations

L ⊗ 1Γ(s,t)
and 1h0 ⊗ T. Further, any operator L ∈ Bs] can be identified with the

process given by

Lt = 1[0,t]L if t ≤ s

= L 1[s,t] if t ≥ s.

Let us introduce the vacuum conditional expectation E0 : B0
⊗B(Γ) → B0, which

is given by, for X ∈ B0
⊗B(Γ)

〈u,E0(X)v〉 = 〈uΩ, XvΩ〉,∀u, v ∈ h0.

The fundamental processes {Λµ
ν : µ, ν ≥ 0} associated with the orthonormal basis

{ej : j ≥ 1} are given by

Λµ
ν (t) =





t1 , for (µ, ν) = (0, 0),

a(1[0,t] ⊗ ej) , for (µ, ν) = (0, j)

a†(1[0,t] ⊗ ei) , for (µ, ν) = (i, 0)

Λ(M1[0,t]
⊗ |ei >< ej |) , for (µ, ν) = (i, j)

(1.5. 2)

where M1[0,t]
is the multiplication operator on L2(R+) by the characteristic function

of the interval [0, t].All these processes {Λµ
ν (t)} are defined on the exponential domain

E(K) and as per our convention, Λµ
ν (t)’s are also identified with their ampliations

1h0 ⊗ Λµ
ν (t). For details, the reader is referred to [33, 29].

The quantum Ito formula can be express as

dΛµ
νdΛ

ξ
η = δ̂ξ

νdΛµ
η , ∀µ, ν, ξ, η ≥ 0 (1.5. 3)

where

δ̂µ
ν= 0 for µ = 0 or ν = 0,

= δµ
ν , otherwise
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with δµ
ν is the Dirac delta function given by

δµ
ν= 1 for µ = ν

= 0, otherwise.

Now we shall discuss quantum stochastic integration with respect to the above basic

integrator processes. First let us consider integration of simple adapted processes.

An (h0,K)-adapted process L is said to be simple with respect to a partition S ≡
(0 = t0 < t1 < · · · ) of R+, if

L(t) = L(tk), for t ∈ (tk−1, tk].

For any µ, ν ≥ 0, we define a simple process X given by, for t ∈ (tn−1, tn], n ≥ 1,

Xt =
n∑

k=1

Ltk−1
[Λµ

ν (tk)− Λµ
ν (tk−1)] + Ltn−1 [Λ

µ
ν (t)− Λµ

ν (tn−1)].

The process X is called the quantum stochastic integral of L with respect to Λµ
ν and

written as
∫ t
0 L(s)dΛµ

ν (s).

For a simple adapted process L the following observations are immediate.

Proposition 1.5.4. (First fundamental lemma) For any (µ, ν) and t ≥ 0, u, h ∈ h0

and f, g ∈ K we have

〈ue(f), X(t)ve(g)〉 =
∫ t

0
fµ(s)gν(s)〈ue(f), L(s)ve(g)〉ds.

Let L andM be two simple adapted processes with respect to a common partition

0 = t0 < t1 · · · of R+ and t = tn for some n ≥ 0. Let

X(t) =
∫ t

0
L(s)dΛµ

ν (s) andYt =
∫ t

0
M(s)dΛξ

η(s).

Then for any u, v ∈ h0; f, g ∈ L2(R+,k0),

〈X(t)ue(f), Ytve(g)〉

=
n∑

k=1

〈L(tk−1)ue(ftk−1]),M(tk−1)ve(gtk−1])〉〈Λµ
ν (k)e(f[t k

),Λξ
η(k)e(g[t k

)〉

+
n∑

k=1

〈X(tk−1)ue(ftk−1]),M(tk−1)ve(gtk−1])〉〈e(f[t k
),Λξ

η(k)e(g[t k
)〉
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+
n∑

k=1

〈L(tk−1)ue(ftk−1]), Y (tk−1)ve(gtk−1])〉〈Λµ
ν (k)e(f[tk ), e(g[tk )〉 (1.5. 4)

From (1.5. 4) and (1.5. 3) the following useful resulted, called the “Second

fundamental lemma” follows (detail can be found in [33]) easily.

Proposition 1.5.5.

〈X(t)ue(f), Ytve(g)〉

=
∫ t

0
δµ
ξ fν(s)gη(s)〈L(s)ue(f),M(s)ve(g)〉ds

+
∫ t

0
fξ(s)gη(s)〈X(s)ue(f),M(s)ve(g)〉ds

+
∫ t

0
fν(s)gµ(s)〈L(s)ue(f), Y (s)ve(g)〉ds.

For more general processes, we have,

Proposition 1.5.6. Let L be a (h0,K)-adapted process satisfying, for u ∈ h0, f ∈ K
1. t 7→ L(t)ue(f) is left continuous.

2. sup0≤s≤t ‖L(s)ue(f)‖ <∞, ∀t ≥ 0.

Then there exists a sequence of simple (h0,K)-adapted process {Ln} such that

lim
n→∞Ln(t)ue(f) = L(t)ue(f), ∀t ≥ 0

and for any µ, ν ≥ 0,

s - lim
n→∞

∫ t

0
Ln(s)dΛµ

ν (s) exists on the domain h0
⊗E(K).

The strong limit, say X(t), is independent of the choice of approximating sequence.

We call the limit X(t) to be the quantum stochastic integration of L with respect

to Λµ
ν . For all such processes, the first and second fundamental lemma hold. Let us

denote the space of all such integrable processes by L(h0,K).

Proposition 1.5.7. Let {Lµ
ν} be a family in L(h0,K) such that for any t ≥ 0, ν ≥

0, u ∈ h0 and f ∈ K
∫ t

0

∑

µ≥0

‖Lµ
ν (s)ue(f)‖2dγf (s) <∞
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where γf (t) =
∫ t
0 (1+ ‖f(s)‖2)ds. Then there exists a regular (h0,K)-adapted process

X with

1. limn→∞ sup0≤s≤t ‖Xn(t)ue(f)−X(t)ue(f)‖ = 0, where

Xn(t) =
∑

0≤µ,ν≤n

∫ t

0
Lµ

ν (s)dΛµ
ν (s).

2. ‖X(t)ue(f)‖2 ≤ 2eγf (t)
∑

j≥0

∫ t
0 ‖Lµ

ν (s)ue(f)‖2dγf (s).

Such a family {Lµ
ν} is called stochastically integrable with respect to {Λµ

ν} and its

stochastic integral is given by,

X(t) =
∑

µ,ν≥0

∫ t

0
Lµ

ν (s)dΛµ
ν (s), ∀t ≥ 0

and we write,

dX =
∑

µ,ν≥0

Lµ
νdΛ

µ
ν .

Let {Lµ
ν} and {Y µ

ν } be two stochastically integrable families. Then we have

Proposition 1.5.8. For any t ≥ 0, u, h ∈ h0 and f, g ∈ K
1. First fundamental lemma:

〈ue(f), X(t)ve(g)〉 =
∑

µ,ν≥0

∫ t

0
fµ(s)ḡν(s)〈ue(f), Lµ

ν (s)ve(g)〉ds.

2. Second fundamental lemma:

〈X(t)ue(f), Ytve(g)〉 =
∑

µ,ν≥0

∫ t

0
dsfµ(s)gν(s){〈X(s)ue(f),Mµ

ν (s)ve(g)〉

+〈Lν
µ(s)ue(f), Y (s)ve(g)〉+

∑

ξ≥0

〈Lξ
µ(s)ue(f),M ξ

ν (s)ve(g)〉}.

Proposition 1.5.9. Let {Lµ
ν} be a family in B(h0) such that for any ν ≥ 0 there

exists a constant cν ≥ 0 satisfying

∑

µ≥1

‖Lµ
ν (u)‖2 ≤ c2ν‖u‖2, ∀u ∈ h0.
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Then there exists a unique regular (h0,K)-adapted process X ≡ {X(t) : t ≥ 0} which

satisfies the differential equation

dX =
∑

µ,ν≥0

XLµ
νdΛ

µ
ν (1.5. 5)

with initial condition X(0) = x0 ⊗ 1, for some given x0 ∈ B(h0).

The next result tells us about the existence of unitary operator valued solution of

dU =
∑

µ,ν≥0

ULµ
νdΛ

µ
ν , U(0) = 1. (1.5. 6)

Proposition 1.5.10. Let H ∈ B(h0) be self adjoint, {ri : i ≥ 1}, {sµ
ν : i, j ≥ 1} be

bounded operators in h0 such that S =
∑

i,j≥1 s
µ
ν ⊗ |eµ >< eν | is a unitary operator

in h0
⊗

k0 and for some constant c ≥ 0,

∑

i≥1

‖ri(u)‖2 ≤ c2‖u‖2, ∀u ∈ h0.

If we set the coefficients Lµ
ν in the equation (1.5. 6) as follows,

Lµ
ν = −(H +

1
2

∑

k≥1

r∗krk), for (µ, ν) = (0, 0)

= −
∑

k≥1

r∗ks
k
j , for (µ, ν) = (0, j)

= ri, for (µ, ν) = (i, 0)

= sµ
ν − δµ

ν , for (µ, ν) = (i, j),

there exists a unique unitary operator valued process U(t) satisfying (1.5. 6) .

The equation (1.5. 6) can be interpreted as a Schrödinger equation in the presence of

noise. Now let us look at the Heisenberg picture of this equation. For any x ∈ B(h0)

let us define

jt(x) = U(t)∗(x⊗ 1)U(t), ∀t ≥ 0.

This defines a family jt : B(h0) → B(h0
⊗

Γ(K)) of ∗-homomorphisms and for each

x, jt(x) is a regular (h0,K)-adapted process satisfying

djt(x) =
∑

µ,ν≥0

jt(θµ
ν (x))dΛµ

ν (t) (1.5. 7)
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j0(x) = x⊗ 1Γ,

where {θµ
ν } be the family of bounded maps from A to itself, given by,

θµ
ν (x) =





−[H,x]− 1
2

∑
k≥1 r

∗
krkx+ xr∗krk − 2r∗kxrk , for (µ, ν) = (0, 0)

∑
k≥1[r

∗
k, x]s

k
j , for (µ, ν) = (0, j)

∑
k≥1(s

k
i )
∗[x, rk], for (µ, ν) = (i, 0)

(
∑

k≥1(s
k
i )
∗xsk

j )− δi
jx,for (µ, ν) = (i, j).

(1.5. 8)

The vacuum conditional expectation of jt,

E0jt = Pt,

where {Pt} is the QDS with generator θ0
0.

Definition 1.5.11. [33] (Evans-Hudson (EH) flow)

Let A be a unital C∗-subalgebra of B(h0). A family {jt} of unital ∗-homomorphisms

from A into B(h0
⊗

Γ) is called an EH flow with the initial algebra A if the following

conditions are satisfied,

1. j0(x) = x⊗ 1, ∀x ∈ A
2. jt(x) ∈ B t]

3. There exists a family of maps {θµ
ν : µ, ν ≥ 0} defined on a dense ∗-subalgebra A0

of A and taking values in A, such that jt(x) for x ∈ A0 is a regular adapted process,

obtained as a solution of (1.5. 7).

The family {θµ
ν : µ, ν ≥ 0} is called the family for the structure maps of EH flow jt

and they satisfy the following properties

1. θµ
ν ’s are linear maps.

2. θµ
ν (1) = 0, ∀µ, ν ≥ 0, if 1 ∈ A0

3. θµ
ν (x∗) = (θµ

ν (x))∗,∀x ∈ A0

4. For any x, y ∈ A0, µ, ν ≥ 0

θµ
ν (xy)− xθµ

ν (y)− θµ
ν (x)y =

∑

ξ≥1

θµ
ξ (x)θξ

ν(y)

(1.5. 9)
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1.5.3 Coordinate-free Quantum stochastic calculus

Here, we shall briefly discuss the coordinate-free language of quantum stochastic

calculus developed in [15].

LetH1 andH2 be two Hilbert spaces, R ∈ B(H1,H1
⊗H2) and T ∈ B(H1

⊗H2).

For any f ∈ H2, let 〈f,R〉 ∈ B(H1) and Tf ∈ B(H1,H1
⊗H2) be defined as in (1.2.

1) and (1.2. 2) respectively. Let S be the symmetrization operator from free Fock

space Γf (H2) to symmetric Fock space Γs(H2). Action of S on finite particle vector

is given by,

S(f1 ⊗ f2 · · · fm) =
1

(m− 1)!

∑

σ∈Sm

fσ(1) ⊗ fσ(2) · · · fσ(m),

where Sm is group of permutation on m points. For R ∈ B(H1,H1
⊗H2), we define

the creation operator a†(R) which will act on the linear span of vectors of the form

uf⊗n
and on H1

⊗
alg E(H2) as follows,

a†(R)(uf⊗
n
) =

1√
n+ 1

(1H1 ⊗ S)((Ru)⊗ f⊗
n
), (1.5. 10)

It is easy to observe that
∑

n≥0
1
n!‖a†(R)(uf⊗n

)‖2 < ∞, which allows us to define

a†(R)(ue(f)) as the direct sum
⊕

n≥0
1

(n!)
1
2
a†(R)(uf⊗n

). The annihilation operator

a(R) is defined by,

a(R)ue(f) := 〈R, f〉ue(f). (1.5. 11)

Now define the conservation operator Λ(T ) by,

Λ(T )ue(f) := a†(Tf )(ue(f)). (1.5. 12)

Next, to define the fundamental processes, we need some more notations. Let h0,k0

be two Hilbert space and K = L2(R+,k0). Let R ∈ B(h0,h0
⊗

k0), T ∈ B(h0
⊗

k0).

For t ≥ 0 and any bounded interval ∆ ⊆ [t,∞), we define R∆
t : h0

⊗
Γ t] →

h0
⊗

Γ t]

⊗K[t by,

R∆
t (ue(f t])) = P ((1h0 ⊗ χ∆)(Ru)⊗ e(f t])

where χ∆ : k0 → K[t is the operator which takes z to 1∆(·)z for z ∈ k0 and P is

the canonical unitary isomorphism from h0
⊗K[t

⊗
Γ t] to h0

⊗
Γ t]

⊗K[t . Now we
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define the creation process a†R(∆) as :

a†R(∆) = a†(R∆
t ), (1.5. 13)

where a†(R∆
t ) carries the meaning as in (1.5. 10), with H1 = h0

⊗
Γ t],H2 = K[t .

Let T∆
f[t

be the linear map from h0
⊗

Γ t] to h0
⊗

Γ t]

⊗K[t . is given by

T∆
f[t

(ue(f t])) = P (1⊗ χ̂∆)(T̂ (uf[t )⊗ e(f t])). (1.5. 14)

Here, T̂ is the linear map on h0
⊗
L2((t,∞),k0) ≡ L2((t,∞),h0

⊗
k0) given by

T̂ (uf[t )(s) = T (uf(s)), ∀s ≥ t and χ̂∆ is multiplication by characteristic function

1∆. With the above notation, we define the annihilation and conservation processes

aR(∆) and ΛT (∆) by

aR(∆)(ute(f) = ((
∫

∆
〈R, f(s)〉ds)ue(f t]))e(f[t ), (1.5. 15)

=
∫

∆
R∗(uf(s)) ds e(f).

and

ΛT (∆)(ute(f) = a†(T∆
f[t

)(ue(f); (1.5. 16)

Here let us recall some preliminary observations from [15] which will be needed later

on.

Lemma 1.5.12. Let ∆,∆′ ⊆ (t,∞) be intervals of finite length, Ht,H
′
t be two

adapted processes and u, v ∈ h0; g, f ∈ K.
1. For R,S ∈ B(h0,h0

⊗
k0) we have,

〈Hta
†
R(∆)(ve(g)), H ′

ta
†
S(∆′)(ue(f))〉

= 〈e(g t]), e(f t])〉[〈HtR
∆
t (ve(g t])), H

′
tS

∆′
t (ue(f t]))〉

+ 〈〈f[t , HtR
∆
t 〉ve(g t]), 〈g[t , H ′

tS
∆′
t 〉ue(f t])〉]

=
∫

∆∩∆′
〈(HtPR)(ve(g)), (H ′

tPS)(ue(f))〉ds

+
∫

∆

∫

∆′
〈〈f(s),HtPR〉(ve(g)), 〈g(s′), H ′

tPS〉(ue(f))〉ds ds′.
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2. For T, T ′ ∈ B(h0
⊗

k0) we have,

〈(HtT
∆
g[t

)(ve(g)), (H ′
tT

∆′
f[t

)(ue(f))〉

=
∫

∆∩∆′
〈HtPTP

∗(ve(g)g(s)),H ′
tPT

′P ∗(ue(f)f(s))〉ds,

and

〈g[t , HtT
∆
f[t
〉 =

∫

∆
〈g(s),HtTf(s)〉ds.

As in the coordinatized version, integral with respect to above four basic processes

can be defined. Here the fundamental lemmas take the following form. LetE,F,G,H

and E′, F ′, G′,H ′ be integrable (h0,K)-adapted and

Xt =
∫ t

0

(
EsΛT (ds) + FsaR(ds) +Gsa

†
S(ds) +Hsds

)
,

X ′
t =

∫ t

0

(
E′sΛT ′(ds) + F ′saR′(ds) +G′sa

†
S′(ds) +H ′ds

)
.

Then for u, v ∈ h0; f, g ∈ L2(R+,k0), we have :

Proposition 1.5.13. (i) First fundamental formula

< Xtve(g), ue(f) >

=
∫ t

0
ds < {< f(s), EsPTg(s) > +Fs < R, g(s) > +

Gs < f(s), S > +Hs}(ve(g)), ue(f) >

(ii) Second fundamental formula (or Quantum Ito formula) can be put in a conve-

nient symbolic form as follows. Let π̃0(x) denote x⊗1Γ(k) and π0(x) denote x⊗1k0.

Then

aR(dt)π̃0(x)a
†
S(dt) = R∗π0(x)Sdt, ΛT (dt)π̃0(x)ΛT ′(dt) = ΛTπ0(x)T ′(dt),

ΛT (dt)π̃0(x)a
†
S(dt) = a†Tπ0(x)S(dt), aS(dt)π̃0(x)ΛT (dt) = aT ∗π0(x)S(dt),

and the products of all other types are 0.
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(iii) The (h0,K)-adapted process Xt satisfies the estimate

||Xtve(g)||2 ≤ et
∫ t

0
ds[||{EsPTg(s) +GsPS}(ve(g))||2 (1.5. 17)

+||{< g(s), EsPTg(s) > +Fs < R, g(s) > + < g(s), GsPS > +Hs}(ve(g))||2].

In [15, 18], EH flows are constructed on C∗ and von Neumann algebras when the

structure maps are bounded. Let us briefly recall and state the main result obtained

there. Let A ⊆ B(h0) be a von Neumann algebra and k0 be a Hilbert space. Let

us consider the Hilbert module A⊗
k0 and define the fundamental processes in the

Fock module A⊗
Γ.

Assume that we are given the structure maps, that is, the triple of normal maps

(L, δ, σ), where L ∈ B(A), δ ∈ B(A,A⊗
k0) and σ ∈ B(A,A⊗B(k0)) satisfying:

(S1) σ(x) = π(x)− x⊗ 1k0 ≡ Σ∗(x⊗ 1k0)Σ− x⊗ 1k0 , where Σ is a partial isometry

in h0 ⊗ k0 such that π : A → A⊗B(k0) is a ∗-representation.

(S2) δ(x) = π(x)R − Rx, where R ∈ B(h0,h0 ⊗ k0) so that δ is a π-derivation, i.e.

δ(xy) = δ(x)y + π(x)δ(y).

(S3) L(x) = R∗π(x)R + lx + xl∗, where l ∈ A with the condition R∗π(x)R,∈
A, L(1) = 0 so that L satisfies the second order cocycle relation with δ as cobound-

ary, i.e.

L(x∗y)− x∗L(y)− L(x)∗y = δ(x)∗δ(y) ∀x, y ∈ A.

Here we note one important result from [15]

Theorem 1.5.14. Given a uniformly continuous conservative QDS Tt on A with

the generator L there exists a Hilbert space k0, a normal ∗-representation π : A →
A⊗B(k0) and R ∈ B(h0,h0

⊗
k0) such that the above hypotheses (S1)-(S3) are

satisfied.

Let us define a map Θ associated with structure maps (L, δ, σ) as follows

Θ(x) :=


 θ1(x) (θ2((x)))∗

θ3(x) θ4(x)


 =


 L(x) δ†(x)

δ(x) σ(x)


 , ∀x ∈ A, where δ†(x) :=

(δ(x∗))∗, so that Θ : A → A⊗B(k̂0) is a bounded linear map with respect to

direct sum decomposition k̂0 = C
⊕

k0. The following observation [15] sums up the

important properties of the map Θ.
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Lemma 1.5.15. [15] Let Θ be as above. Then

(i)There exists bounded operators V,W ∈ B(h0
⊗

k̂0) such that

θ(x) = V ∗(x⊗ 1k̂0
)V +W (x⊗ 1k̂0

) + (x⊗ 1k̂0
)W ∗. (1.5. 18)

(ii) Θ is conditionally completely positive and satisfies structure relation:

θ(xy) = θ(x)(y ⊗ 1k̂0
) + (x⊗ 1k̂0

)θ(y) + θ(x)Q̂θ(y),∀x, y ∈ A,

where Q̂ =


 0 0

0 1h0
N

k0


 ∈ B(h0

⊗
k̂0).

(iii) There exists Hilbert space H, D ∈ B(h0
⊗

k̂0,h0
⊗H) such that

‖Θ(x)ξ‖ ≤ ‖(x⊗ 1H)Dξ‖, ∀x ∈ A, ξ ∈ h0
⊗

k̂0. (1.5. 19)

Proof. Define the following maps with respect to the direct sum decomposition

h0
⊗

k̂0 = h0
⊕

(h0
⊗

k0) :

R̃ =


 0 0

R −1h0
N

k0


 , π̃(x) =


 x 0

0 π(x)


 ,W =


 l 0

R −1
21h0⊗k0


 ,

Σ̃ =


 1h0 0

0 Σ


 .

Then it is easy to see that (i) is verified with V = Σ̃R̃. That Θ is conditionally com-

pletely positive and satisfies the structure relation in (ii) is also an easy consequence

of (i) and (S1)-(S3). To prove the estimate 1.5. 19 let us consider the following.

From the structure of Θ given above, for any ξ ∈ h0
⊗

k̂0

‖Θ(x)ξ‖2 ≤ 3
(
‖V ‖2 ‖(x⊗ 1k̂0

)V ξ‖2 + ||W || ‖(x⊗ 1k̂0
)ξ‖2 + ‖(x⊗ 1k̂0

)W ∗ξ‖2
)
.

Thus required estimate follows with the choice of Hilbert space H = k̂0
⊕

k̂0
⊕

k̂0

and D ∈ B(h0
⊗

k̂0,h0
⊗H, ) given by

Dξ =
√

3
(
||V || V ξ ⊕ ||W || 1h0⊗k̂0

ξ ⊕W ∗ξ
)
.

Now we introduce the basic map-valued processes. Fix t ≥ 0, a bounded interval

∆ ⊆ [t,∞), elements x1, x2, . . . , xn ∈ A and vectors f1, f2, . . . , fn ∈ K;u ∈ h0. We
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define : (
IL(∆)(

n∑

i=1

xi ⊗ e(fi))

)
u =

n∑

i=1

|∆|(L(xi)u)⊗ e(fi)),

(
aδ(∆)(

n∑

i=1

xi ⊗ e(fi))

)
u =

n∑

i=1

aδ(x∗i )(∆)(ue(fi)),

(
a†δ(∆)(

n∑

i=1

xi ⊗ e(fi))

)
u =

n∑

i=1

a†δ(xi)
(∆)(ue(fi)),

(
Λσ(∆)(

n∑

i=1

xi ⊗ e(fi))

)
u =

n∑

i=1

Λσ(xi)(∆)(ue(fi)),

where |∆| denotes the length of ∆. The above processes are well define onA⊗
alg E(K)

and they take values in A⊗
Γ.

Definition 1.5.16. A family of maps {Yt}t≥0 from A⊗
alg E(K) to A⊗

Γ is said

to be:

(i) adapted, if there is a family of maps Y ′t : A⊗
alg E(K t]) → A⊗

Γ t] such that

Yt(x⊗ e(f)) = Y ′t (x⊗ e(f t]))⊗ e(f[t ) for all x ∈ A, f ∈ K and t ≥ 0;

(ii) regular, if t 7→ Yt(x⊗ e(f))u is continuous for every fixed x ∈ A, u ∈ h, f ∈ K.

For an adapted regular process Yt satisfying

sup
0≤t≤τ

‖Yt(x⊗ e(f))u‖ ≤ C(f, τ)||(x⊗ 1H′′)ru||, (1.5. 20)

for x ∈ A, u ∈ h0, f ∈ C, where C is the space of all bounded continuous functions

in K and H′′ is a Hilbert space, r ∈ B(h0,h0
⊗H′′), one can define the stochastic

integral ∫ t

0
Ys ◦ (a†δ + aδ + Λσ + IL)(ds) (1.5. 21)

as follows. First let us recall the following useful Lemma from [15].

Lemma 1.5.17. [15] ( The Lifting lemma)

Let H be a Hilbert space and V be a vector space. Let β : A⊗
alg V → A⊗H be a

linear map satisfying the estimate

‖β(x⊗ η)u‖ ≤ cη‖(x⊗ 1H′′)ru‖ (1.5. 22)

for some Hilbert space H′′ and r ∈ B(h0,h0
⊗H′′) ( both independent of η ) and for

some constant cη depending on η. Then, for any Hilbert space H′, we can define a
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map β̃ : (A⊗H′) ⊗alg V → A⊗
(H⊗H′) by setting β̃(x ⊗ f ⊗ η) = β(x ⊗ η) ⊗ f

for x ∈ A, η ∈ V, f ∈ H′. Moreover, β̃ satisfies the estimate

‖β̃(X ⊗ η)u‖ ≤ cη‖(X ⊗ 1H′′)ru‖, (1.5. 23)

where X ∈ A⊗H′.

In (1.5. 21), the integrals corresponding to aδ and IL belong to one class while the

other two belong to another. In fact, we define
∫ t
0 Ys◦(aδ+IL)(ds)(x⊗e(f)) by setting

it to be equal to
∫ t
0 Ys((L(x)+ 〈δ(x∗), f(s)〉)⊗e(f))ds. For the integral involving the

other two processes, we need to consider Ỹs : A⊗
k0 ⊗ E(Cs]) → A⊗

Γs]

⊗
k0 as

is given by the lifting lemma 1.5.17, where Cs] = C⋂Ks]. Defining two maps S(s) :

h0
⊗

alg E(Cs]) → h0
⊗

Γs]

⊗
k0 and T (s) : h0

⊗
alg E(Cs])

⊗
k0 → h0

⊗
Γs]

⊗
k0

by

S(s)(ue(fs])) = Ỹs(δ(x)⊗ e(fs]))u,

and

T (s)(ue(gs)⊗ f(s)) = Ỹs(σ(x)f(s) ⊗ e(gs]))u,

the integral
∫ t
0 Ys ◦ (Λσ(ds) + a†δ(ds)(x⊗ e(f))u is defined to be(∫ t

0 ΛT (ds) + a†S(ds)
)
ue(f). For detail see [15], it is shown that

Proposition 1.5.18. [15] The integral Zt =
∫ t
0 Ys ◦ (a†δ + aδ + Λσ + IL)(ds), where

Yt satisfies (1.5. 20), is well define on A⊗
alg E(C) as a regular process. Moreover,

it satisfies an estimate :

‖{Zt(x⊗ e(f)}u‖2

≤ 2et
∫ t

0
exp(‖f[s‖2){‖Ŷs(Θ(x)f̂(s) ⊗ e(fs]))u‖2 +

‖〈f(s), Ŷs(Θ(x)f̂(s) ⊗ e(fs]))〉u‖2}ds, (1.5. 24)

≤ 2et(1 + ‖f‖2
∞)

∫ t

0
exp(‖f[s‖2)‖Ŷs(Θ(x)f̂(s) ⊗ e(fs]))u‖2ds,

where Θ is as defined earlier, Ŷs = Ys ⊕ Ỹs : A⊗
k̂0

⊗
alg E(Cs]) → A⊗

Γ s]

⊗
k̂0,

f̂(s) = 1⊕ f(s) and f(s) is identified with 0⊕ f(s) in k̂0.

Here, we note that Ŷs = (Ys ⊗ 1k̂0
)Q where, Q : h0

⊗
k̂0

⊗
Γ → h0

⊗
Γ

⊗
k̂0 is the

unitary operator which interchanges the second and third tensor components.
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Now let us state the main result in [15] concerning the existence-uniqueness and

homomorphism properties of EH flow

Theorem 1.5.19. [15] (i) Let τ ≥ 0 be fixed. There exists a unique solution Jt of

the equation ,

Jt = idAN
Γ +

∫ t

0
Js ◦ (a†δ + aδ + Λσ + IL)(ds), 0 ≤ t ≤ τ (1.5. 25)

as an adapted regular process mapping A⊗ E(C) into A⊗
Γ and satisfies the esti-

mate

sup
0≤t≤τ

||Jt(x⊗ e(f))u|| ≤ C ′(f)||(x⊗ 1Γfr(L2([0,τ ],H)))Eτu||,

where f ∈ C, Eτ ∈ B(h0,h0
⊗

Γfr(L2([0, τ ],H))), C ′(f) is some constant and

Γfr(L2([0, τ ],H)) is the free Fock space over L2([0, τ ],H).

(ii) Setting jt(x)(ue(g)) = Jt(x⊗ e(g))u, we have

(a) 〈jt(x)ue(g), jt(y)ve(f)〉 = 〈ue(g), jt(x∗y)ve(f)〉 ∀g, f ∈ C, and

(b) jt extends uniquely to a ∗-homomorphism from A into A⊗B(Γ).

Proof. (i) Let us write for ∆ ⊆ [0,∞), M(∆) ≡ aδ(∆) + a†δ(∆) + Λσ(∆) + IL(∆),

and set up an iteration by

J
(n+1)
t (x⊗ e(f)) =

∫ t

0
J (n)

s ◦M(ds)(x⊗ e(f)), J (0)
t (x⊗ e(f)) = x⊗ e(f),

with x ∈ A and f ∈ C fixed. Since J (1)
t = M([0, t]), J (1)

t is a regular adapted process

and by the definition of M(∆), estimate (1.5. 17) and estimate (1.5. 19) in Lemma

1.5.15,

||J (1)
t (x⊗ e(f))u||2 ≤ 2eτ ||e(f)||2

∫ t

0
ds||Θ(x)(u⊗ f̂(s))||2||f̂(s)||2

≤ 2||e(f)||2eτ
∫ t

0
ds||f̂(s)||2||(x⊗ 1k̂0

)D(u⊗ f̂(s))||2.

For the given f , defining E(1)
t : h0 → h0

⊗
L2([0, τ ],H) by

(E(1)
t u)(s) = D(u⊗ f̂(s)||f̂ t](s)||),

where f̂ t](s) = 1⊕ f t](s), the above estimate reduces to

||J (1)
t (x⊗ e(f))u||2 ≤ 2||e(f)||2eτ ||(x⊗ 1L2([0,τ ],H))E

(1)
t u||2. (1.5. 26)
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It is also easy to see from the definition of E(1)
t that for t ≤ τ

‖(x ⊗ 1L2([0,τ ],H))E
(1)
t u‖2 ≤ ‖(x ⊗ 1L2([0,τ ],H))E

(1)
τ u‖2. Which shows that (J (1)

t ) is

indeed adapted regular process, so that
∫ t
0 J

(1)
s ◦ M(ds) is well-defined. Now, an

application of the lifting lemma leads to

||Ĵ (1)
t (X ⊗ e(f))u||2 ≤ 2||e(f)||2eτ ||(X ⊗ 1L2([0,τ ],H))E

(1)
τ u||2,

for X ∈ A ⊗ k̂0, where as in the previous proposition, Ĵ (1)
t = J

(1)
t ⊕ J̃

(1)
t . As

an induction hypothesis, assume that J (n)
t is a regular adapted process having an

estimate ||J (n)
t (x⊗e(f))u||2 ≤ Cn||e(f)||2||(x⊗1

L2([0,τ ],H)⊗
n )E(n)

τ u||2, where C = 2eτ

and E(n)
τ : h0 → h0 ⊗ L2([0, τ ],H)⊗

n

defined as :

(E(n)
τ u)(s1, s2, . . . sn) = (D⊗1

L2([0,τ ],H)⊗
n−1 )Pn{(E(n−1)

τ u)(s2, . . . sn)⊗f̂(s1)||f̂ t](s1)||}

where Pn : h0
⊗
L2([0, τ ],H)⊗

(n−1) ⊗
k̂0 → h0

⊗
k̂0

⊗
L2([0, τ ],H)⊗

(n−1)

is the op-

erator which interchanges the second and third tensor components and E
(0)
τ = 1h.

Then by an application of the proposition 1.5.18 one can verify that J (n+1)
t also sat-

isfies a similar estimate, and is indeed an adapted regular process for each n. Thus,

if we put Jt =
∑∞

n=0 J
(n)
t , then

||Jt(x⊗ e(f))u|| ≤
∞∑

n=0

||J (n)
t (x⊗ e(f))u||

≤ ||e(f)||
∞∑

n=0

C
n
2 (n!)−

1
4 ||(x⊗ 1

L2([0,τ ],H)⊗
n )(n!)

1
4E(n)

τ u||

≤ ||e(f)||
( ∞∑

n=0

Cn

√
n!

) 1
2

||(x⊗ 1Γfr(L2([0,τ ],H)))Eτu||, (1.5. 27)

where we have set Eτ : h0 → h0
⊗

Γfr(L2([0, τ ],H)) by Eτu = ⊕∞n=0(n!)
1
4E

(n)
τ u. It

is easy to see that

||Eτu||2 =
∞∑

n=0

(n!)
1
2 ||E(n)

τ u||2

≤ ||u||2
∞∑

n=0

(n!)
1
2 ||D||2n{

∫

0<sn<sn−1<...s1<τ

dsn . . . ds1||f̂(sn)||4 . . . ||f̂(s1)||4}

= ||u||2
∞∑

n=0

(n!)−
1
2 ||D||2nµf (t)n,
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where µf (t) =
∫ t
0 ||f̂(s)||4ds. The estimate (1.5. 27) proves the existence of the

solution of equation (1.5. 25 ), as well as its strong continuity. The uniqueness of

the solution follows along standard lines of argument.

Here we are omitting the proof that {jt} is a homomorphic family, in Chapter-4

we shall show that {jt} is a strong limit of a family of ∗-homomorphism {p(h)
t }h>0,

called quantum random walks, and it follows that {jt} is a ∗-homomorphic flow.



Chapter 2

A Class of Quantum Dynamical

Semigroups on UHF C*-algebras

In this chapter we shall discuss the class of strongly continuous QDS constructed in

[28] on the UHF C∗-algebras of class N∞.

Let A be the UHF C∗-algebra generated as the C∗-completion of the infinite

tensor product
⊗

j∈Zd MN (C), where N and d are two fixed positive integers with

the unique normalized trace, denoted by tr. For x ∈ MN (C) and j ∈ Zd, let x(j)

denote an element in A whose j-th component is x and rest are identity of MN (C).

For a simple tensor element a ∈ A, let a(j) be the j-th component of a. The support

of a, denoted by supp(a), is defined to be the set {j ∈ Zd : a(j) 6= 1}. For a general

element a ∈ A such that a =
∑∞

n=1 cnan with an’s simple tensor elements in A
and cn’s complex coefficients, we define supp(a) :=

⋃
n≥1 supp(an) and we set |a| =

cardinality of supp(a). For any Λ ⊆ Zd, let AΛ denote the ∗-subalgebra generated by

elements of A with support Λ. When Λ = {k}, we write Ak instead of A{k}. Let Aloc

be the ∗-subalgebra ofA generated by elements a ∈ A of finite support or equivalently

by {x(j) : x ∈MN (C), j ∈ Zd}. ClearlyAloc is dense inA. For k ∈ Zd, the translation

τk on A is an automorphism determined by τk(x(j)) := x(j+k) ∀x ∈ MN (C) and

j ∈ Zd. Thus, we get an action τ of the infinite discrete group Zd on A. For x ∈ A
we denote τk(x) by xk.

We also need another dense subset of A, which is in a sense like the first Sobolev

45
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space in A. For this, we need to note that MN (C) is spanned by a pair of noncom-

mutative representatives {U, V } of ZN = {0, 1 · · ·N − 1} such that UN = V N = 1

and UV = wV U, where w ∈ C is the primitive N -th root of unity. These U, V can be

chosen to be the N×N circulant matrices. In particular for N = 2, a possible choice

is given by U = σx and V = σz, where σx and σz denote the Pauli-spin matrices. Let

G be the cyclic group ZN × ZN . For g = (α, β) ∈ G, its inverse is −g = (−α,−β),

where −α and −β are inverse of α and β in G respectively. Now for j ∈ Zd and

g = (α, β) ∈ G, we set Wj,g = U (j)αV (j)β ∈ A and an automorphism πj,g of A, given

by πj,g(x) = Wj,g x W
∗
j,g. We define

σj,g(x) = πj,g(x)− x, ∀x ∈ A, and ‖x‖1 =
∑

j,g

‖σj,g(x)‖.

Let C1(A) = {x ∈ A: ‖x‖1 < ∞}. It is easy to see that ‖x∗‖1 = ‖τj(x)‖1 = ‖x‖1

and since C1(A) contains the dense ∗-subalgebra Aloc, C1(A) is a dense τ invariant

∗-subalgebra of A.

Let G :=
∏

j∈Zd G be the infinite direct product of the finite group G at each

lattice site. Thus each g ∈ G has j-th component g(j) = (αj , βj) ∈ G. For g ∈ G
we define its support by supp(g) = {j ∈ Zd : g(j) 6= (0, 0)} and |g| = cardinality

of supp(g). Let us consider the projective unitary representation of G given by G 3
g 7→Ug =

∏
j∈ZdWj,g(j) ∈ A.

2.1 QDS generated by formal Lindbladian

For a given completely positive map T on A, we formally define a map L associated

with T by setting L =
∑

k∈Zd Lk,

where

Lkx = τkL0(τ−kx), ∀x ∈ A
with

L0(x) = −1
2
{T (1), x}+ T (x), (2.1. 1)

and {A,B} := AB +BA.

In particular we consider the completely positive map

Tx =
∞∑

l=0

a∗l xal, ∀x ∈ A (2.1. 2)
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with a sequence of elements {al} in A, such that al =
∑

g∈G cl,gUg and

∞∑

l=1

∑

g∈G
|cl,g| |g|2 <∞. (2.1. 3)

It is clear that the map L, associated with the above sequence {al}, i.e. associated

with the completely positive map T given by (2.1. 2), takes the form

L(x) =
∑

k∈Zd

Lk(x)

with

Lk(x) =
1
2

∞∑

l=1

{[τk(al)∗, x]τk(al) + τk(al)∗[x, τk(al)]},∀k ∈ Zd.

Let us state and prove the main result obtained in [28].

Theorem 2.1.1. [28] (i) The map L formally defined above is well define on the

dense ∗-subalgebra C1(A).

(ii) The closure of (L, C1(A)) is the generator of a contractive conservative QDS

{Tt : t ≥ 0} on A,
(iii) The semigroup {Tt} leaves C1(A) invariant.

Proof. For simplicity let us prove the result for L, associated with CP map T (x) =

r∗xr, where r =
∑

g∈G cgUg ∈ A such that |r|2 :=
∑

g∈G |cg| |g|2 < ∞. For L,
associated with CP map T given by (2.1. 2), condition (2.1. 3) on the sequence {al}
will allow the proof to go through.

The map L associated with r, takes the form,

L(x) =
∑

k∈Zd

Lk(x)

with

Lk(x) =
1
2
{[r∗k, x]rk + r∗k[x, rk]}, ∀k ∈ Zd.

Denoting these two bounded derivations [r∗k, .] and [., rk] on A by δ†k and δk respec-

tively, L(x) = 1
2

∑
k∈Zd δ

†
k(x)rk + r∗kδk(x).
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(i) For x ∈ C1(A), let us estimate the norm of L(x),

‖L(x)‖≤ 1
2

∑

k∈Zd

‖δ†k(x)rk + r∗kδk(x)‖

≤ ‖r‖
2

∑

k∈Zd

(
‖δ†k(x)‖+ ‖δk(x)‖

)

≤ ‖r‖
2

∑

k∈Zd

∑

g∈G
|cg|

(‖[τkUg, x]‖+ ‖[τkU∗g , x]‖
)
.

Since we have

‖[Ug, x]‖ = ‖[∏j∈ZdWj,g(j) , x]‖ ≤
∑

j∈supp(g)

‖[Wj,g(j) , x]‖ =
∑

j∈supp(g)

‖σj,g(j)(x)‖,

it follows that

‖L(x)‖≤ ‖r‖
2

∑

k∈Zd

∑

g∈G
|cg|

∑

j∈supp(g)+k

(
‖σj,g(j−k)(x)‖+ ‖σj,−g(j−k)(x)‖

)

≤ ‖r‖
∑

k∈Zd

∑

g∈G
|cg|

∑

j∈supp(g)+k

∑

g′∈G

‖σj,g′(x)‖

≤ ‖r‖
∑

g∈G
|cg||g|

∑

k∈Zd

∑

g′∈G

‖σj,g′(x)‖

≤ ‖r‖
∑

g∈G
|cg| |g| ||x||1

≤ |r|22||x||1

(ii) Step-1. In order to apply Hille-Yosida theorem let us first observe the following.

Let λ > 0 and let x be a self adjoint element in C1(A). Then there exists a bounded

operator Γ on l1(Zd ×G) such that

(λ− Γ)(‖σ·(x)‖)(j, g′) ≤ ‖σj,g′((λ− L)x)‖. (2.1. 4)

In fact, Γ can be chosen to be an infinite positive matrix of the form,

Γ = Γ(0) + Γ(1),

with the action of Γ(0) and Γ(1) on f ∈ l1(Zd ×G) given by:

Γ(0)f (j, g′) = 2
∑

g∈G
|cg|

∑

k∈supp(g)

∑

l∈supp(g)

∑

g′′∈G

f(j − k + l, g′′)
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and

Γ(1)f (j, g′) = 2
∑

k∈Zd

{
∑

G3g:j−k∈supp(g)

|cg|}
∑

h∈G
|ch|

∑

l∈supp(h)

∑

g′′∈G

f(l + k, g′′)

It may be noted that (2.1. 4) implies that for λ > ‖Γ‖l1 , Γ− λ is invertible and one

has

‖σj,g′(x)‖ ≤ (λ− Γ)−1(‖σ·((λ− L)x)‖)(j, g′). (2.1. 5)

To prove (2.1. 4) let us consider the following. For a fixed λ > 0, a self adjoint

element x ∈ C1(A), setting y := (λ− L)x, we have for (j, g′) ∈ Zd ×G, g′ = (α, β)

σj,g′(x) =
1
λ
{σj,g′(y) + σj,g′(L(x))}.

Now we have, by definition

σj,g′(L(x))

=
1
2

∑

k∈Zd

πj,g′([r∗k, x]rk)− [r∗k, x]rk + πj,g′(r∗k[x, rk])− r∗k[x, rk]

=
1
2

∑

k∈Zd

Ak(σj,g′(x)) + [σj,g′(r∗k), x]πj,g′(rk) + πj,g′(r∗k)[x, σj,g′(rk)]

+[r∗k, x]σj,g′(rk) + σj,g′(r∗k)[x, rk]. (2.1. 6)

Where,

Ak(x) = [πj,g′(r∗k), x]πj,g′(rk) + πj,g′(r∗k)[x, πj,g′(rk)].

It is clear that for each k,Ak is a conditionally completely positive bounded map

and Ak(1) = 0. Thus Ak is the generator of a contractive CP semigroup, say {P (k)
t }.

As x is self adjoint, so is σj,g′(x), we can find a state ψ on A such that

|ψ(σj,g′(x))| = ‖σj,g′(x)‖

First let us assume,

ψ(σj,g′(x)) = ‖σj,g′(x)‖. (2.1. 7)

Since {P (k)
t } is positive and contractive and x is self adjoint, we have,

ψ(P (k)
t (σj,g′(x)))
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≤ |ψ(P (k)
t (σj,g′(x)))|

≤ ‖P (k)
t (σj,g′(x))‖

≤ ‖σj,g′(x)‖ = ψ(P (k)
0 (σj,g′(x))).

Thus
d

dt
|t=0ψ(P (k)

t (σj,g′(x))) = ψ(Ak(σj,g′(x))) ≤ 0. (2.1. 8)

Now evaluating the state ψ on σj,g′(x) and using (2.1. 7), we get

‖σj,g′(x)‖ =
1
λ
{ψ(σj,g′(y)) + ψ(σj,g′(L(x)))}.

By (2.1. 6) and (2.1. 8), this gives

‖σj,g′(x)‖ ≤ 1
λ
{ψ(σj,g′(y))+

1
2

∑

k∈Zd

{ψ([σj,g′(r∗k), x]πj,g′(rk))+ψ(πj,g′(r∗k)[x, σj,g′(rk)])

+ψ([r∗k, x]σj,g′(rk)) + ψ(σj,g′(r∗k)[x, rk])}

≤ 1
λ
‖σj,g′(y)‖+

1
2λ

∑

k∈Zd

{‖r‖ ‖[σj,g′(r∗k), x]‖+ ‖r‖ ‖[σj,g′(rk), x]‖

+‖[r∗k, x]‖ ‖σj,g′(rk)‖+ +‖σj,g′(r∗k)‖ ‖[rk, x]‖}. (2.1. 9)

If ψ(σj,g′(x)) = −‖σj,g′(x)‖, replacing x by −x, same argument as above gives the

inequality (2.1. 9).

Now in order to estimate the second term of (2.1. 9), let us take g ∈ G with

j ∈ supp(g) and observe that

‖[σj,g′(Ug), x]‖ = ‖[U (j)αV (j)βUgV
(j)−β

U (j)−α − Ug, x]‖

= ‖[(wα(βj−β)−β(αj−α) − 1)Ug, x]‖ ≤ 2‖[Ug, x]‖
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So we have,

‖[σj,g′(rk), x]‖
=

∑

k∈Zd

∑

g:j−k∈supp(g)

|cg|‖[σj,g′(τkUg), x]‖

≤ 2
∑

k∈Zd

∑

g:j−k∈supp(g)

|cg|‖[τkUg, x]‖

≤ 2
∑

k∈Zd

∑

g:j−k∈supp(g)

|cg|
∑

l:l−k∈supp(g)

‖σl,g(l−k)(x)‖

≤ 2
∑

k∈Zd

∑

g:j−k∈supp(g)

|cg|
∑

l:l−k∈supp(g)

∑

g′′∈G

‖σl,g′′(x)‖

≤ 2
∑

k∈Zd

∑

g:j+k∈supp(g)

|cg|
∑

l:l+k∈supp(g)

∑

g′′∈G

‖σl,g′′(x)‖

≤ 2
∑

g∈G
|cg|

∑

k∈supp(g)−j

∑

l∈supp(g)−k

∑

g′′∈G

‖σl,g′′(x)‖

≤ 2
∑

g∈G
|cg|

∑

k∈supp(g)

∑

l∈supp(g)

∑

g′′∈G

‖σj−k+l,g′′(x)‖

Thus,

1
2

∑

k∈Zd

{‖r‖ ‖[σj,g′(r∗k), x]‖+ ‖r‖ ‖[σj,g′(rk), x]‖} ≤ Γ(0)(‖σ·(x)‖)(j, g′)

Similar estimate gives,

‖σj,g′(r∗k)‖ ‖[rk, x]‖ ≤ {2
∑

g:j−k∈supp(g)

|cg|}
∑

h∈G
|ch|

∑

l∈supp(h)

∑

g′′∈G

‖σl+k,g′′(x)‖

So, we have,

1
2

∑

k∈Zd

(‖σj,g′(r∗k)‖ ‖[rk, x]‖+ ‖[r∗k, x]‖ ‖σj,g′(rk)‖
) ≤ Γ(1)‖σ·(x)‖(j, g′)

A simple estimate now gives,

‖Γ(f)‖l1 ≤ N2{
∑

g∈G
|cg| |g|2}{4‖r‖+

∑

g∈G
|cg| |g|2}‖f‖l1

Step-2. For each n ≥ 1, setting L(n) =
∑
|k|≤n Lk, it is clear that L(n) is a bounded

CCP map on A. So L(n) is the generator of QDS {T (n)
t } on A and for λ > 0, ‖(L(n)−

λ)(x)‖ ≥ λ‖x‖, ∀x ∈ A and hence ‖(L(n) − λ)−1‖ ≤ 1
λ . For λ > ‖Γ‖l1 , in order to
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show that Ran(L−λ) is dense in (A, ‖ · ‖), we consider the following. Let y be a self

adjoint element in C1(A). Since (L(n) − λ) is invertible for every n, we can choose

xn ∈ A (in fact self adjoint) so that (L(n) − λ)(xn) = y. Note that (2.1. 5) also

holds if L is replaced by L(n) and thus we have

‖σα′(xn)‖ ≤
∑
α

{(λ− Γ)−1}α′,α‖σα(y)‖. (2.1. 10)

Summing over α′ it follows that

‖(xn)‖1 ≤ ‖(λ− Γ)−1‖ ‖y‖1 <∞

and so xn ∈ C1(A). Now setting yn = (L − λ)(xn),

‖yn − y‖ = ‖(L − L(n))xn‖ =
∑

|k|>n

Lk(xn).

The above quantity is clearly dominated by

‖r‖
∑

|k|>n

∑

g∈G
|cg|

∑

g1∈G

∑

j∈supp(g)+k

‖σj,g1(xn)‖

≤ ‖r‖
∑

|k|>n

∑

g∈G
|cg|

∑

g1∈G

∑

j∈supp(g)+k

(λ− Γ)−1{‖σ·(y)‖}(j, g1) (2.1. 11)

Since

∑

|k|>1

∑

g∈G
|cg|

∑

g1∈G

∑

j∈supp(g)+k

(λ− Γ)−1{‖σ·(y)‖}(j, g1)

≤
∑

g∈G
|cg| |g|

∑

j∈Zd

∑

g1∈G

(λ− Γ)−1{‖σ·(y)‖}(j, g1)

≤
∑

g∈G
|cg| |g| ‖(λ− Γ)−1‖ ‖y‖1 <∞,

(2.1. 11) goes to 0 as n tends to ∞ which shows that yn converges to y. For a general

elements y ∈ C1(A), using the above argument for the real and imaginary parts of y

we can find a sequence yn ∈ (L − λ)(C1(A)) such that approximate yn converges to

y. Thus Ran(L − λ) as well as (L − λ)(C1(A)) are dense in C1(A) and hence in A
too.
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Now for y = (L − λ)(x) in the dense ∗-subspace (L − λ)(C1(A)), we have

‖(L(n) − λ)−1(y)− (L − λ)−1(y)‖
= ‖(L(n) − λ)−1(L − L(n))(L − λ)−1(y)‖
≤ ‖(L(n) − λ)−1‖

∑

|k|>n

Lk(x)‖

≤ 1
λ
‖

∑

|k|>n

Lk(x)‖.

So ‖(L(n) − λ)−1(y)− (L − λ)−1(y)‖ converges to 0 as n tends to ∞ and hence

‖(L − λ)−1(y)‖ ≤ 1
λ
‖y‖.

From the Hille-Yosida theorem it follows that L is the generator of a strongly contin-

uous contractive semigroup. Now by theorem 1.3.4, the contractive semigroups T (n)
t

converges to Tt strongly as n tends to ∞. Thus Tt is a contractive CP semigroup on

A as each T (n)
t is so.

The semigroup Tt satisfies

Tt(x) = x+
∫ t

0
Ts(L(x))ds, ∀x ∈ Dom(L).

Since 1 ∈ C1(A) and L(1) = 0, it follows that Tt(1) = 1,∀t ≥ 0.

(iii) By (2.1. 5) for λ > β := ‖Γ‖l1 and self adjoint x ∈ C1(A), we have

‖σj,g(λ− L)−1(x)‖ ≤ (λ− Γ)−1‖σ·(x)‖(j, g), ∀(j, g) ∈ Zd ×G.

Summing over all (j, g) ∈ Zd ×G, we get

‖(λ− L)−1(x)‖1 ≤ (λ− β)−1‖x‖1.

Thus for x ∈ C1(A),

‖Tt(x)‖1 ≤ 2 etβ‖x‖1 <∞.
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2.2 Ergodicity of the QDS

Following [28], we say that a contractive CP semigroup Tt is ergodic if there exists

an invariant state ψ satisfying

‖Tt(x)− ψ(x)1‖ → 0 as t→∞, ∀x ∈ A. (2.2. 1)

In [28], the author has discussed some criteria for ergodicity of the QDS Tt. Some

examples of such semigroups associated with partial states on the UHF algebra and

their perturbation are given.

For a state φ on MN (C) and k ∈ Zd, the partial state φk on A is a CP map

determined by φk(x) = φ(x(k))x{k}c , for x = x(k)x{k}c , where x(k) ∈ Ak = A{k} and

x{k}c ∈ A{k}c with {k}c stands for the complement set Zd \ {k}. Here, recall that

for any set Λ in Zd, AΛ denotes the sub-algebra of elements with support contain in

Λ. By (2.1. 1) the Lindbladian Lφ corresponding to the partial state φ0 is formally

given by

Lφ(x) =
∑

k∈Zd

Lφ
k(x), where Lφ

k(x) = φk(x)− x. (2.2. 2)

For the state φ we can find vectors {ξl : l = 1, 2 · · ·N} in CN such that

φ(x) =
N∑

l=1

〈ξl, xξl〉, ∀x ∈MN (C).

Let us reindex the set {(n, l) : n, l = 1, · · ·N} by {m = 1, · · ·N2}. Now for a fixed

orthonormal basis {en : n = 1, · · ·N} of CN , defining N2 many rank one operators

L(m) := |ξl >< en| where index m corresponds to (n, l), we have

φ(x) =
N2∑

m=1

L(m)∗xL(m), ∀x ∈MN (C), and
N2∑

m=1

L(m)∗L(m) = 1.

For m = 1, · · ·N2, we consider the element L(m)
0 ∈ A0 with the zeroth component

being L(m). Now for k ∈ Zd, writing L(m)
k = τk(L

(m)
0 ), the partial state φk is given

by,

φk(x) =
N2∑

m=1

L
(m)
k

∗
xL

(m)
k , ∀x ∈ A.
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So the formal Lindbladian Lφ takes the form

Lφ(x) =
∑

k∈Zd

Lφ
k(x),

with

Lφ
k(x) =

1
2

N2∑

m=1

[L(m)
k

∗
, x]L(m)

k + L
(m)
k

∗
[x, L(m)

k ].

It follows from Theorem 2.1.1 that Lφ is defined on C1(A). Moreover, the closure of

(Lφ, C1(A)) ( which we denote by same symbol Lφ) is the generator of a contractive

CP semigroup Tφ
t on A.

From (2.2. 2), for any element x(k)
k ∈ A with support {k}, by induction we have

(Lφ)n(x(k)
k ) = (−1)n[x(k)

k − φ(xk)] and hence

T φ
t (xk) =

∑

n≥0

tn

n!
(Lφ)n(x(k)

k )

= φ(xk) + e−t(x(k)
k − φ(xk))}.

For simple tensor element, in particular for x = x
(i)
i x

(j)
j ,

(Lφ)n(x) = (−1)n
(
[x(i)

i − φ(xi)]x
(j)
j + x

(i)
i [x(j)

j − φ(xj)]

+ c(n) [x(i)
i − φ(xi)][x

(j)
j − φ(xj)]

)
,

where

c(n) =
n−1∑

m=1

n!
m! (n−m)!

= 2n − 2.

Thus

T φ
t (x) =

∑

n≥0

tn

n!
(Lφ)n(x)

=
[
φ(x(i)

i ) + e−t(x(i)
i − φ(x(i)

i ))
] [
φ(x(j)

j ) + e−t(x(j)
j − φ(x(j)

j ))
]

= T φ
t (x(i)

i )T φ
t (x(j)

j ).

On simple tensor element x =
∏

k∈Λx
(k)
k with support Λ,

T φ
t (

∏
k∈Λx

(k)
k ) =

∏
k∈Λ {φ(xk) + e−t(x(k)

k − φ(xk))}
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and hence

lim
t→∞ ‖T

φ
t (

∏
k∈Λx

(k)
k )−∏

k∈Λφ(xk)‖ = 0.

Now setting Φ(
∏

k∈Λx
(k)
k ) =

∏
k∈Λφ(xk) and for any x =

∑
g∈G cgUg ∈ Aloc defining

Φ(x) =
∑

g∈G cgΦ(Ug), it follows that

lim
t→∞ ‖T

φ
t (x)− Φ(x)‖ = 0, ∀x ∈ Aloc.

Since, {T φ
t } is a CP contractive semigroup ‖Φ(x)‖ ≤ ‖x‖,∀x ∈ Aloc and Φ extends

as a state on A such that

lim
t→∞T

φ
t (x) = Φ(x),∀x ∈ A.

The dilation problem for this T φ
t will be addressed in the next Chapter.

Now we consider the perturbation of the contractive CP semigroup Tφ
t . Let Tt be

the QDS with the generator L appearing in the Theorem 2.1.1. For any real number

c, let us consider

L(c)(x) = L(φ) + cL

It is clear that L(c) is the Lindbladian associated with the completely positive map

T (x) =
N2∑

m=1

L
(m)
k

∗
xL

(m)
k + c

∞∑

l=0

a∗l xal, ∀x ∈ A,

and by Theorem 2.1.1 it follows that the closure of (L(c), C1(A)) is the generator of

a QDS T
(c)
t . From [28], here we shall state a result concerning the ergodicity of CP

semigroup T
(c)
t .

Theorem 2.2.1. [28] There exists a constant c0 such that for 0 ≤ c ≤ c0, the

above contractive CP semigroup T
(c)
t is ergodic with respect to the invariant state

Φ(c) satisfying

‖T (c)
t (x)‖1 ≤ 2e−(1− c

c0
)t‖x‖1, (2.2. 3)

‖T (c)
t (x)− Φ(c)(x)1‖ ≤ 4

N2
e
−(1− c

c0
)t‖x‖1, ∀x ∈ C1(A).

The following result determines the invariant state Φ(c).
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Proposition 2.2.2. The invariant state Φ(c) corresponding to the ergodic QDS T (c)
t

is given by

Φ(c)(x) = Φ(x) + c

∫ ∞

0
Φ(L(T (c)

s (x)))ds,∀x ∈ C1(A).

Proof. Since for any x ∈ A, Tφ
t (x) converges to Φ(x) as t tends to ∞ and for any

t ≥ 0, x ∈ C1(A),

T
(c)
t (x)− T

(φ)
t (x) = c

∫ t

0
T

(φ)
t−sLT (c)

s (x)ds,

it is enough to show that for x ∈ C1(A),

lim
t→∞ ‖

∫ t

0
T

(φ)
t−sLT (c)

s (x)ds−
∫ ∞

0
Φ(L(T (c)

s (x)))ds‖ = 0. (2.2. 4)

To prove (2.2. 4), we observe that

‖
∫ t

0
T

(φ)
t−sLT (c)

s (x)ds−
∫ ∞

0
Φ(L(T (c)

s (x)))ds‖

≤ ‖
∫ t

0
(T (φ)

t−s − Φ)LT (c)
s (x)ds‖+ ‖

∫ ∞

t
Φ(L(T (c)

s (x)))ds‖.

Since T (c)
s (x) ∈ C1(A), we have by (2.2. 3) ‖L(T (c)

s (x))‖ ≤ Me−µs‖x‖1 for some

positive constants µ and M independent of s. Thus the integrands in the first and

second terms are dominated by the integrable function f(s) = 2Me−µs‖x‖1. Clearly,

the second term converges to 0 as t tends to ∞. Since for fixed s ≥ 0 and x ∈ C1(A),

lim
t→0

‖(T (φ)
t−s − Φ)LT (c)

s (x)‖ = 0, ∀s ≥ 0,

by dominated convergence theorem the first term goes to 0 as t tends to ∞.



Chapter 3

EH Dilation for a Class of QDS

by Iteration Method

In this chapter we investigate the possibility of constructing EH flows for the QDS

on UHF C∗-algebras, discussed in the previous section. Although the question is not

answered in full generality, EH flows for a class of QDS are constructed.

Let r =
∑

g∈G cgUg ∈ A such that
∑

g∈G |cg||g|2 <∞. The Lindbladian L associated

with the element r, i.e. associated with the CP map T given by T (x) = r∗xr takes

the form

L(x) =
∑

k∈Zd

δ†k(x)rk + r∗kδk(x), (3.0. 1)

where rk := τk(r) and δk, δ
†
k are bounded derivations on A defined by

δk(x) = [x, rk] and δ†k(x) := (δk(x∗))∗ = [r∗k, x], ∀x ∈ A. (3.0. 2)

It follows from [28] that the closure of (L, C1(A)) is the generator of a QDS Tt

on A. In order to construct an EH flow for the QDS Tt, we would like to solve the

following qsde in B(L2(A, tr))⊗ B(Γ(L2(R+,k0))) :

djt(x) =
∑

k∈Zd

jt(δ
†
k(x))dak(t) +

∑

k∈Zd

jt(δk(x))da
†
k(t) + jt(L(x))dt, (3.0. 3)

j0(x) = x⊗ 1Γ , x ∈ Aloc.

58
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Let us first look at the corresponding Hudson-Parthasarathy equation in L2(A, tr)⊗
Γ(L2(R+,k0)) given by

dUt = {
∑

k∈Zd

[r∗kdak(t)− rkda
†
k(t)]−

1
2

∑

k∈Zd

r∗krkdt}Ut, (3.0. 4)

U0(x) = 1L2⊗Γ.

However, though each rk ∈ A and hence is in B(L2(A, tr)), the equation (3.0. 4)

does not in general admit a solution since

〈u,
∑

k∈Zd

r∗krku〉 =
∑

k∈Zd

‖rku‖2 ∀u ∈ L2(A, tr)

is not convergent in general and hence
∑

k∈Zd rk ⊗ ek does not define an element

in A⊗ k0. For example, let r be the single-supported unitary element U (j) ∈ A for

some j ∈ Zd so that rk = U (k+j) is a unitary for each k ∈ Zd and hence

∑

k∈Zd

‖rku‖2 =
∑

k∈Zd

‖u‖2 = ∞.

However, as we shall see, in many situations there exist Evans-Hudson flows, even

though the corresponding Hudson-Parthasarathy equations (3.0. 4) do not admit

solution.

There are some cases when an Evans-Hudson flow can be seen to be implemented

by a solution of a Hudson-Parthasarathy equation.

Hudson-Parthasarathy type flow

Here we shall construct HP type flow for the QDS associated with self adjoint element

r in A, using the results in [30, 32]. This method is not applicable for CP semigroup

associate with non self adjoint elements of A. Let us recall some results from [30, 32]

which will be needed in the sequel.

Let I be the collection of L = {Lµ
ν : µ, ν ≥ 0}, where Lµ

ν ∈ B(h0) and for each ν, ∃ a

constant Cν depending upon L and ν such that
∑

µ≥0 ‖Lµ
νu‖2 ≤ Cν‖u‖2, ∀u ∈ h0,

furthermore, for any µ, ν ≥ 0, Lµ
ν + (Lν

µ)∗ +
∑

k≥1(L
µ
k)∗Lk

ν = 0. We define Ĩ = {L̃ =

{L̃ν
µ = (Lµ

ν )∗} : L ∈ I}.
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Theorem 3.0.1. [30] Let L = {Lµ
ν : µ, ν ≥ 0} be a family of linear operator in h0

such that:

1. L0
0 is the generator of a strongly continuous contractive semigroup with D as a

core and D ⊆ D(Lµ
ν ), ∀µ, ν,

2. there exists a sequence L(n) ∈ I ∩ Ĩ, n ≥ 1, so that for any u ∈ D

lim
n→∞L

µ
ν (n)u = Lµ

νu,∀µ, ν.

Then there exists a unique strongly continuous contractive solution Vt of the qsde

dVt =
∑
µ,ν

VtL
µ
νdΛ

µ
ν ; V0 = 1. (3.0. 5)

Moreover, if βλ = β̃λ = 0, for some λ ≥ 0, where βλ is

{X ∈ B(h0)+ : 〈u,XL0
0v〉+ 〈L0

0u,Xv〉+
∑

k∈Zd

〈Lk
0u,XL

0
kv〉 = λ〈u,Xv〉, ∀u, v ∈ D}

and β̃λ is similarly defined corresponding to L̃, then V is a unitary process.

Next result give the sufficient condition for βλ = β̃λ = 0.

Theorem 3.0.2. [32] Let (Y,D) be the generator of a strongly continuous contractive

semigroup on h0 and Sk : k ≥ 1 be a family of densly define operator on h0 such

that:

1. D ⊆ D(Sk), ∀k and

2. 〈u, Y u〉+ 〈Y u, u〉+
∑

k≥1〈Sku, Sku〉 ≤ 0, ∀u ∈ D.
Then the map L̃ on B(h0) formally define by

L̃(x) :=
1
2

∑

k∈Zd

(2SkxSk − SkSkx− xSkSk)

is well define on a suitable domain and its closure generates a contractive QDS Pt

on B(h0). Moreover, the following statements are equivalent:

(a). The semigroup Pt is conservative.

(b). For any fixed λ > 0, the set

{x ∈ B(h0)+ : 〈u, xY v〉+ 〈Y u, xv〉+
∑

k∈Zd

〈Sku, xSkv〉 = λ〈u, xv〉, ∀u, v ∈ D(Y )}

contains only trivial element 0 ∈ B(h0).
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Now let us consider QDS Tt on UHF C∗-algebra A associated with self adjoint

element r ∈ A. Here the generator L satisfies

L(x) = −1
2

∑

k∈Zd

[rk, [rk, x]] ∀x ∈ C1(A).

The UHF C∗-algebra A is isometrically embedded as a dense subspace in the GNS

Hilbert space h0 = L2(A, tr), with canonical embedding i. For any fixed a and b ∈ A
it is clear that ‖i(axb)‖2

h0
≤ ‖a‖2‖b‖2tr(x∗x),∀x ∈ A. Thus for any k ∈ Zd, the map

Sk on A defined by Sk(i(x)) = i([rk, x]),∀x ∈ A, extends uniquely to a bounded self

adjoint operator on h0. We define a family of operator L = {Lµ
ν} given by

Lµ
ν = −1

2

∑

k∈Zd

SkSk, for (µ, ν) = (0, 0)

= −Si, for (µ, ν) = (i, 0)

= Sj , for (µ, ν) = (0, j)

= 0 otherwise .

Theorem 3.0.3. Let L be describe as above, then there exists unique unitary valued

process on h0 ⊗ Γ, satisfying the HP type qsde

dVt =
∑

µ,ν∈Zd∪{0}
VtL

µ
νdΛ

µ
ν ; V0 = 1. (3.0. 6)

Proof. From the definition of L we have D := i(Aloc) ⊆ D(Lµ
ν ),∀µ, ν. Now let us

consider the sequence L(n) given by

Lµ
ν (n) = −1

2

∑

|k|≤n

SkSk, for (µ, ν) = (0, 0)

= −Si, for (µ, ν) = (i, 0) : |i| ≤ n

= Sj , for (µ, ν) = (0, j) : |j| ≤ n

= 0 otherwise .

It is clear that L(n) = {Lµ
ν (n)} and L̃(n) = {L̃µ

ν (n)} belong to the class I, and for

x ∈ Aloc one has limn→∞L
µ
ν (n)(i(x)) = Lµ

ν (i(x)). Also, we note that

L0
0(i(x)) = −1

2

∑

0 6=k∈Zd

SkSk(i(x)) = i(L(x)) ∀x ∈ Aloc.
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From the proof of Theorem 2.1.1, it follows that Ran(L0
0−µ) is dense in the subspace

i(A) and hence dense in h0, and ‖(L0
0−µ)−1‖ ≤ 1

µ , ∀µ > 0. So L0
0 is the generator of

strongly continuous contractive semigroup on h0. Thus by Theorem 3.0.1, it follows

that there exists unique contraction valued solution Vt for the qsde (3.0. 6).

For any x ∈ C1(A), we define a map L̃(x) by

(L̃(x))(i(y)) :=
1
2

∑

k∈Zd

(2SkxSk − SkSkx− xSkSk)(i(y)), ∀y ∈ A.

Clearly L̃(x) extends uniquely to a bounded linear operator on h0 and satisfies

(L̃(x))(i(y)) = i(L(x)y),∀y ∈ A.

Since 1 ∈ C1(A) ⊆ D(L̃), closure of L̃ generates a contractive conservative CP

semigroup Qt on B(h0). Now applying Theorem 3.0.2, it follows that βλ = {0}. By a

similar argument it can be shown that β̃λ = {0} and hence the solution Vt for above

qsde (3.0. 6) is a unitary value adapted process.

Thus ηt given by ηt(x) = V ∗t (x⊗ 1Γ)Vt, for x ∈ A satisfies EH type flow equation,

dηt(x) =
∑

j∈Zd

ηt([Sk, x])dak(t) +
∑

j∈Zd

ηt([x, Sk])da
†
k(t) + ηt(L̃(x))dt,

η0(x) = x⊗ 1Γ.

3.1 EH dilation

Here we restrict ourselves to QDS Tt associated with element r ∈ A such that

translate rk for different k ∈ Zd are commuting. Let a, b ∈ ZN be fixed and W =

UaV b ∈ MN (C). We consider the following representation of the infinite product

group G′ := ∏
j∈ZdZN , given by

G′ 3 g 7→Wg =
∏

j∈ZdW (j)αj
, where g = (αj).

For any y ∈ A, y =
∑

g∈G cgUg and for n ≥ 1 we define

ϑn(y) =
∑

g∈G
|cg| |g|n.
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Now we consider r ∈ A, r =
∑

g∈G′ cgWg such that
∑

g∈G′ |cg| |g|2 < ∞. It is clear

that ϑ1(r) =
∑

g∈G′ |cg| |g| < ∞. We note that any x ∈ Aloc can be written as

x =
∑

h∈G chUh, with complex coefficients ch satisfying ch = 0 for all h such that

supp(h)
⋂
supp(x) is empty. So

ϑn(x) =
∑

h∈G
|ch| |h|n <∞ for n ≥ 1,

and it is clear that

ϑn(x) ≤ |x|n
∑

h∈G
|ch| ≤ cnx

where cx = |x|(1 +
∑

h∈G |ch|). Let us consider the formal Lindbladian L associated

with the element r,

L =
∑

k∈Zd

Lk,

where Lk(x) = 1
2δ
†
k(x)rk + r∗kδk(x). Now consider the conservative CP semigroup

Tt with generator L. In order to obtain EH dilation for CP semigroup Tt we solve

the qsde 3.0. 3 by employing iteration method. For this we need some estimate on

product of structure maps. First let us fix some notations. For n ≥ 1, we denote

the set of integers {1, 2, · · ·n} by In and for 1 ≤ p ≤ n, P = {l1, l2 · · · lp} ⊆ In with

l1 < l2 < · · · < lp , we define a map from the n-fold Cartesian product of Zd to that

of p copies of Zd by

k̄(In) = (k1, k2 · · · kn) 7→ k̄(P ) := (kl1 , kl2 · · · klp)

and similarly, ε̄(P ) := (εl1 , εl2 , · · · εlp) for a vector ε̄(In) = (ε1, ε2, · · · εn) in the n-fold

Cartesian product of {−1, 0, 1}.
For brevity of notations, we write ε̄(P ) ≡ c ∈ {−1, 0, 1} to mean that all εli = c

and denote k̄(In) and ε̄(In) by k̄(n) and ε̄(n) respectively. Setting δε
k = δ†k,Lk and

δk depending upon ε = −1, 0 and 1 respectively, we write R(k̄) = rk1rk2 · · · rkp and

δ(k̄, ε̄) = δ
εp

kp
· · · δε1

k1
for any k̄ = (k1, k2 · · · kp) and ε̄ = (ε1, ε2 · · · εp).

Now we have the following useful Lemma,

Lemma 3.1.1. Let r, x and constant cx be as above. Then

(i) For any n ≥ 1,
∑

k̄(n)

‖δ(k̄(n), ε̄(n))(x)‖ ≤ (2ϑ1(r)cx)n ∀x ∈ Aloc,
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where ε̄(n) is such that εl 6= 0, ∀ l ∈ In.
(ii) For any n ≥ 1 and k̄(n),

Lkn · · · Lk1(x)

=
1
2n

∑

p=0,1···n

∑

P⊆In:|P |=p

R(k̄(P c))∗δ(k̄(n), ε̄(P )(n))(x)R(k̄(P )),

where ε̄(P )(n) is such that ε̄(P )(P ) ≡ −1 and ε̄(P )(P c) ≡ 1.

(iii) For any n ≥ 1, p ≤ n, P ⊆ In and ε̄(n) such that ε̄(P ) contains all those

components equal to 0, we have,

∑

k̄(n)

‖δ(k̄(n), ε̄(n))(x)‖ ≤ ‖r‖p(2ϑ1(r)cx)n

≤ (1 + ‖r‖)n(2ϑ1(r)cx)n.

(iv) Let m1,m2 ≥ 1; x, y ∈ Aloc and ε̄′(m1), ε̄′′(m2) be two fixed tuples. Then for

n ≥ 1 and ε̄(n) as in (iii), we have,

∑

k̄(n),k̄′(m1),k̄′′(m2)

‖δ(k̄(n), ε̄(n)){δ(k̄′(m1), ε̄′(m1))(x) · δ(k̄′′(m2), ε̄′′(m2))(y)}‖

≤ 2n(1 + ‖r‖)2n+m1+m2(2ϑ1(r)cx,y)n+m1+m2 ,

where cx,y = max{cx, cy}.

Proof. (i) As r∗ is again of the same form as r, it is enough to observe the following

:
∑

kn,···k1

‖ [rkn , · · · [rk1 , x]] · · · ] ‖ ≤ (2ϑ1(r)cx)n ∀x ∈ Aloc .

In order to prove this let us consider

LHS =
∑

kn,···k1

∑

gn,···g1∈G′;h∈G
|cgn | · · · |cg1 | |ch| ‖ [τknWgn , · · · [τk1Wg1 , Uh]] · · · ] ‖.

We note that for any two commuting elements A,B in A, [A, [B, x]] = [B, [A, x]] .

Thus, for the commutator [τknWgn , · · · [τk1Wg1 , Uh]] · · · ] to be nonzero, it is necessary



3.1. EH dilation 65

to have (supp(gi) + ki)
⋂
supp(h) 6= φ for each i = 1, 2, · · ·n. Clearly the number of

choices of such ki ∈ Zd is at most |gi| · |h|. Thus we get,

∑

kn,···k1

‖ [rkn , · · · [rk1 , x]] · · · ] ‖

≤
∑

gn,···g1∈G′;h∈G
|cgn | · · · |cg1 ||ch||gn| · · · |g1||h|n2n

≤ (2ϑ1(r)cx)n.

(ii) The proof is by induction. For any k ∈ Zd we have,

Lk(x) =
1
2

∑

k∈Zd

δ†k(x)rk + r∗kδk(x),

so it is trivially true for n = 1. Let us assume it to be true for some m > 1 and for

any km+1 ∈ Zd consider Lkm+1Lkm · · · Lk1(x). By applying the statement for n = m

we get,

Lkm+1Lkm · · · Lk1(x)

=
1

2m+1

∑

p=0,1···m

∑

P⊆Im:|P |=p

[δ∗km+1
{R(k̄(P c))∗δ(k̄(m), ε̄(P )(m))(x)R(k̄(P ))}rkm+1

+ r∗km+1
δkm+1{R(k̄(P c))∗δ(k̄(m), ε̄(P )(m))(x)R(k̄(P ))}].

Since rk’s are commuting with each other, the above expression becomes

1
2m+1

∑

p=0,1···m

∑

P⊆Im:|P |=p

[R(k̄(P c))∗δ∗km+1
δ(k̄(m), ε̄(P )(m))(x)R(k̄(P ))rkm+1

+ r∗km+1
R(k̄(P c))∗δkm+1δ(k̄(m), ε̄(P )(m))(x)R(k̄(P ))]

=
1

2m+1

∑

p=0,1···m+1

∑

P⊆Im+1:|P |=p

R(k̄(P c))∗δ(k̄(m+ 1), ε̄(P )(m+ 1))(x)R(k̄(P )).

(iii) By simple application of (ii),

δ(k̄(n), ε̄(n))(x)

=
1
2p

∑

q=0,1···p

∑

Q⊆P :|Q|=q

R(k̄(P \Q))∗δ(k̄(n), ε̄(Q,P )(n))(x)R(k̄(Q)), (3.1. 1)
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where ε̄(Q,P )(n) is defined to be the map from the n-fold Cartesian product of

{−1, 0, 1} to itself, given by ε̄(n) 7→ ε̄(Q,P )(n) such that ε̄(Q,P )(Q) ≡ −1, ε̄(Q,P )(P \Q) ≡
1 and

ε̄(Q,P )(In \ P ) = ε̄(In \ P ). Now (iii) follows from (i).

(iv) By (3.1. 1) we have,

LHS

=
1
2p

∑

k̄(n),k̄′(m1),k̄′′(m2)

∑

q=0,1···p

∑

Q⊆P :|Q|=q

‖R(k̄(P \Q))∗

δ(k̄(n), ε̄(Q,P )(n)) [δ(k̄′(m1), ε̄′(m1))(x) · δ(k̄′′(m2), ε̄′′(m2))(y)] R(k̄(Q))‖.

Now applying the Leibnitz rule, it can be seen to be less than or equal to

‖r‖p

2p

∑

k̄(n),k̄′(m1),k̄′′(m2)

∑

q=0,1···p

∑

Q⊆P :|Q|=q

∑

l=0,1···n

∑

L⊆In:|L|=l

‖δ(k̄(L), ε̄(Q,P )(L))δ(k̄′(m1), ε̄′(m1))(x)‖
‖δ(k̄(Lc), ε̄(Q,P )(L

c))[δ(k̄′′(m2), ε̄′′(m2))(y)]‖.

Using (iii), we obtain,

LHS

≤ (1 + ‖r‖)n

2p

∑

q=0,1···p

p!
(p− q)! q!

∑

l=0,1···n

n!
(n− l)! l!

(1 + ‖r‖)l+m1(2ϑ1(r)cx)l+m1

· (1 + ‖r‖)n−l+m2(2ϑ1(r)cy)n−l+m2

≤ 2n(1 + ‖r‖)2n+m1+m2(2ϑ1(r)cx,y)n+m1+m2 .

Now we are in a position to prove the following result about existence of an Evans-

Hudson flow for QDS Tt associated with the element r ∈ A discussed above.

Theorem 3.1.2. (a) For t ≥ 0, there exists a unique solution jt of the qsde,

djt(x) =
∑

j∈Zd

jt(δ
†
jx)daj(t) +

∑

j∈Zd

jt(δjx)da†j(t) + jt(Lx)dt, (3.1. 2)

j0(x) = x⊗ 1Γ, ∀x ∈ Aloc,
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such that jt(1) = 1, ∀t ≥ 0.

(b) For x, y ∈ Aloc and u, v ∈ h0, f, g ∈ C,

〈ue(f), jt(xy)ve(g)〉 = 〈jt(x∗)ue(f), jt(y)ve(g)〉. (3.1. 3)

(c) jt extends uniquely to a unital C∗-homomorphism from A into A′′ ⊗ B(Γ).

Proof. We note first that Aloc is a dense ∗-subalgebra of A.
(a) As usual, we solve the qsde by iteration. For t0 ≥ 0, t ≤ t0 and x ∈ Aloc, we set

j
(0)
t (x) = x⊗ 1Γ and for n ≥ 1,

j
(n)
t (x) = x⊗ 1Γ

+
∫ t

0

∑

j∈Zd

j(n−1)
s (δ†j(x))daj(s) +

∑

j∈Zd

j(n−1)
s (δj(x))da

†
j(s) + j(n−1)

s (L(x))ds. (3.1. 4)

Then for u ∈ h0 and f ∈ C, we can show by induction, that

‖{j(n)
t (x)− j

(n−1)
t (x)}ue(f)‖

≤ (t0cf )n/2

√
n!

‖ue(f)‖
∑

k̄(n)

∑

ε̄(n)

‖δ(k̄(n), ε̄(n))(x)‖, (3.1. 5)

where cf = 2eγf (t0)(1 + ‖f‖2
∞), with γf (t0) =

∫ t0
0 (1 + ‖f(s)‖2)ds. For n = 1, by the

basic estimate of quantum stochastic integral [33],

‖{j(1)
t (x)− j

(0)
t (x)}ue(f)‖2

= ‖{
∫ t

0

∑

j∈Zd

δ†j(x)daj(s) +
∑

j∈Zd

δj(x)da
†
j(s) + L(x)ds}ue(f)‖2

≤ 2eγf (t0)‖e(f)‖2
∫ t

0
{
∑

j∈Zd

‖δ†j(x)u‖2 +
∑

j∈Zd

‖δj(x)u‖2 + ‖L(x)u‖2}(1 + ‖f(s)‖)2ds

≤ cf t0‖e(f)‖2{
∑

j∈Zd

‖δ†j(x)u‖+ ‖δj(x)u‖+ ‖Lj(x)u‖}2.

Thus (3.1. 5) is true for n = 1. Inductively assuming the estimate for some m > 1,
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we have by the same argument as above,

‖{j(m+1)
t (x)− j

(m)
t (x)}ue(f)‖2

= ‖{
∫ t

0

∑

j∈Zd

[j(m)
sm

(δ†j(x))− j(m−1)
sm

(δ†j(x))]daj(sm)

+
∑

j∈Zd

[j(m)
sm

(δj(x))− j(m−1)
sm

(δj(x))]da
†
j(sm)

+[j(m)
sm

(L(x))− j(m−1)
sm

(L(x))]dsm}ue(f)‖2

≤ 2eγf (t0)

∫ t

0
{
∑

j∈Zd

‖[j(m)
sm

(δ†j(x))− j(m−1)
sm

(δ†j(x))]ue(f)‖2

+
∑

j∈Zd

‖[j(m)
sm

(δj(x))− j(m−1)
sm

(δj(x))]ue(f)‖2

+‖[j(m)
sm

(L(x))− j(m−1)
sm

(L(x))]ue(f)‖2}(1 + ‖f(sm)‖2)dsm

≤ cf

∫

0

t

[
∑

j∈Zd

‖[j(m)
sm

(δj†(x))− j(m−1)
sm

(δ†j(x))]ue(f)‖

+
∑

j∈Zd

‖[j(m)
sm

(δj(x))− j(m−1)
sm

(δj(x))]ue(f)‖

+‖[j(m)
sm

(L(x))− j(m−1)
sm

(L(x))]ue(f)‖]2dsm.

Now applying (3.1. 5) for n = m, we get the required estimate for n = m+ 1 and

furthermore by the estimate of Lemma 3.1.1 (iii),

‖{j(n)
t (x)− j

(n−1)
t (x)}ue(f)‖ ≤ 3n (t0cf )n/2

√
n!

‖ue(f)‖(1 + ‖r‖)n(1 + 2ϑ1(r)cx)n.

Thus it follows that the sequence {j(n)
t (x)ue(f)} is Cauchy. We define jt(x)ue(f) to

be limn→∞ jt
(n)ue(f), that is

jt(x)ue(f) = xu⊗ e(f) +
∑

n≥1

{j(n)
t (x)− j

(n−1)
t (x)}ue(f) (3.1. 6)

and one has

‖jt(x)ue(f)‖ ≤ ‖ue(f)‖ [‖x‖+
∑

n≥1

3n (t0cf )n/2

√
n!

(1 + ‖r‖)n(1 + 2ϑ1(r)cx)n]. (3.1. 7)

Uniqueness follows by setting,

qt(x) = jt(x)− j′t(x)



3.1. EH dilation 69

and observing

dqt(x) =
∑

j∈Zd

qt(δ
†
j(x))daj(t) +

∑

j∈Zd

qt(δj(x))da†j(t) + qt(L(x))dt, q0(x) = 0.

Exactly similar estimate as above shows that, for all n ≥ 1,

‖qt(x)ue(f)‖ ≤ (t0cf )n/2

√
n!

‖ue(f)‖
∑

k̄(n)

∑

ε̄(n)

‖δ(k̄(n), ε̄(n))(x)‖.

Since by Lemma 3.1.1(iii) the sum grows as n-th power, qt(x) = 0 ∀x ∈ Aloc, showing

the uniqueness of the solution. As 1 ∈ Aloc with Lk(1) = δ†k(1) = δk(1) = 0 it follows

from the qsde (3.1. 2) that jt(1) = 1.

(b) For ue(f), ve(g) ∈ h⊗ E(C) and x, y ∈ Aloc, we have, by induction,

〈j(n)
t (x∗)ue(f), ve(g)〉 = 〈ue(f), j(n)

t (x)ve(g)〉.

Now as n tends to ∞, we get

〈jt(x∗)ue(f), ve(g)〉 = 〈ue(f), jt(x)ve(g)〉.

We define

Φt(x, y) = 〈ue(f), jt(xy)ve(g)〉 − 〈jt(x∗)ue(f), jt(y)ve(g)〉.

Setting (ζk(l), ηk(l)) = (δk, id), (id, δk), (δ†k, id), (id, δ†k), (Lk, id), (id,Lk) and

(δ†k, δk)

for l = 1, 2, · · · 7 respectively, one has

|Φt(x, y)| ≤ cnf,g

∑

ln,···l1

∫ t

0

∫ sn−1

0
· · ·

∫ s1

0

∑

kn,···k1

|Φs1(ζkn(ln) · · · ζk1(l1)x, ηkn(ln) · · · ηk1(l1)y)|ds0 · · · dsn−1 ∀n ≥ 1, (3.1. 8)

where cf,g = (1 + t0
1/2)(‖f‖∞ + ‖g‖∞). By the quantum Ito formula and cocyle

properties of structure operators, i.e. L(xy) = xL(y) + L(x)y +
∑

k∈Zd δ
†
k(x)δk(y),
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we have,

Φt(x, y)

=
∫

0

t ∑

k

{Φs(δk(x), y) + Φs(x, δk(y))}fk(s)ds

+
∫

0

t ∑

k

{Φs(δ
†
k(x), y) + Φs(x, δ

†
k(y))}ḡk(s)ds

+
∫

0

t ∑

k

{Φs(Lk(x), y) + Φs(x,Lk(y)) + Φs(δ
†
k(x), δk(y))}ds,

which gives the estimate for n = 1 :

|Φt(x, y)| ≤ cf,g

∑

l=1···7

∫

0

t ∑

k

|Φs(ζk(l)(x), ηk(l)(y))|ds . (3.1. 9)

If we now assume (3.1. 8) for some m > 1, an application of (3.1. 9) gives the

required estimate for n = m+ 1.

At this point we note the following, which can be verified easily by (3.1. 6) , (3.1.

7) and Lemma 3.1.1 (iv).

(1) For any n-tuple (l1, l2 · · · ln) in {1, 2 · · · 7}
∑

kn,...k1

‖js(ζkn(ln) · · · ζk1(l1)(x) · ηkn(ln) · · · ηk1(l1)(y))ve(g)‖

≤ Cg,x,y{(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}2n‖ve(g)‖, (3.1. 10)

where for any g ∈ C

Cg,x,y = 1 +
∑

m≥1

3m (t0cg)m/2

√
m!

{(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}2m.

(2) For any s ≤ t0, p ≤ n and ε̄(p),

∑

k̄(p)

‖js{δ(k̄(p), ε̄(p))(y)}ve(g)‖

≤ Cg,x,y{(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}n‖ve(g)‖. (3.1. 11)

(3) Since ϑp(x) = ϑp(x∗) and {δ(k̄(p), ε̄(p))(x)}∗ can also be written as δ(k̄(p), ε̄′(p))(x∗)

for some ε̄′(p), we have
∑

k̄(p)

‖js{δ(k̄(p), ε̄(p))(x)}∗ue(f)‖
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≤ Cf,x,y{(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}n‖ue(f)‖. (3.1. 12)

For any fixed n-tuple (l1, · · · ln), it is easy to observe from the definition of Φs that

∑

k̄(n)

|Φs(ζkn(ln) · · · ζk1(l1)x, ηkn(ln) · · · ηk1(l1)y)|

≤
∑

kn,...k1

‖ue(f)‖ · ‖js(ζkn(ln) · · · ζk1(l1)x · ηkn(ln) · · · ηk1(l1)y)ve(g)‖

+‖js{(ζkn(ln) · · · ζk1(l1)(x))
∗}ue(f)‖ · ‖js(ηkn(ln) · · · ηk1(l1)(y))ve(g)‖.

The estimates (3.1. 10), (3.1. 11) and (3.1. 12) yield :

∑

k̄(n)

|Φs(ζkn(ln) · · · ζk1(l1)x, ηkn(ln) · · · ηk1(l1)y)|

≤ {(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}2n‖ue(f)‖ · ‖ve(g)‖(Cg,x,y + Cf,x,yCg,x,y)

= C{(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}2n,

with C = ‖ue(f)‖ · ‖ve(g)‖(Cg,x,y + Cf,x,yCg,x,y).

Now by (3.1. 8),

|Φt(x, y)| ≤ C
(7 t0cf,g)n

n!
{(1 + ‖r‖)(1 + 2ϑ1(r)cx,y)}2n, ∀ n ≥ 1,

which implies Φt(x, y) = 0.

(c) Let ξ =
∑
cjuje(fj) be a vector in the algebraic tensor product of h0 and E(C).

If y ∈ A+
loc, y is actually an N |y| × N |y|-dim positive matrix and hence it admits a

unique square root
√
y ∈ A+

loc. For any x ∈ A+
loc, setting y =

√
‖x‖1− x so that

y ∈ A+
loc, we get

‖jt(y)ξ‖2 = 〈jt(y)ξ, jt(y)ξ〉
=

∑
c̄icj〈jt(y)uie(fi), jt(y)uje(fj)〉

=
∑

c̄icj〈uie(fi), jt(‖x‖1− x)uje(fj)〉 (by (b))

= ‖x‖ · ‖ξ‖2 − 〈ξ, jt(x)ξ〉,

where we have used the fact that 1 ∈ Aloc and jt(1) = 1. Now let x ∈ Aloc be
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arbitrary and applying the above for x∗x as well as (b) we get,

‖jt(x)ξ‖2 = 〈jt(x)ξ, jt(x)ξ〉
=

∑
c̄icj〈jt(x)uie(fi), jt(x)uje(fj)〉

=
∑

c̄icj〈uie(fi), jt(x∗x)uje(fj)〉
= 〈ξ, jt(x∗x)ξ〉
≤ ‖x∗x‖ · ‖ξ‖2 = ‖x‖2 · ‖ξ‖2

or ‖jt(x)ξ‖ ≤ ‖x‖ · ‖ξ‖.

This inequality obviously extends to all ξ ∈ h0 ⊗ Γ. Noting that jt(1) = 1, ∀t, we

get

‖jt(x)‖ ≤ ‖x‖ and ‖jt‖ = 1.

Thus jt extends uniquely to a unital C∗-homomorphism satisfying the qsde (3.1. 2)

and hence is an Evans-Hudson flow on A with Tt as its expectation semigroup. That

the range of jt is in A′′ ⊗ B(Γ) is clear from the construction of jt.

Now let us recall the the ergodic QDS T φ
t associated with a partial state φ0

discussed in Chapter-2. It may be noted that the generator Lφ of T φ
t satisfies

Lφ(x) =
∑

k∈Zd

1
2

N2∑

m=1

[L(m)
k

∗
, x]L(m)

k + L
(m)
k

∗
[x, L(m)

k ], ∀x ∈ Aloc.

We have also obtained an Evans-Hudson type dilation for these QDS Tφ
t .

Theorem 3.1.3. Let T φ
t be the QDS associated with a partial state φ0. Then :

(a) For each k ∈ Zd and t ≥ 0 there exists a unique solution η
(k)
t for the qsde,

dη
(k)
t (x) = η

(k)
t (

N2∑

m=1

[L(m)
k

∗
, x(k)])dak(t)+η

(k)
t (

N2∑

m=1

[x(k), L
(m)
k ])da†k(t)+η

(k)
t (Lφ

kx(k))dt,

(3.1. 13)

η0(x(k)) = x(k) ⊗ 1Γ, ∀x(k) ∈ Ak,

as a unital ∗-homomorphism from Ak into Ak
⊗B(Γ). Moreover, for different k and

k′, η(k)
t and η

(k′)
t commute in the sense that, η(k)

t (x(k)) and η
(k′)
t (xk′) commute for

every x(k) ∈ Ak and xk′ ∈ Ak′ ,
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(b) There exists a unique unital ∗-homomorphism ηt from Aloc into A′′⊗B(Γ) such

that it coincide with η(k)
t on Ak,

(c) ηt extends uniquely as a unital C∗-homomorphism from A into A′′⊗B(Γ).

Proof. (a) For any k ∈ Zd and t ≥ 0 let us consider the qsde (3.1. 13). Here we

have only finitely many nontrivial structure maps on the finite dimensional unital

C∗-algebra Ak, satisfying the structure equation. So there exists a unique solution

η
(k)
t as a unital ∗-homomorphism from Ak into Ak

⊗B(Γ). Since for different k and

k′ the associated structure maps commute and for any x(k) ∈ Ak and x(k′) ∈ Ak′

Ito term absent in d(η(k)
t (x(k))η

(k′)
t (x(k′))), it follows that η(k)

t (x(k)) and η
(k′)
t (x(k′))

commute.

(b) For any finite Λ ⊆ Zd, t ≥ 0 and simple tensor element xΛ =
∏

k∈Λx(k) ∈ AΛ,

the map η(Λ)
t given by

η
(Λ)
t (xΛ) :=

∏
k∈Λη

(k)
t (x(k))

is well defined from AΛ to AΛ
⊗B(Γ) as η(k)

t ’s commute. Differentiating η(Λ)
t (xΛ)

with respect to t, it follows that η(Λ)
t (xΛ) satisfies the qsde,

dη
(Λ)
t (xΛ) =

∑

k∈Λ

η
(Λ)
t (

N2∑

m=1

[L(m)
k

∗
, xΛ])dak(t) +

∑

k∈Λ

η
(Λ)
t (

N2∑

m=1

[xΛ, L
(m)
k ])da†k(t)

(3.1. 14)

+η(Λ)
t (

∑

k∈Λ

Lφ
kxΛ)dt, η

(Λ)
0 (xΛ) = xΛ ⊗ 1Γ.

We now want to show

η
(Λ)
t (xy) = η

(Λ)
t (x) · η(Λ)

t (y), for simple tensor elements x, y ∈ Aloc. (3.1. 15)

Since each η(k)
t is unital and η(Λ′)

t agrees with η(Λ)
t for simple tensor elements in AΛ

whenever Λ is a finite subset of Λ′, it is suffices to show ( 3.1. 15) for x, y ∈ AΛ,

where Λ ⊆ Zd is a finite set. For x =
∏

k∈Λx(k) and y =
∏

k∈Λy(k) ∈ AΛ we have,

η
(Λ)
t (xy) = η

(Λ)
t

∏
k∈Λ(x(k)y(k)) =

∏
k∈Λη

(k)
t (x(k)y(k))

=
∏

k∈Λη
(k)
t (x(k))η

(k)
t (y(k)) =

∏
k∈Λη

(k)
t (x(k))

∏
k∈Λη

(k)
t (y(k)).

Similarly

η
(Λ)
t (x∗) = (η(Λ)

t (x))∗. (3.1. 16)
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Noting that any element x ∈ Aloc can be written as a linear combination of simple

tensor elements {Ug : g ∈ G}, say x =
∑

g∈G cgUg with cg = 0 when supp(g) is

outside supp(x) = Λ, we define

ηt(x) =
∑

g∈G
cgη

(Λ)
t (Ug).

For x and y ∈ Aloc, with x =
∑

g∈G cgUg and y =
∑

h∈G chUh, such that supp(x) =

supp(y) = Λ,

ηt(xy) = ηt(
∑

g,h∈G
cgchUgUh)

=
∑

g,h∈G
cgchη

(Λ)
t (UgUh) =

∑

g,h∈G
cgchη

(Λ)
t (Ug)η

(Λ)
t (Uh) (by (3.1. 15) )

= ηt(
∑

g∈G
cgUg)ηt(

∑

h∈G
chUh)

= ηt(x)ηt(y).

It follows from (3.1. 16) that ηt(x∗) = (ηt(x))∗ ∀x ∈ Aloc. Thus ηt is a unital

∗-homomorphism from Aloc into A′′⊗B(Γ).

(c) We recall that A+
loc is closed under taking square root, as already noted in the

proof of Theorem 3.1.2(c). Thus for x ∈ Aloc,
√
‖x‖21− x∗x ∈ A+

loc. Since ηt is a

unital ∗-homomorphism on Aloc,

ηt(‖x‖21− x∗x) ≥ 0

⇒ ηt(x∗x) ≤ ‖x‖21

⇒ ‖ηt(x∗x)‖ ≤ ‖x‖2

⇒ ‖ηt(x)‖ ≤ ‖x‖.

So ηt extends uniquely as a unital C∗-homomorphism from A into A′′⊗B(Γ).

3.2 Covariance of the EH flows

Let B be a C∗ ( or von Neumann) algebra, G be a locally compact group with an

action α on B.
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Definition 3.2.1. A QDS {Tt : t ≥ 0} on B is said to be covariant with respect to

α, if

αg ◦ Tt(x) = Tt ◦ αg(x),∀t ≥ 0, g ∈ G, x ∈ B.

Given such a covariant QDS a natural question arises whether there exists a co-

variant Evans-Hudson dilation for {Tt}. The question is discussed in [6] for uniformly

continuous QDS.

In this section we shall prove that the Evans-Hudson flows constructed in the

previous section are covariant. It can be easily observed that

δkτj = τjδk−j and δ†kτj = τjδ
†
k−j , ∀j, k ∈ Zd, (3.2. 1)

and we have the following Lemma,

Lemma 3.2.2. (i)Lτj(x) = τjL(x) ∀x ∈ Dom(L),

(ii)Ttτj = τjTt, i.e. Tt is covariant.

Proof. (i) We note that C1(A) is invariant under τ and thus for x ∈ C1(A),

L(τj(x)) =
1
2

∑

k∈Zd

δ†k(τj(x))rk + r∗kδk(τj(x))

=
1
2

∑

k∈Zd

τjδ
†
k−j(x)rk + rk

∗τjδk−j(x) (by 3.2.2 )

=
1
2
τj{

∑

k∈Zd

δ†k−j(x)rk−j + r∗k−jδk−j(x)}

= τj(L(x)).

For x ∈ Dom(L), we choose a sequence {xn} in C1(A) and an element y ∈ A such

that y = L(x), xn converge to x and L(xn) converge to y. As τj is an automorphism

for any j ∈ Zd, τj(xn) and τjL(xn) converge to τj(x) and τj(y) respectively. Since

xn ∈ C1(A) and L(τj(xn)) = τjL(xn), we get

τj(x) ∈ Dom(L) and Lτj(x) = τjL(x).

(ii) By (i), for x ∈ Dom(L) and 0 ≤ s ≤ t we have,

d

ds
Ts ◦ τj ◦ Pt−s(x) = Ts ◦ L ◦ τj ◦ Pt−s(x)− Ts ◦ τj ◦ L ◦ Pt−s(x) = 0.

This implies that Ts◦τj◦Pt−s(x) is independent of s for every j and 0 ≤ s ≤ t. Setting

s = 0 and t respectively and using the fact that Tt is bounded we get Ttτj = τjTt.
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We note that jt : A → A′′⊗B(Γ(L2(R+,k0))), where k0 = l2(Zd) with a canon-

ical basis {ek}, as mentioned earlier. We define the canonical bilateral shift s by

sjek = ek+j ,∀j, k ∈ Zd and let γj = Γ(1⊗ sj) be the second quantization of 1⊗ sj ,

i.e. γje(
∑
fl(.)el) = e(

∑
fl(.)el+j). This defines a unitary representation of Zd in Γ.

We set an action σ = τ ⊗ λ of Zd on A′′⊗B(Γ), where λj(y) = γjyγ−j ∀y ∈ B(Γ).

By definition of fundamental processes ak(t) given by ak(t)e(g) =
∫ t
0 gk(s)ds e(g), it

can be observed that

λjak(t)e(g) = γjak(t)γ−je(g) = γjak(t)e(
∑

〈g(·), el+j〉el)

=
∫ t

0
〈g, ek+j〉(s)ds γj

(
e(

∑
〈g(·), el+j〉el)

)

=
∫ t

0
〈g, ek+j〉(s)ds e(

∑
〈g(·), el+j〉el+j)

= ak+j(t)e(g).

Since 〈e(f), λjak(t)e(g)〉 = 〈λja
†
k(t)e(f), e(g)〉, it follows that

λjak(t) = ak+j(t) and λja
†
k(t) = a†k+j(t). (3.2. 2)

Theorem 3.2.3. The Evans-Hudson flow jt of the QDS Tt is covariant with respect

to the actions τ and σ, i.e.

σjjtτ−j(x) = jt(x) ∀x ∈ A, t ≥ 0 and k ∈ Zd.

Proof. For a fixed j ∈ Zd we set j′t = σjjtτ−j , ∀t ≥ 0. Using the qsde (3.1. 2) and

Lemma 3.2.2, (3.2. 1), (3.2. 2) we have for x ∈ Aloc,
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j′t(x)− j′0(x)

=
∫ t

0

∑

k∈Zd

σjjs(δ
†
k(τ−j(x)))dak(s) +

∫ t

0

∑

k∈Zd

σjjs(δk(τ−j(x)))da
†
k(s)

+
∫ t

0
σjjs(L(τ−j(x)))ds

=
∫ t

0

∑

k∈Zd

σjjsτ−j(δ
†
k+j(x))dak+j(s) +

∫ t

0

∑

k∈Zd

σjjsτ−j(δk+j(x))da
†
k+j(s)

+
∫ t

0
σjjsτ−j(L(x))ds

=
∫ t

0

∑

k∈Zd

j′s(δ
†
k(x))dak(s) +

∫ t

0

∑

k∈Zd

j′s(δk(x))da
†
k(s) +

∫ t

0
j′s(Lx)ds.

Since j′0(x) = σjj0τ−j(x) = σj(τ−j(x) ⊗ 1Γ) = x ⊗ 1Γ = j0(x), it follows from the

uniqueness of solution of the qsde (3.1. 2) that j′t(x) = jt(x) for all t ≥ 0 and

x ∈ Aloc. As both j′t and jt are bounded maps, we have j′t = jt.

Remark 3.2.4. By similar arguments as above, the Evans-Hudson flow for the QDS

T φ
t associated with partial state φ0 can be seen to be covariant with respect to the

same actions τ and σ of Zd.

3.3 Ergodicity of the EH flows

Let us recall the ergodic QDS T φ
t associated with the partial state φ0, for which we

have constructed an Evans-Hudson flow ηt in section 3. It may be noted that T φ
t has

the unique invariant state Φ. We have the following result on ergodicity of ηt with

respect to the weak operator topology.

Theorem 3.3.1. The Evans-Hudson flow ηt of the ergodic QDS T φ
t is ergodic with

respect to the invariant state Φ, in the sense that

ηt(x) → Φ(x)⊗ 1Γ weakly ∀x ∈ A.

Proof. Since ηt and T φ
t are norm contractive, Aloc is norm-dense in A, and Tφ

t (x)

converges to Φ(x)1 for all x ∈ A, it is enough to show that for x ∈ Aloc, ηt(x) −
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T φ
t (x)⊗ 1Γ → 0 weakly as t→∞. Furthermore, it suffices to show that 〈ξ1, (ηt(x)−
T φ

t (x)⊗1Γ)ξ2〉 → 0 as t→∞, where ξ1, ξ2 vary over the linear span of vectors of the

form ve(f), with f =
∑
|k|≤n fk ⊗ ek for some n and fk’s are in L1(R+)

⋂
L2(R+).

For notational simplicity denoting the bounded derivations on A,

x 7→
N2∑

m=1

[x, L(m)
k ] and x 7→

N2∑

m=1

[L(m)
k

∗
, x]

by ρk and ρ†k respectively, we note that ηt satisfies the qsde

dηt(x) =
∑

k∈Zd

ηt(ρ
†
k(x))dak(t) +

∑

k∈Zd

ηt(ρk(x))da
†
k(t) + ηt(Lφ(x))dt, (3.3. 1)

η0(x) = x⊗ 1Γ, ∀x ∈ Aloc.

For t ≥ 0, u, v ∈ h0 and f, g ∈ L2(R+,k0)
⋂
L1(R+,k0) such that f =

∑
|k|≤n fk⊗ ek

and g =
∑
|k|≤n gk ⊗ ek and x ∈ Aloc, we consider the following,

|〈ue(f), [ηt(x)− T φ
t (x)⊗ 1Γ]ve(g)〉|

= |〈ue(f), [
∫ t

0
d(ηsT

φ
t−s(x))]ve(g)〉|

= |〈ue(f), [
∫ t

0

∑

k∈Zd

ηq{ρk(T
φ
t−q(x))}da†k(q) + ηq{ρ†k(T φ

t−q(x))}dak(q)]ve(g)〉|

≤
∑

|k|≤n

∫ t

0
|〈ue(f), ηq{ρk(T

φ
t−q(x))}ve(g)〉| ‖g(q)‖dq

+
∑

|k|≤n

∫ t

0
|〈ue(f), ηq{ρ†k(T φ

t−q(x))}ve(g)〉| ‖f(q)‖dq

=
∑

|k|≤n

∫ t

0
|〈ue(f), ηq{ρk(T

φ
t−q(x)− Φ(x))}ve(g)〉| ‖g(q)‖dq

+
∑

|k|≤n

∫ t

0
|〈ue(f), ηq{ρ†k(T φ

t−q(x)− Φ(x))}ve(g)〉| ‖f(q)‖dq

≤ ‖ue(f)‖‖ve(g)‖
∑

|k|≤n

(∫ ∞

0
‖ρk(T

φ
t−q(x)− Φ(x))‖‖g(q)‖dq

+
∫ ∞

0
‖ρ†k(T φ

t−q(x)− Φ(x))‖‖f(q)‖dq
)
.

Since ρk, ρ
†
k are bounded linear maps and since f, g ∈ L1(R+,k0), the integrands

above are dominated by an integrable function M(‖f(q)‖+‖g(q)‖) for some constant
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M independent of q. Now, since ‖T φ
t (x)−Φ(x)1‖ converges to 0 as t tends to ∞, by

dominated convergence theorem both the integrals in the above expression tend to

0 as t tends to ∞. This completes the proof.

Remark 3.3.2. ηt(x) does not converge strongly, for if it did, then x 7→ Φ(x)⊗ 1Γ

would be a homomorphism, i.e. Φ would be a multiplicative non zero functional

on the UHF algebra A, contradictory to the fact that A does not have any such

functional.

Now let us look at the perturbation of the semigroup T φ
t by the semigroup Tt

associated with some single-supported element r ∈ A0. Recall that the generator L
of QDS Tt satisfies

L(x) =
1
2

∑

k∈Zd

{[r∗k, x]rk + r∗k[x, rk]}, ∀x ∈ C1(A).

Setting L(N2+1) = r, for any real c, the generator L(c) of the perturbed QDS T
(c)
t

satisfies,

L(c)(x) = Lφ(x) + cL(x) =
∑

k∈Zd

L(c)
k ,

with

L(c)
k =

1
2

N2+1∑

m=1

[L(m)
k

∗
, x]L(m)

k + L
(m)
k

∗
[x, L(m)

k ], ∀x ∈ C1(A).

So by the same arguments used in the construction of the Evans-Hudson flow for the

unperturbed semigroup T φ
t one can obtain an Evans-Hudson flow for the perturbed

QDS T (c)
t . Moreover, for small perturbation parameter c ≥ 0 for which T (c)

t is ergodic

by Theorem 2.2.1, the associated Evans-Hudson flow is also ergodic with respect to

the same invariant state in the sense of previous Theorem 3.3.1.



Chapter 4

Toy Fock Space and QRW

Approach to the Construction of

EH flow

In Chapter-1, quantum stochastic calculus on the symmetric Fock space Γ(L2(R+,k0))

is discussed. Here following [2, 3] we shall describe a family of subspaces of Γ(L2(R+,k0)),

indexed by some partition of R+. The subspace will be called toy Fock space asso-

ciated with the corresponding partition. Next, using basic operators on toy Fock

spaces, quantum random walks are defined as in [23], and then strong convergence

of quantum random walks associated with bounded structure maps is proved under

suitable assumptions, extendings the result obtained in [35] in case of one dimen-

sional noise. To handle infinite dimensional noise we have used the coordinate-free

language of quantum stochastic calculus developed in [15].

4.1 Toy Fock space and basic operators

First we note that, for any n ≥ 0, the n-fold symmetric tensor product of K =

L2(R+,k0) and their direct sum can canonically be embedded in Γ(K). We also have

Lemma 4.1.1. For any partition S ≡ (0 = t0 < t1 < t2 · · · ) of R+, the Fock space

Γ(K) can be viewed as the infinite tensor product
⊗

n≥1 Γn of symmetric Fock spaces

80
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{Γn = Γ(K(tn−1,tn])}n≥1 with respect to the stabilizing sequence Ω = {Ωn : n ≥ 1},
where Ωn = Ω(tn−1,tn] is the vacuum vector in Γn.

Proof. The set of all exponential vectors E(K) is total in Γ. By definition we know

that the set W of all vector ξ = ⊗n≥1ξn such that ξn is an exponential vector in Γn

and ξn = Ωn for all but finitely many n ≥ 1, is total in
⊗

n≥1 Γn. It is clear that any

vector in W can be written as an exponential vector of the form e(ftn]) ⊗ Ω[tn for

some f ∈ K and hence W ⊆ E(K). Thus it is enough to show that for any f ∈ K can

be approximated in norm by a sequence {ηn} in W. For a given f, let us consider

the sequence vectors {ηn = e(ftn])⊗ Ω[tn}. Then we have

‖e(f)− ηn‖2

= ‖e(ftn])‖2 ‖(e(f[tn)− Ω[tn)‖2

= ‖e(ftn])‖2 (‖e(f[tn)‖2 − 1)

≤ ‖e(ftn])‖2 ‖f[tn‖2‖(e(f[tn)‖2

= ‖e(f)‖2 ‖f[tn‖2.

Since f ∈ K, ‖f[tn‖2 =
∫∞
tn
‖f(s)‖2ds goes to 0 as n tends to ∞ and

limn→∞ ‖e(f)− ηn‖ = 0.

Let {ei} is a fixed othonormal basis of k0 as mentioned earlier. For any 0 ≤ s ≤ t

and i ≥ 1 we define a vector χi
(s,t] := 1(s,t]⊗ei√

t−s
∈ K(s,t]. It is clear that {χi

(s,t]}i≥1 is

an orthonormal family in K(s,t] and hence in Γ(s,t]. Here we note that the Hilbert

subspace k(s,t] of Γ(s,t] spanned by these orthonormal vectors is canonically isomor-

phic to k0. Let us consider the subspace k̂(s,t] = C Ω(s,t]

⊕
k(s,t] of Γ and denote

the space k̂(tn−1,tn] by k̂n, which is isomorphic to k̂0 := C
⊕

k0. Now we are in a

position to define the toy Fock spaces.

Definition 4.1.2. The toy Fock space associated with the partition S of R+ is

defined to be the subspace Γ(S) :=
⊗

n≥1 k̂n with respect to the stabilizing vector

Ω = ⊗n≥1Ωn.

For notational simplicity we write χi
n for the vector χi

(tn−1,tn]. Let u be the set of all fi-

nite subsets of N×N. Thus an elementA ∈ u is given byA = {m1, i1;m2, i2; · · ·mn, in}
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for some n with 1 ≤ m1 < m2 · · ·mn <∞. For A ∈ u, we associate a vector

χA = Ω1 ⊗ Ω2 ⊗ · · ·χi1
m1
⊗ · · ·χi2

m2
⊗ · · ·χin

mn
⊗ Ωmn+1 · · ·

in the toy Fock space Γ(S). Clearly this family {χA : A ∈ u} forms an orthonormal

basis for Γ(S). Let P (S) be the orthogonal projection of Γonto the toy Fock space

Γ(S). Without loss of generality now onwards let us consider toy Fock spaces Γ(Sh)

associated with regular partition Sh ≡ (0, h, · · · ) for some h > 0 and denote the

orthogonal projection by Ph. The projection Ph is given by

Ph = P0 ⊕
⊕

n≥1

∑

1≤m1<m2···<mn

∑

i1,i2···in≥1

⊗n
l=1|χil

ml
>< χil

ml
|,

where P0 is the orthogonal projection of the symmetric Fock space Γ onto the one

dimensional Hilbert space CΩ. A simple computation shows that, for f ∈ K, given

by f =
∑

i≥1 fi ⊗ ei with fi ∈ L2(R+),

Ph(Ω) = Ω,

Phf =
∑

m,i≥1

1√
h

∫ mh

(m−1)h
fi(s)ds χi

m,

Phe(f) = Ω⊕⊕
n≥1

1√
n!


 ∑

1≤m1<m2···<mn

∑

i1,i2···in≥1

⊗n
l=1

1√
h

∫ mlh

(ml−1)h
fil(s)ds χ

il
ml




and furthermore,

Phe(f) = Phe(f(k−1)h])Phe(f[k])Phe(f[kh ) and

Phe(f[k]) = Ωk ⊕
∑

i≥1

1√
h

∫ kh

(k−1)h
fi(s)ds

1((k−1)h,kh] ⊗ ei√
h

.

Now we define a family of operators {Nµ
ν [k] : µ, ν ≥ 0, k ≥ 1} on the Fock space Γ,

given by

Nµ
ν [k] = P0[k]

Λ0
0[k]
h

= P0[k] for (µ, ν) = (0, 0),

=
Λ0

j [k]√
h
P1[k] for (µ, ν) = (0, j),

= P1[k]
Λi

0[k]√
h

for (µ, ν) = (i, 0),

= P1[k](Λi
j [k])P1[k]Ph[k] for (µ, ν) = (i, j),

(4.1. 1)
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where P0[k] and P1[k] are the orthogonal projections from Γk onto the one dimen-

sional subspace spanned by Ωk and L2([(k − 1)h, kh],k0) respectively. We have

used the notations Λµ
ν [k] for Λµ

ν ((k − 1)h, kh] and Ph[k] for the associated toy Fock

space orthogonal projection restricted to the interval [(k− 1)h, kh]. These operators

Nµ
ν [k]’s act nontrivially only on Γk and as identity on the other components and

they leave the subspace Γ(Sh) invariant. For simplicity let us denote the interval

((k − 1)h, kh] by [k] and write f[k] for f((k−1)h,kh]. From the definitions we have, for

any f ∈ L2(R+,k0),

N0
0 [k]e(f) = e(f(k−1)h])Ωke(f[kh ),

N0
j [k]e(f) =

1√
h

∫

[k]
fj(s)ds e(f(k−1)h])Ωke(f[kh ),

N i
0[k]e(f) = e(f(k−1)h])

1[k] ⊗ ei√
h

e(f[kh ),

N i
j [k]e(f) =

1√
h

∫

[k]
fj(s) ds e(f(k−1)h])

1[k] ⊗ ei√
h

e(f[kh ).

It can easily be observed that

(Nµ
ν [k])∗ = Nν

µ [k]

Nµ
ν [k]N ξ

η [k] = δξ
νN

µ
η [k]

∑
µ,ν

δµ
νN

µ
ν [k] = Ph[k].

(4.1. 2)

Here we also note that

‖Λ0
0[k]e(f[k])‖ = h‖e(f[k])‖

‖Λ0
j [k]e(f[k])‖ = |

∫

[k]
fj(s)ds|‖e(f[k])‖

‖Λi
0[k]e(f[k])‖2 =

(
h+ |

∫

[k]
fi(s)ds|2

)
‖e(f[k])‖2

‖Λi
j [k]e(f[k])‖2 =

[∫

[k]
|fj(s)|2ds+ |

∫

[k]
fi(s)fj(s)ds|2

]
‖e(f[k])‖2.

Let us consider the subspace M of L2(R+,k0), given by

M = {f ∈ L2(R+,k0) : fi ∈ C1
c (R+) and fi = 0 for all but finitely many i}.



84 Ch.4.Toy Fock Space and QRW Approach to the Construction of EH flow

Clearly M is a dense subspace, so the algebraic tensor product h0
⊗ E(M) is dense

in h0
⊗

Γ. For f ∈M we define a constant cf :=
∑

i≥1 supτ |f ′i(τ)| where f ′i denotes

the first derivative of the function fi. Now we have the following estimates.

Lemma 4.1.3. (a). For any f ∈M, k ≥ 1,

‖(1− Ph[k])e(f[k])‖ ≤ h(cf + ‖f‖∞)‖e(f[k])‖.
(b). For any k ≥ 1 and f ∈M,

1. ‖{h N0
0 [k]− Λ0

0[k]}e(f[k])‖ ≤ h
3
2 ‖f‖∞‖e(f[k])‖,

2. ‖{
√
h N0

j [k]− Λ0
j [k]}e(f[k])‖ ≤ h

3
2 ‖f‖2∞‖e(f[k])‖,

3. ‖{
√
h N i

0[k]− Λi
0[k]}e(f[k])‖ ≤ 2h‖f‖∞‖e(f[k])‖,

4. ‖{N i
j [k]− Λi

j [k]}e(f[k])‖ ≤ hc1(f)‖e(f[k])‖,
where c1(f)2 = 2‖f‖4∞ + cf‖f‖∞.

(c). For any k ≥ 1 and f, g ∈M,

1. |〈e(g[k]), {h N0
0 [k]− Λ0

0[k]}e(f[k])〉| ≤ h
3
2 ‖f‖∞‖e(f[k])‖‖e(g[k])‖,

2. |〈e(g[k]), {
√
h N0

j [k]− Λ0
j [k]}e(f[k])〉| ≤ h

3
2 ‖f‖2∞‖e(f[k])‖‖e(g[k])‖,

3. |〈e(g[k]), {
√
h N i

0[k]− Λi
0[k]}e(f[k])〉|

≤ 2h2‖f‖∞‖g‖∞‖2e(f[k])‖2‖e(g[k])‖2,

4. |〈e(g[k]), {N i
j [k]− Λi

j [k]}e(f[k])〉|
≤ h2c2(f, g)‖e(f[k])‖2‖e(g[k])‖2, where c2(f, g) = (‖f‖∞‖g‖∞)2 + cf‖g‖∞.

Proof. (a). We have

‖(1− Ph[k])e(f[k])‖
= ‖(P0 + P1 − Ph)e(f[k]) + [1− P0 − P1]e(f[k])‖
= ‖f[k] − Phf[k] + [1− P0 − P1]e(f[k])‖
≤ ‖f[k] − Phf[k]‖+ ‖[1− P0 − P1]e(f[k])‖.
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It is clear that ‖[1−P0−P1]e(f[k])‖ ≤ h‖f‖2∞‖e(f[k])‖. Let us consider the first term,

‖f[k] − Phf[k]‖2

= ‖
∑

i≥1

1[k](fi − 1
h

∫

[k]
fi(s)ds)ei‖2

=
∑

i≥1

‖1[k](fi − 1
h

∫

[k]
fi(s)ds)‖2

=
∑

i≥1

∫

[k]
dr|fi(r)− 1

h

∫

[k]
fi(s)ds|2

=
∑

i≥1

1
h2

∫

[k]
dr|

∫

[k]
(fi(r)− fi(s)ds|2

≤
∑

i≥1

1
h2

∫

[k]
dr[

∫

[k]
|fi(r)− fi(s|ds]2

≤
∑

i≥1

1
h2

∫

[k]
dr[

∫

[k]
h sup |f ′i(τ)|ds]2

≤ c2fh
3.

This completes the proof.

(b) (1). By definitions we have

‖{h N0
0 [k]− Λ0

0[k]}e(f[k])‖
= h‖Ω[k] − e(f[k])‖.

First let us estimate,

‖Ω[k] − e(f[k])‖2

= 1 + ‖e(f[k])‖2 − 2

= e‖f[k]‖2 − 1 ≤ ‖f[k]‖2 e‖f[k]‖2

≤ h‖f‖2
∞e(f[k])‖2.

So we get

‖Ω[k] − e(f[k])‖ ≤
√
h‖f‖∞e(f[k])‖ (4.1. 3)

and the required estimate follows.



86 Ch.4.Toy Fock Space and QRW Approach to the Construction of EH flow

(2). By definitions,

‖{
√
h N0

j [k]− Λ0
j [k]}e(f[k])‖

= ‖
∫

[k]
fj(s)ds(Ω[k] − e(f[k])‖.

Thus required estimate follows from (4.1. 3).

(3). We have

‖{
√
h N i

0[k]− Λi
0[k]}e(f[k])‖2

= ‖1[k] ⊗ ei − Λi
0[k]e(f[k])‖2

= h+ ‖Λi
0[k]e(f[k])‖2 − 2Re〈1[k] ⊗ ei,Λi

0[k]e(f[k])〉
= h+ h‖e(f[k])‖2 + |

∫

[k]
fi(s)ds|2‖e(f[k])‖2

−2Re〈Λ0
i [k](1[k] ⊗ ei), e(f[k])〉

= h+ h‖e(f[k])‖2 + |
∫

[k]
fi(s)ds|2‖e(f[k])‖2 − 2h

= h{‖e(f[k])‖2 − 1}+ |
∫

[k]
fi(s)ds|2‖e(f[k])‖2

≤ 2h2‖f‖2
∞‖e(f[k])‖2.

(4). Let us consider the following,

‖{N i
j [k]− Λi

j [k]}e(f[k])‖2

= ‖N i
j [k]e(f[k])‖2 + ‖Λi

j [k]e(f[k])‖2 − 2Re〈N i
j [k]e(f[k]),Λ

i
j [k]e(f[k])〉

=
1
h
|
∫

[k]
fj(s)ds|2 +

(∫

[k]
|fj(s)|2ds+ |

∫

[k]
fi(s)fj(s)ds|2

)
‖e(f[k])‖2

− 2
h
Re

(∫

[k]
fj(s)ds〈(1[k] ⊗ ei),Λi

j [k]e(f[k])〉
)
.

Since 〈Λj
i [k](1[k] ⊗ ei), e(f[k])〉 = 〈(1[k] ⊗ ej), e(f[k])〉 =

∫
[k] fj(s)ds, we get

‖{N i
j [k]− Λi

j [k]}e(f[k])‖2

= {
∫

[k]
|fj(s)|2ds+ |

∫

[k]
fi(s)fj(s)ds|2}‖e(f[k])‖2 − 1

h
|
∫

[k]
fj(s)ds|2

= |
∫

[k]
fi(s)fj(s)ds|2‖e(f[k])‖2 +

∫

[k]
|fj(s)|2ds{e‖(f[k]‖2 − 1}

+
1
h

∫

[k]
fj(s)ds{

∫

[k]
(fj(s)− fj(q))dq}

≤ h2(2‖f‖4
∞ + h2cf‖f‖∞)‖e(f[k])‖2,
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(c). The estimates in (1) and (2) immediately follow from (a).

(3). From the definitions,

|〈e(g[k]), {
√
h N i

0[k]− Λi
0[k]}e(f[k])〉|

= |
∫

[k]
gi(s)ds||1− 〈e(g[k]), e(f[k])〉|

≤
∫

[k]
|gi(s)|ds|1− e〈g[k],f[k]〉|.

In order to estimate |1−e〈g[k],f[k]〉|, we note that for any complex number z, |1−ez| ≤
2|z|e|z|. Thus

|1− e〈g[k],f[k]〉|
≤ 2|〈g[k], f[k]〉| |e〈g[k],f[k]〉|
≤ 2

∫

[k]
|〈g(s), f(s)〉|ds e‖g[k]‖ ‖f[k]‖

≤ 2
∫

[k]
‖g(s)‖ ‖f(s)‖ds e‖g[k]‖2+‖f[k]‖2 .

Which gives

|1− e〈g[k],f[k]〉| ≤ 2h‖g‖∞ ‖f‖∞‖e(g[k])‖2 ‖e(f[k])‖2, (4.1. 4)

and the required estimate follows.

(4). From the definitions,

〈e(g[k]), {N i
j [k]− Λi

j [k]}e(f[k])〉
=

1
h

∫

[k]
gi(s)ds

∫

[k]
fj(s)ds−

∫

[k]
gi(s)fj(s)ds〈e(g[k]), e(f[k])〉

=
1
h

∫

[k]
gi(s)ds

∫

[k]
[fj(q)− fj(s)] dq

+
∫

[k]
gi(s)fj(s)ds

(
1− 〈e(g[k]), e(f[k])〉

)
.

Thus we get

|〈e(g[k]), {N i
j [k]− Λi

j [k]}e(f[k])〉|
≤ 1
h

∫

[k]
|gi(s)|ds

∫

[k]
|fj(q)− fj(s)|dq

+
∫

[k]
|gi(s)| |fj(s)|ds |1− 〈e(g[k]), e(f[k])〉|.
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Using the inequality (4.1. 4 ) the required estimate follows.

The toy Fock spaces Γ(Sh) approximate the Fock space Γ in the following sense [3]:

Lemma 4.1.4. (a). The family of othogonal projections Ph converges strongly to

identity operator in Γ as h tends to 0.

(b). For any f ∈M, k ≥ 1 and for any t ≥ 0, setting n = [ t
h ] + 1

1. limh→0 ‖[
∑n

k=1 hN
0
0 [k]− Λ0

0(t)]e(f)‖ = 0,

2. limh→0 ‖[
∑n

k=1

√
hN0

j [k]− Λ0
j (t)]e(f)‖ = 0,

3. limh→0 ‖[
∑n

k=1

√
hN i

0[k]− Λi
0(t)]e(f)‖ = 0,

4. limh→0 ‖[
∑n

k=1N
i
j [k]− Λi

j(t)]e(f)‖ = 0.

Proof. (a). It is enough to show that for any f ∈M, t ≥ 0

lim
h→0

‖(1− Ph)e(fnh])‖ = 0,

where n is as in part (b) of the Lemma. We have

‖(1− Ph)e(fnh])‖2

= ‖
n∑

k=1

e(f(k−1)h])(1− Ph[k])e(f[k])Phe(f[kh,nh])‖2

=
n∑

k=1

‖e(f(k−1)h])‖2‖(1− Ph[k])e(f[k])‖2‖Phe(f[kh,nh])‖2

+2 Re
n∑

k=1

〈(1− Ph)e(f(k−1)h]), e(f(k−1)h])〉

〈Phe(f[k]), (1− Ph[k])e(f[k])〉‖Phe(f[kh,nh])‖2.

Here 〈Phe(f[k]), (1− Ph[k])e(f[k])〉 = 0 and using Lemma 4.1.3 (a) we obtain,

‖(1− Ph)e(fnh])‖2

≤
n∑

k=1

h2(cf + ‖f‖2
∞)‖e(f)‖2

≤ th(cf + ‖f‖2
∞)‖e(f)‖2.
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This completes the proof.

(b). For (µ, ν) = (0, 0) and (0, j), convergence follows directly from Lemma 4.1.3 (b)

and for other processes it is necessary to give a better estimate. Let us write

n∑

k=1

√
hN i

0[k]− Λi
0(t)

=
n∑

k=1

[
√
hN i

0[k]− Λi
0[k]] + Λi

0(nh, t).

Now for m ≥ 1, setting

Xmh =
m∑

k=1

[
√
hN i

0[k]− Λi
0[k]],

we get

‖[
n∑

k=1

√
hN i

0[k]− Λi
0(t)]e(f)‖2

≤ 2{‖Xnhe(f)‖2 + ‖Λi
0(nh, t)e(f)‖2}.

It is clear that ‖Λi
0(nh, t)e(f)‖ tends to 0 as h→ 0 and by Lemma 4.1.3(a)

‖X(k−1)he(f(k−1)h])‖ ≤ C, for some constant independent of h and k.Now we consider

the first term,

‖Xnhe(f)‖2

=
n∑

k=1

‖[
√
hN i

0[k]− Λi
0(t)]e(f[k])‖2‖e(f − f[k])‖2

− 2Re
n∑

k=1

〈X(k−1)he(f(k−1)h]), e(f(k−1)h])〉

〈e(f[k]), [
√
hN i

0[k]− Λi
0[k]]e(f[k])〉‖e(f[kh )‖2.

Since ‖X(k−1)he(f(k−1)h])‖ is uniformly bounded in h and k, by (a.3) and (b.3) in

Lemma 4.1.3 it follows that ‖[∑n
k=1

√
hN i

0[k] − Λi
0(t)]e(f)‖ goes to 0 as h → 0. By

a very similar argument the convergence of (i, j)-th term can be proved.



90 Ch.4.Toy Fock Space and QRW Approach to the Construction of EH flow

4.2 Quantum random walk

Let A ⊆ B(h0) be a C∗ or von Neumann algebra. Let {β(h) : h > 0} : A →
A⊗B(k̂0) be a family of ∗-homomorphisms. For any x ∈ A, it can be written as

β(h, x) =
∑
µ,ν

βµ
ν (h, x)⊗ |eµ >< eν |,

where the components βµ
ν (h) are contractive linear maps on A satisfying

• βµ
ν (h, x∗) = (βν

µ(h, x))∗,

• βµ
ν (h, xy) =

∑
ξ β

µ
ξ (h, x)βξ

ν(h, y).

Now for any h > 0 and k ≥ 1 we define a linear map ρk(h) by

ρk(h)(x) = ρk(h, x) :=
∑
µ,ν

βµ
ν (h, x)⊗Nµ

ν [k], ∀x ∈ A.

It follows from the ∗-homomorphic property of β(h) and the relations (4.1. 2) among

the basic operators Nµ
ν [k]’s that the map ρk(h) is a ∗-homomorphism from A to

A⊗B(Γk). Here we note that the toy Fock space Γ(Sh) is invariant under ρk(h, x).

Now we consider the family linear maps p(h)
t : A → A⊗B(Γ), given as follows:

p
(h)
0 (x) = x⊗ 1Γ

p
(h)
t (x) = p

(h)
nh (x) =

∑
µ,ν p

(h)
(n−1)h(βµ

ν (h, x))⊗Nµ
ν [n],



 (4.2. 1)

for t ∈ ((n− 1)h, nh] .

It is clear from the definition that

p
(h)
nh (x) = ρ1(h) · · · ρn(h)(x)

and hence p(h)
t is a ∗-homomorphic family. Clearly, p(h)

t leaves the toy Fock space

Γ(Sh) invariant. We call this family a quantum random walk in short QRW.

It is an intersting question that when such a quantum random walk converges as

h tends to 0. For any finite dimensional noise space k0, adapting the proof of strong

convergence from [35], under bounded assumption on structure maps {θµ
ν } and β

such that

‖βµ
ν (h, x)− xδµ

ν − hεµ,νθµ
ν (x)‖ ≤ Ch1+εµ,ν‖x‖, ∀x ∈ A
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for some constant C independent of x and h, it can be proved that the quantum

random walk p(h)
t constructed above is strongly convergent. In Chapter-5, we shall

explore the same question for the UHF model. There, we shall construct quantum

random walk associated with a QDS and discuss the convergence issues related to

dilation of the QDS.

Let us conclude this Chapter by showing, (in the next section) under suitable as-

sumptions on the ∗-homomorphic family {β(h) : h > 0} : A → A⊗B(k̂0), but noise

dimension is not necessarily finite, the associated quantum random walks converges

strongly. Thus it follows in particular that the limit jt is a family of ∗-homomorphism.

4.3 EH flow as a strong limit of Quantum random walk

Here, we shall use coordinate-free language of quantum stochastic calculus to handle

infinite dimensional noise. We first recall the basic operators on the toy Fock space in

the coordinate-free formalism [15] and then use them to prove the strong convergence

of quantum random walks under the assumption of boundedness of the structure

maps extending the result in [35]

4.3.1 Coordinate-free basic operators and Quantum random walk

Here we redefine basic operators associated with toy Fock space [3] Γ(Sh) using

the fundamental processes in coordinate-free language of quantum stochastic cal-

culus, developed in [15] and obtained some estimate as in previous section. For

S ∈ B(h0), R ∈ B(h0,h0
⊗

k0) and T ∈ B(h0
⊗

k0) let us define four basic opera-

tors as follows, for k ≥ 1,

N1
S [k] = SP0[k] = P0[k]

Λ1
S [k]
h

,

N2
R[k] =

Λ2
R[k]√
h
P1[k],

N3
R[k] = P1[k]

Λ3
R[k]√
h
,

N4
T [k] = P1[k](Λ4

T [k])P1[k]Ph[k],

(4.3. 1)
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where

Λ1
S [k] = IS((k − 1)h, kh),

Λ2
R[k] = aR((k − 1)h, kh),

Λ3
R[k] = a†R((k − 1)h, kh),

Λ4
T [k] = ΛT ((k − 1)h, kh).

(4.3. 2)

All these maps B(h0) 3 S 7→ Λ1
S [k],

B(h0,h0
⊗

k0) 3 R 7→ Λ2
R[k], Λ3

R[k] and B(h0
⊗

k0) 3 T 7→ Λ4
T [k] are linear, and

hence the maps B(h0) 3 S 7→ N1
S [k],B(h0,h0

⊗
k0) 3 R 7→ N2

R[k], N3
R[k] and

B(h0
⊗

k0) 3 T 7→ N4
T [k] are so. It is clear that the subspace Γ(Sh) is invariant

under all these operators N l and their action on h0 ⊗ Γ : for u ∈ h0, f ∈ L2(R+,k0)

are given by

N1
S [k]ue(f[k]) = Su⊗ Ω[k],

N2
R[k]ue(f[k]) =

Λ2
R[k]√
h
u⊗ f[k]

=
1√
h

∫

[k]
R∗(uf(s))dsΩ[k],

N3
R[k]ue(f[k]) =

Λ2
R[k]√
h
u⊗ Ω[k]

=
1h0 ⊗ 1[k]√

h
Ru

N4
T [k]ue(f[k]) = Λ4

T [k])Ph[k]f[k]

= (1h0 ⊗ 1[k])Tu⊗ Phf(·).

(4.3. 3)

For any S1, S2 ∈ B(h0), R1, R2 ∈ B(h0,h0
⊗

k0) and T1, T2 ∈ B(h0
⊗

k0) we observe

the following simple but useful identities, which are easy to derive.

• (N2
R[k])2 = (N3

R[k])2 = 0,

• N1
S1

[k] N1
S2

[k] = N1
S1S2

[k],

• N2
R1

[k] N3
R2

[k] = N1
R∗1R2

[k],

• N1
S [k] N2

R[k] = N2
RS∗ [k],

• N2
R[k] N4

T [k] = N2
T ∗R[k],
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• N3
R[k] N1

S [k] = N3
RS [k],

• N4
T [k] N3

R[k] = N3
TR[k],

• N3
R1

[k] N2
R2

[k] = N4
R1R∗2

[k],

• N4
T1

[k] N4
T2

[k] = N4
T1T2

[k],

• N1
S [k] +N4

S⊗1k0
[k] = S ⊗ Ph[k]

From (4.3. 3 ) we have

‖N1
S [k]ue(f[k])‖ = ‖Su‖,

‖N2
R[k]ue(f[k])‖ ≤

√
h‖R‖ ‖u‖ ‖f‖∞,

‖N3
R[k]ue(f[k])‖ ≤ ‖Ru‖

‖N4
T [k]ue(f[k])‖ ≤

√
h‖T‖‖u‖‖f‖.

(4.3. 4)

Here we also note the following which can be verified easily using Lemma 1.5.12

‖Λ3
R[k]ue(f[k])‖2

= ‖(1h0⊗1[k]
)Ru‖2‖e(f[k])‖2 + ‖

∫

[k]
R∗(uf(s))ds‖2‖e(f[k])‖2,

‖Λ4
T [k]ue(f[k])‖2

=
∫

[k]
‖Tuf(s)‖2ds‖e(f[k])‖2 + ‖

∫

[k]
〈f(s), Tf(s)〉 ds ue(f[k])‖2.

(4.3. 5)

For the basic operators N l’s we have the following estimates:

Lemma 4.3.1. (a). For any k ≥ 1 and u ∈ h0, f ∈M,

1. ‖{h N1
S [k]− Λ1

S [k]}ue(f[k])‖ ≤ h
3
2 ‖Su‖‖f‖∞‖e(f[k])‖,

2. ‖{
√
h N2

R[k]− Λ2
R[k]}ue(f[k])‖ ≤ h

3
2 ‖R‖ ‖u‖‖f‖2∞‖e(f[k])‖,
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3. ‖{
√
h N3

R[k]− Λ3
R[k]}ue(f[k])‖ ≤ 2h‖Ru‖‖f‖∞‖e(f[k])‖,

4. ‖{N4
T [k]− Λ4

T [k]}ue(f[k])‖ ≤ 2h‖T‖(cf + ‖f‖2∞)‖ue(f[k])‖.

(b). For any k ≥ 1 and u, v ∈ h0, f, g ∈M, we have

1. |〈ve(g[k]), {h N1
S [k]− Λ1

S [k]}ue(f[k])〉|

≤ h
3
2 ‖Su‖‖f‖∞‖e(f[k])‖‖ve(g[k])‖,

2. |〈ve(g[k]), {
√
h N2

R[k]− Λ2
R[k]}ue(f[k])〉|

≤ h
3
2 ‖R‖ ‖u‖‖f‖2∞‖g‖∞‖e(f[k])‖‖ve(g[k])‖,

3. |〈ve(g[k]), {
√
h N3

R[k]− Λ3
R[k]}ue(f[k])〉|

≤ 2h2‖Ru‖ ‖v‖ ‖f‖∞ ‖g‖∞ ‖e(f[k])‖2 ‖e(g[k])‖2,

4. |〈ve(g[k]), {N4
T [k]− Λ4

T [k]}ue(f[k])〉|

≤ h2 [(‖f‖∞ + cf )‖g‖∞]2 ‖T‖ ‖u‖ ‖v‖ ‖e(f[k])‖2 ‖e(g[k])‖2.

Proof. a.(1) It is clear from the definition that

‖{h N1
S [k]− Λ1

S [k]}ue(f[k])‖ = h‖Su(Ω[k] − e(f[k]))‖
= h‖Su‖‖Ω[k] − e(f[k])‖
≤ h

3
2 ‖Su‖‖f‖∞‖e(f[k])‖.

(2) From the definitions, we have

‖{
√
h N2

R[k]− Λ2
R[k]}ue(f[k])‖ = ‖

∫

[k]
R∗(uf(s))ds (Ω[k] − e(f[k]))‖

≤
∫

[k]
‖R∗(uf(s))‖ds ‖(Ω[k] − e(f[k]))‖

≤ h
3
2 ‖R‖ ‖u‖‖f‖2

∞‖e(f[k])‖.
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(3) We have

‖{
√
h N3

R[k]− Λ3
R[k]}ue(f[k])‖2

= ‖(1h0 ⊗ 1[k]) Ru− Λ3
R[k]ue(f[k])‖2

= ‖(1h0 ⊗ 1[k]) Ru‖2 + ‖Λ3
R[k]ue(f[k])‖2

− 2Re〈(1h0 ⊗ 1[k]) Ru,Λ
3
R[k]ue(f[k])〉

Now using (4.3. 5) and the definition of Λ3
R the above quantity is equal to

‖(1h0 ⊗ 1[k])Ru‖2 + ‖(1h0 ⊗ 1[k])Ru‖2‖e(f[k])‖2

+ ‖
∫

[k]
R∗(uf(s))ds‖2‖e(f[k])‖2 − 2‖(1h0 ⊗ 1[k])Ru‖2

= ‖(1h0 ⊗ 1[k])Ru‖2[‖e(f[k])‖2 − 1] + ‖
∫

[k]
R∗(uf(s))ds‖2‖e(f[k])‖2

≤ 2h2‖R‖2‖u‖2‖f‖2
∞‖e(f[k])‖2.

(4) We have

‖{N4
T [k]− Λ4

T [k]}ue(f[k])‖2

= ‖(1h0 ⊗ 1[k])T (u⊗ Phf(·))‖2 + ‖Λ4
T [k]ue(f[k])‖2

− 2Re〈(1h0 ⊗ 1[k])T (u⊗ Phf(·)),Λ4
T [k]ue(f[k])〉.

By the definition of Λ4
T

〈(1h0 ⊗ 1[k])T (u⊗ Phf(·)),Λ4
T [k]ue(f[k])〉

= 〈(1h0 ⊗ 1[k])T (u⊗ Phf(·)), a†(T [k]
f[k]

)ue(f[k])〉
= 〈(1h0 ⊗ 1[k])T (u⊗ Phf(·)), T [k]

f[k]
(uΩ[k])〉

=
∫

[k]
〈T (uPh(f)(s)), T (uf(s))〉 ds.
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Thus using (4.3. 5) we obtained

‖{N4
T [k]− Λ4

T [k]}ue(f[k])‖2

=
∫

[k]
‖T (uPh(f)(s))‖2ds

+
∫

[k]
‖T (uf(s))‖2ds‖e(f[k])‖2 + ‖

∫

[k]
〈f(s), Tf(s)〉 ds ue(f[k])‖2

− 2Re
∫

[k]
〈T (uPh(f)(s)), T (uf(s))〉ds

=
∫

[k]
‖Tuf(s)‖2ds(‖e(f[k])‖2 − 1) + ‖

∫

[k]
〈f(s), Tf(s)〉 ds ue(f[k])‖2

+
∫

[k]
‖T (u⊗ (1− Ph)(f)(s))‖2ds

≤ 2h2‖T‖2‖f‖4
∞‖ue(f[k])‖2 + ‖T‖2‖u‖2

∫

[k]
‖(1− Ph)(f)(s))‖2ds

≤ 2h2‖T‖2‖f‖4
∞‖ue(f[k])‖2 + ‖T‖2‖u‖2‖(1− Ph)(f[k])‖2.

Since ‖(1− Ph)e(f[k])‖2 ≤ h2cf , the required estimate follows.

(b). The estimates (1) and (2) follow directly from (a).

(3) From the definitions

〈ve(g[k]), {
√
h N3

R[k]− Λ3
R[k]}ue(f[k])〉

= 〈ve(g[k]),
√
h N3

R[k]ue(f[k])〉 − 〈ve(g[k]),Λ
3
R[k]ue(f[k])〉

= 〈ve(g[k]), (1h0 ⊗ 1[k]) Ru〉 − 〈Λ2
R[k]ve(g[k]), ue(f[k])〉

=
∫

[k]
〈Ru, vg(s)〉ds(1− 〈e(g[k]), e(f[k])〉).

Thus we have obtained the required estimate,

|〈ve(g[k]), {
√
h N3

R[k]− Λ3
R[k]}ue(f[k])〉|

≤ h2‖Ru‖ ‖v‖ ‖f‖∞‖g‖∞‖2e(f[k])‖2‖e(g[k])‖2.

4. By definition of N4
T and Λ4

T

〈ve(g[k]), {N4
T [k]− Λ4

T [k]}ue(f[k])〉
= 〈ve(g[k]), N

4
T [k]ue(f[k])〉 − 〈ve(g[k]),Λ

4
T [k]ue(f[k])〉
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= 〈ve(g[k]), (1h0 ⊗ 1[k])T (uPhf(·))〉 − 〈ve(g[k]), a
†(T [k]

f[k]
)ue(f[k])〉

=
∫

[k]
〈vg(s), T (u(Phf)(s))〉ds−

∫

[k]
〈vg(s), T (uf(s))〉ds〈e(g[k]), e(f[k])〉.

=
∫

[k]
〈vg(s), T [u ((Ph − 1)f) (s)]〉ds

+
∫

[k]
〈vg(s), T (uf(s))〉ds[1− 〈e(g[k]), e(f[k])〉].

So we get

|〈ve(g[k]), {N4
T [k]− Λ4

T [k]}ue(f[k])〉|

≤
(∫

[k]
‖vg(s)‖2ds

) 1
2
(∫

[k]
‖T [u((Ph − 1)f[k](s))]‖2ds

) 1
2

+
∫

[k]
‖vg(s)‖‖T (uf(s))‖ds ‖1− 〈e(g[k]), e(f[k])〉‖

≤ h‖v‖‖g‖∞‖T‖‖u‖‖(Ph[k]− 1)f[k]‖
+h‖v‖‖g‖∞‖T‖‖u‖‖f‖∞ ‖1− 〈e(g[k]), e(f[k])〉‖.

Using the estimates of ‖(Ph[k]− 1)f[k]‖ and ‖1− 〈e(g[k]), e(f[k])〉‖ the required esti-

mate follows.

Remark 4.3.2. The estimates in the above Lemma will also hold if we replace

the initial Hilbert space h0 by h0
⊗

Γ (k−1)h] and take S ∈ B(h0
⊗

Γ (k−1)h]), R ∈
B(h0

⊗
Γ (k−1)h],h0

⊗
Γ (k−1)h]

⊗
k0) and T ∈ B(h0

⊗
Γ (k−1)h]

⊗
k0).

Quantum random walk

Let A ⊆ B(h0) be a von Neumann algebra. Let us consider the Hilbert von Neumann

module A⊗
k0. Suppose we are given with a family of ∗-homomorphisms {β(h)}h>0

from A to A⊗B(k̂0). For h > 0, β(h) can be written as

β(h, x) =


 β1(h, x) (β2(h, x))∗

β3(h, x) β4(h, x)


 , ∀x ∈ A, where the components βl(h)’s are

contractive maps and β1(h) ∈ B(A), β4(h) ∈ B(A,A⊗B(k0)) and β2(h), β3(h) ∈
B(A,A⊗

k0). The ∗-homomorphic properties of β(h) can be translated into the

following properties of βl(h)’s.

• β1(h, x∗) = (β1(h, x))∗,
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• β4(h, x∗) = (β4(h, x))∗,

• β3(h, x∗) = β2(h, x),

• β1(h, xy) = β1(h, x)β1(h, y) + (β2(h, x))∗β3(h, y),

• β2(h, xy) = β1(h, x)(β2(h, y))∗ + (β2(h, x))∗β4(h, y),

• β3(h, xy) = β3(h, x)β1(h, y) + β4(h, x)β3(h, y),

• β4(h, xy) = β3(h, x)(β2(h, y))∗ + β4(h, x)β4(h, y).

We define a family of maps P(h)
t : A⊗ E(K) → A⊗

Γ as follows. We subdivide the

interval [0, t] into [k] ≡ ((k − 1)h, kh] , 1 ≤ k ≤ n so that t ∈ ((n− 1)h, nh] as earlier

and set for x ∈ A, f ∈ K

P(h)
0 (xe(f)) = xe(f)

P(h)
kh (xe(f)) =

∑4
l=1 P(h)

(k−1)hN
l
βl(h,x)[k]e(f)





(4.3. 6)

and P(h)
t = P(h)

nh .

Now setting a family of linear maps p(h)
t : A → A⊗B(Γ), by

p
(h)
t (x)ue(f) := P(h)

t (xe(f))u,∀u ∈ h0 we have

p
(h)
0 (x)ue(f) = xue(f)

p
(h)
t (x)ue(f) = p

(h)
nh (x)ue(f) =

∑4
l=1N

l

p
(h)
(n−1)h

(βl(h,x))
[n]ue(f).





(4.3. 7)

As per our convention p
(h)
(n−1)h appear above are identified with their ampliations

p
(h)
(n−1)h⊗1k0 as well as p(h)

(n−1)h⊗1B(k0). For k ≥ 1, l = 1, 2, 3 and 4, N l

p
(h)
(k−1)h

(βl(h,x))
[k]

are defined in terms of

Λ1

(p
(h)
(k−1)h

(β1(h,x))
[k], Λ2

(p
(h)
(k−1)h

⊗1k0
)(β2(h,x))

[k], Λ3

(p
(h)
(k−1)h

⊗1k0
)(β3(h,x))

[k]

and Λ4

(p
(h)
(k−1)h

⊗1B(k0))(β4(h,x))
[k] where, for example Λ2

(p
(h)
(k−1)h

⊗1k0
)(β2(h,x))

[k] carries the

meaning of a†
(p

(h)
(k−1)h

⊗1k0
)(β2(h,x))

[k] with initial Hilbert space h0
⊗

Γ(k−1)h].



4.3. EH flow as a strong limit of Quantum random walk 99

For notational simplicity, for any bounded ∗-preserving map

α : A → A
⊗

B(k̂0), α(x) =


 α1(h, x) (α2(h, x))∗

α3(h, x) α4(h, x)


 ,

we write Nα(h,x)[k] for
∑4

l=1N
l
αl(h,x)[k] and Λα(h,x)[k] for

∑4
l=1 Λl

αl(h,x)[k]. Now for

each k ≥ 1 defining a linear map ρk(h, x) = Nβ(h,x)[k], p
(h)
nh can be written as p(h)

nh =

ρ1(h) · · · ρn(h). By the properties of the family {βl(h)} and {N l[k]}, each ρk(h) is a

∗-homomorphism and hence p(h)
t is so.

Lemma 4.3.3. For any t ≥ 0, t ∈ ((n− 1)h, nh] for some n ≥ 1 and x ∈ A, u ∈ h0

and f ∈ K

P(h)
t (xe(f))u = xue(f) +

n∑

k=1

P(h)
(k−1)hNβ(h,x)−b(x)[k]e(f)u+ F (h, x, u, f), (4.3. 8)

where b(x) =


 b1(x) (b2(x))∗

b3(x) b4(x)


 = x⊗ 1k̂0

and

F (h, x, u, f) = −∑n
k=1 P(h)

(k−1)h(x(1Γ − Ph[k])e(f))u. Moreover, for any f ∈M

‖F (h, x, u, f)‖2 ≤ h c(f, t)‖x‖2 ‖u‖2, (4.3. 9)

where c(f, t) = 2t(cf + ‖f‖∞)‖e(f)‖.

Proof. Since for any k ≥ 1,

Nb(x)[k] =
4∑

l=1

N l
bl(x)[k] = N1

x [k] +N4
x⊗1k0

[k] = x⊗ Ph[k],

We get

P(h)
t (xe(f))u = P(h)

nh (xe(f))u

= xue(f) +
n∑

k=1

(P(h)
kh − P(h)

(k−1)h)(xe(f))u

= xue(f) +
n∑

k=1

P(h)
(k−1)hNβ(h,x)−b(x)[k]e(f)u

−
n∑

k=1

P(h)
(k−1)h(x⊗ 1Γ −Nb(x)[k])e(f)u

= xue(f) +
n∑

k=1

P(h)
(k−1)hNβ(h,x)−b(x)[k]e(f)u+ F (h, x, u, f).
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In order to obtained (4.3. 9) let us consider the following. For any 1 ≤ m ≤ n

setting Zm =
∑m

k=1 p
(h)
(k−1)h(x)(1− Ph[k]), we have

‖Zmue(fmh])‖ ≤ ∑m
k=1 ‖p(h)

(k−1)h(x)ue(f(k−1)h])‖ ‖(1 − Ph[k])e(f[k])‖‖e(f(kh,mh])‖.
Now using Lemma 4.1.3(a) and the fact that p(h)

kh ’s are homomorphisms,

‖Zmue(fmh])‖

≤
m∑

k=1

h(cf + ‖f‖∞)‖x‖‖ue(fmh])‖

≤ t(cf + ‖f‖∞)‖x‖‖ue(fmh])‖.

By (1.5. 4 ) we have

‖F (h, x, u, f)‖2

=
n∑

k=1

‖p(h)
(k−1)h(x)ue(f(k−1)h])‖2‖(1− Ph[k])e(f[k])‖2 ‖e(f[kh )‖2

+ 2Re
n∑

k=1

〈Zk−1ue(f(k−1)h]), p
(h)
(k−1)h(x)ue(f(k−1)h])〉

〈e(f[k]), (1− Ph[k])e(f[k])〉 ‖e(f[kh )‖2

≤
n∑

k=1

‖x‖2‖ue(f(k−1)h])‖2‖(1− Ph[k])e(f[k])‖2 ‖e(f[kh )‖2

+ 2
n∑

k=1

‖Zk−1ue(f(k−1)h])‖ ‖x‖‖ue(f(k−1)h])‖

‖(1− Ph[k])e(f[k])‖2 ‖e(f[kh )‖2.

Using the uniform bound for ‖Zk−1ue(f(k−1)h])‖ and Lemma 4.1.3(a) the required

estimate follows.

By above Lemma and the definition p(h)
t we have

P(h)
t (xe(f))u = p

(h)
t (x)ue(f) = xue(f)

+
n∑

k=1

N
p
(h)
(k−1)h

(β(h,x)−b(x))
[k]ue(f) + F (h, x, u, f) (4.3. 10)

4.3.2 Strong convergence of Quantum random walk: with bounded

structure maps

Here, we shall prove the strong convergence of quantum random walk p(h)
t extend-

ing the ideas in [35], where the strong convergence was obtained under bounded
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assumption on structure maps in one dimensional noise situation.

Let Tt be a uniformly continuous conservative QDS on von Neumann algebra A
with the generator L. Then by Theorem 1.5.14 and Lemma 1.5.15 (for detail see

[15]):

(i) There exists a Hilbert space k0 and structure maps (L, δ, σ) satisfying the hy-

potheses (S1), (S2) and (S3).

(ii)The map Θ =


 θ1 (θ2(·))∗

θ3 θ4


 =


 L δ†

δ σ


 : A → A⊗B(k̂0) is a bounded

CCP map with the structure (1.5. 18)

θ(x) = V ∗(x⊗ 1k̂0
)V +W (x⊗ 1k̂0

) + (x⊗ 1k̂0
)W ∗,∀x ∈ A,

where V,W ∈ B(h0
⊗

k̂0), and the estimate (1.5. 19).

(iii) Let τ ≥ 0 be fixed. There exists a unique solution Jt of the equation,

Jt = idAN
Γ +

∫ t

0
JsΛΘ(ds), 0 ≤ t ≤ τ (4.3. 11)

(here we have written ΛΘ(ds) for Λ1
θ1

(ds) + Λ2
θ3

(ds) + Λ3
θ3

(ds) + Λ4
θ4

(ds))

as a regular adapted process mapping A⊗ E(C) into A⊗
Γ and satisfies

sup
0≤t≤τ

||Jt(x⊗ e(f))u|| ≤ C ′(f)||(x⊗ 1Γfr(L2([0,τ ],H)))Eτu||,

where f ∈ C, Et ∈ B(h0,h0
⊗

Γfr(L2([0, τ ],H))), C ′(f) is some constant and

Γfr(L2([0, τ ],H)) is the free Fock space over L2([0, τ ],H).

For m ≥ 0, let us consider the ampliation

Θ(m) : A⊗B(k̂m©
0 ) → A⊗B(k̂m©

0 )
⊗B(k̂0) of the map Θ given by

Θ(m)(X) = Q∗m

(
Θ⊗ idB(k̂

m©
0 )

(X)
)
Qm (4.3. 12)

where Qm : h0
⊗

k̂m©
0

⊗
k̂0 → h0

⊗
k̂0

⊗
k̂m©

0 is the unitary operator which inter-

changes the second and third tensor components. From the structure (1.5. 18) of

the map Θ,

Θ(m)(X) = Q∗m(V ∗ ⊗ 1
k̂
m©
0

)Qm(X ⊗ 1k̂0
)Q∗m(V ⊗ 1

k̂
m©
0

)Qm

+Q∗m(W ⊗ 1
k̂
m©
0

)Qm(X ⊗ 1k̂0
) + (X ⊗ 1k̂0

)Q∗m(W ∗ ⊗ 1
k̂
m©
0

)Qm.
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For ξ ∈ h0
⊗

k̂m©
0

⊗
k̂0,

‖Θ(m)(X)ξ‖2 ≤ 3
[
‖V ‖2‖(X ⊗ 1k̂0

)Q∗m(V ⊗ 1
k̂
m©
0

)Qmξ‖2

+‖W‖2‖(X ⊗ 1k̂0
)ξ‖2 + ‖(X ⊗ 1k̂0

)Q∗m(W ∗ ⊗ 1
k̂
m©
0

)Qmξ‖2

]
.

Setting

Dmξ =
√

3
[
‖V ‖Q∗m(V ⊗ 1

k̂
m©
0

)Qmξ ⊕ ‖W‖ξ ⊕Q∗m(W ∗ ⊗ 1
k̂
m©
0

)Qmξ

]
,

Dm ∈ B(h0
⊗

k̂m©
0

⊗
k̂0,h0

⊗
k̂m©

0

⊗H) (where H = k̂0 ⊕ k̂0 ⊕ k̂0 as earlier) and

‖Θ(m)(X)ξ‖ ≤ ‖(X ⊗ 1H)Dmξ‖,∀X ∈ A⊗B(k̂m©
0 ). (4.3. 13)

Thus ‖Θ(m)‖ ≤ ‖Dm‖, by definition ‖Dm‖2 ≤ 3(‖V ‖4 + ‖W‖2), ∀m ≥ 0 and

hence Θ can be extend as a map
⊕

m≥0 Θ(m) from A⊗B(Γfr(k̂0)) into itself with

‖⊕
m≥0 Θ(m)‖ ≤ 3(‖V ‖2 + ‖W‖), we denote this map by same symbol Θ.

For any fixed m ≥ 0 let us look at the following qsde on A⊗B(k̂m©
0 )

⊗
Γ

ηm,t = idANB(k̂
m©
0 )

N
Γ

+
∫ t

0
ηm,sΛΘ(ds), 0 ≤ t ≤ τ. (4.3. 14)

Since we have the estimate, for any X ∈ A⊗B(k̂m©
0 ), ξ ∈ h0

⊗
k̂m©

0

⊗
k̂0

‖Θ(X)ξ‖ = ‖Θ(m)(X)ξ‖ ≤ ‖(X ⊗ 1H)Dmξ‖,

by a simple adaptation of the proof of Theorem 1.5.19, it can be shown that

(i) the qsde (4.3. 14) admit a unique solution ηm,t as an adapted regular process

mapping A⊗B(k̂m©
0 )

⊗ E(C) into A⊗B(k̂m©
0 )

⊗
Γ.

(ii) ηm,t satisfies the estimate

sup
0≤t≤τ

||ηm,t(X ⊗ e(f))ξ|| ≤ C ′(f)||(X ⊗ 1Γfr(L2([0,τ ],H)))Eτξ||, (4.3. 15)

where f ∈ C and C ′(f) is some constant. The operator Eτ appears above is an

element of

B(h0
⊗

k̂m©
0 ,h0

⊗
k̂m©

0

⊗
Γfr(L2([0, τ ],H))), define as follows:

Eτξ =
⊕

n≥0

(n!)
1
4E(n)

τ ξ,
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where E(n)
τ ∈ B(h0

⊗
k̂m©

0 ,h0
⊗

k̂m©
0

⊗
(L2([0, τ ],H)) n©) given by, for ξ ∈ h0

⊗
k̂m©

0

E(0)
τ ξ = ξ,

(E(1)
τ ξ)(s) = D(ξ ⊗ f̂(s)||f̂ t](s)||) and iteratively

(E(n)
τ ξ)(s1, s2, . . . sn) = (Dm ⊗ 1

L2([0,τ ],H)⊗
n−1 )Qn

{(E(n−1)
τ u)(s2, . . . sn)⊗ f̂(s1)||f̂ t](s1)||}

( Qn : h0
⊗

k̂m©
0

⊗
L2([0, τ ],H)⊗

(n−1) ⊗
k̂0 → h0

⊗
k̂m©

0

⊗
k̂0

⊗
L2([0, τ ],H)⊗

(n−1)

is the unitary operator which interchanges the third and fourth tensor components).

It is clear that Jt ⊗ idB(k̂
m©
0 )

(≡ Υ∗
m(Jt ⊗ idB(k̂

m©
0 )

)Υm : A⊗B(k̂m©
0 )

⊗ E(C) →
A⊗B(k̂m©

0 )
⊗

Γ, where Υm : h0
⊗

k̂m©
0

⊗
Γ → h0

⊗
Γ

⊗
k̂m©

0 )

satisfies the qsde (4.3. 14) and hence ηm,t = Jt ⊗ idB(k̂
m©
0 )

. By definition of Eτ , it

can be easily seen that ‖Eτ‖ uniformly bounded for m ≥ 0 and hence the estimate

(4.3. 15) allow us to extend {Jt} as a regular adapted process {⊕m≥0 Jt⊗ idB(k̂
m©
0 )
}

mapping A⊗B(Γfr(k̂0))
⊗ E(C) into A⊗B(Γfr(k̂0))

⊗
Γ, we denote this family by

same symbol Jt. For a given f ∈ C this Jt satisfies

‖Jt(Xe(f)ξ‖ ≤ D′‖X‖‖ξ‖, ∀X ∈ A
⊗

B(Γfr(k̂0)) and ξ ∈ h0

⊗
Γfr(k̂0)),

(4.3. 16)

for some constant D′ independent of X and ξ.

To obtain the ∗-homomorphic property of the family jt : A → A⊗B(Γ)

(jt(x)ue(f) := Jt(xe(f))u) we shall prove that the {jt} is a strong limit of a family

of quantum random walks {p(h)
t : h > 0} associated with a family β(h) : A →

A⊗B(k̂0) of ∗-homomorphism under the following assumption on {β(h) : h ≥ 0}.
Here first we note that since each β(h) is a ∗-homomorphism from A into A⊗B(k̂0),

as Θ it can be extend as a bounded map from A⊗B(Γfr(k̂0)) into itself.

Assumption:

• A1. The family of linear maps E(h) : A → A⊗B(k̂0) given by, for x ∈ A

E(h, x) =


 h−2 [β1(h, x)− x− hθ1(x)] h−

3
2 (β2(h, x)−

√
hθ2(x))∗

h−
3
2 [β3(h, x)−

√
hθ3(x)] h−1 [β4(h, x)− x⊗ 1k0 − θ4(x)]


 ,

is uniformly norm bounded, also as maps from A⊗B(Γfr(k̂0)) into itself, have

uniform norm bound i.e. ‖E(h)‖ ≤M, for some constant M independent of h.
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In particular, it follows from assumption (A1) that for any l

‖βl(h,X)− bl(X)− hεlθl(X)‖ ≤M‖X‖h1+εl , ∀X ∈ A ⊗B(k̂m©
0 ) (4.3. 17)

where ε1 = 1, ε2 = ε3 = 1
2 and ε4 = 0.

Here it may be noted that one can find a ∗-homomorphic family {β(h)}h>0 with

assumption A1 starting from the generator of a uniformly continuous QDS Tt on a

von Neumann algebra A, for example with generator L satisfying

L(x) = R∗(x⊗ 1k0)R−
1
2
R∗Rx− 1

2
xR∗R,∀x ∈ A (4.3. 18)

for some Hilbert space k0 and R ∈ B(h0,h0
⊗

k0).

Theorem 4.3.4. Let L be given by (4.3. 18). Then there exists a ∗-homomorphic

family {β(h)}h>0 with assumption A1.

Proof. Here the map Θ is given by Θ(x) =


 θ1(x) (θ2(x))∗

θ3(x) θ4(x)


 =


 L(x) δ†(x)

δ(x) σ(x)


 ,

∀x ∈ A, where δ(x) = (x ⊗ 1k0)R − Rx, δ†(x) = (δ(x∗))∗ = R∗(x ⊗ 1k0) − xR∗ and

σ = 0. Setting R̃ =


 0 −R∗

R 0


 from h0

⊗
k̂0 to itself. It is clear that R̃ is a

bounded skew symmetric operator thus it generate a one parameter unitary group

{et eR}. For h > 0, we consider the unitary operator U(h) = e
√

h eR which can be

written as


 cos(

√
h|R|) −

√
hD(h)R∗

√
hRD(h) cos(

√
h|R∗|)


 where D(h) = sin(

√
h|R|)(

√
h|R|)−1

and

|R|, |R∗| denote the positive square root of R∗R and RR∗ respectively. It can easily

be observed that

‖ cos(
√
h|R|)− 1h0 +

h

2
|R|2‖ ≤ h2‖R‖4,

‖ cos(
√
h|R|)− 1h0‖ ≤ h‖R‖2,

‖ cos(
√
h|R∗|)− 1h0⊗k0‖ ≤ h‖R‖2,

‖D(h)− 1h0‖ ≤ h‖R‖2,

‖ cos(
√
h|R|)‖ ≤ 1,

‖D(h)‖ ≤ 1.

(4.3. 19)

Now we define a ∗-homomorphism β(h) from A to A⊗B(k̂0) implemented by the

unitary U(h), i.e. for x ∈ A, β(h, x) := β(h)(x) = (U(h))∗(x⊗ 1k̂0
)U(h). So for any
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x ∈ A, β(h, x) =


 β1(h, x) (β2(h, x))∗

β3(h, x) β4(h, x)




=




{cos(
√
h|R|)x cos(

√
h|R|) {−

√
h cos(

√
h|R|)xD(h)R∗

+hD(h)R∗(x⊗ 1k0)RD(h)} +
√
hD(h)R∗(x⊗ 1k0) cos(

√
h|R∗|)}

{−
√
hRD(h)x cos(

√
h|R|) {hRD(h)xD(h)R∗

+
√
h cos(

√
h|R∗|)(x⊗ 1k0)RD(h)} +cos(

√
h|R∗|)(x⊗ 1k0) cos(

√
h|R∗|)}



.

We have

β1(h, x)− x− hθ1(x)

= cos(
√
h|R|)x cos(

√
h|R|) + hD(h)R∗(x⊗ 1k0)RD(h)

− x− h

(
R∗(x⊗ 1k0)R−

1
2
|R|2x− 1

2
x|R|2

)

=
[
cos(

√
h|R|)− 1h0 +

1
2
|R|2

]
x cos(

√
h|R|)

+ x

[
cos(

√
h|R|)− 1h0 +

1
2
|R|2

]
+

1
2
|R|2x

[
1h0 − cos(

√
h|R|)

]

+ h[D(h)− 1h0 ]R
∗(x⊗ 1k0)RD(h) + hR∗(x⊗ 1k0)RD(h).

By (4.3. 19) we get

‖β1(h, x)− x− hθ1(x)‖ ≤ 5h2‖R‖4‖x‖. (4.3. 20)

By definition we have

β2(x∗)−
√
hθ2(x∗) = β3(x)−

√
hθ3(x)

=
√
h

[
−RD(h)x cos(

√
h|R|) + cos(

√
h|R∗|)(x⊗ 1k0)RD(h)− (x⊗ 1k0)R+Rx

]

=
√
h

[
−RD(h)x[cos(

√
h|R|)− 1h0 ]−R[D(h)− 1h0 ]x

+ cos(
√
h|R∗|)(x⊗ 1k0)R[D(h)− 1h0 ] + [cos(

√
h|R∗|)− 1h0 ](x⊗ 1k0)R

]
.

Using (4.3. 19) we get

‖β2(x∗)−
√
hθ2(x∗)‖ = ‖β3(x)−

√
hθ3(x)‖

≤
√
h

[
‖RD(h)x[cos(

√
h|R|)− 1h0 ]‖+ ‖R[D(h)− 1h0 ]x‖

+‖ cos(
√
h|R∗|)(x⊗ 1k0)R[D(h)− 1h0 ]‖+ ‖[cos(

√
h|R∗|)− 1h0⊗k0 ](x⊗ 1k0)R‖

]

≤ 4h
3
2 ‖R‖3‖x‖.
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Now let us consider β4(x)− θ4(x), we have

‖β4(x)− θ4(x)‖
= ‖hRD(h)xD(h)R∗ + cos(

√
h|R∗|)(x⊗ 1k0) cos(

√
h|R∗|)− (x⊗ 1k0)‖

≤ h‖RD(h)xD(h)R∗‖+ ‖[cos(
√
h|R∗|)− 1h0⊗k0 ](x⊗ 1k0) cos(

√
h|R∗|)‖

+ ‖(x⊗ 1k0)[cos(
√
h|R∗|)− 1h0⊗k0 ]‖

≤ 3h‖R‖2‖x‖.

Thus for l = 1, 2, 3 and 4,

‖βl(h, x)− bl(x)− hεlθl(x)‖ ≤M‖x‖h1+εl ,∀x ∈ A, (4.3. 21)

where constant M = 5(‖R‖2 + ‖R‖3 + ‖R‖4).

For m ≥ 0, let us consider the ampliation of the maps Θ, b and β as maps from

A⊗B(Γfr(k̂0)) into itself. For X ∈ A⊗B(k̂m©
0 )

Θ(X) = Θ(m)(X) = Q∗m

(
Θ⊗ idB(k̂

m©
0 )

(X)
)
Qm,

where Qm : h0
⊗

k̂m©
0

⊗
k̂0 → h0

⊗
k̂0

⊗
k̂m©

0 is the unitary operator which inter-

changes the second and third tensor components. This operatorQm = 1
h0

N
k̂
m©
0

⊕Pm

where qm : h0
⊗

k̂m©
0

⊗
k0 → h0

⊗
k0

⊗
k̂m©

0 is define as Qm. By definition we have

θ1(X) = (R∗ ⊗ 1
k̂
m©
0

)qm(X ⊗ 1k0)q
∗
m(R⊗ 1

k̂
m©
0

)− 1
2
(|R| ⊗ 1

k̂
m©
0

)X − 1
2
X(|R| ⊗ 1

k̂
m©
0

)

θ2(X)∗ =
[
X(R∗ ⊗ 1

k̂
m©
0

)qm − (R∗ ⊗ 1
k̂
m©
0

)qm(X ⊗ 1k0)
]
q∗m

θ3(X) = q∗m

[
(R⊗ 1

k̂
m©
0

)X − qm(X ⊗ 1k0)q
∗
m(R⊗ 1

k̂
m©
0

)
]

θ4(X) = 0

and components of β(h,X) are
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β1(h,X) = (cos(
√
h|R|)⊗ 1

k̂
m©
0

)X(cos(
√
h|R|)⊗ 1

k̂
m©
0

)

+ h(D(h)R∗ ⊗ 1
k̂
m©
0

)qm(X ⊗ 1k0)q
∗
m(RD(h)⊗ 1

k̂
m©
0

)

β2(h,X)∗ =
[
−
√
h(cos(

√
h|R|)⊗ 1

k̂
m©
0

)X(D(h)R∗ ⊗ 1
k̂
m©
0

)

+
√
h(D(h)R∗ ⊗ 1

k̂
m©
0

)qm(X ⊗ 1k0)q
∗
m(cos(

√
h|R∗|)⊗ 1

k̂
m©
0

)
]
qm

β3(h,X) = q∗m

[
−
√
h(RD(h)⊗ 1

k̂
m©
0

)X(cos(
√
h|R|)⊗ 1

k̂
m©
0

)

+
√
h(cos(

√
h|R∗|)⊗ 1

k̂
m©
0

)qm(X ⊗ 1k0)q
∗
m(RD(h)⊗ 1

k̂
m©
0

)
]

β4(h,X) = q∗m

[
h(RD(h)⊗ 1

k̂
m©
0

)X(D(h)R∗ ⊗ 1
k̂
m©
0

)

+(cos(
√
h|R∗|)⊗ 1

k̂
m©
0

)qm(X ⊗ 1k0)q
∗
m(cos(

√
h|R∗|)⊗ 1

k̂
m©
0

)
]
qm.

By same argument as for (4.3. 21) one has

‖β1(h,X)− bl(X)− hθ1(X)‖ ≤ C ′h1+εl‖X‖, ∀X ∈ A
⊗

B(k̂m©
0 ),

for some constant C ′ independent of h > 0,m ≥ 0. Thus ‖E(h)(X)‖ ≤M‖X‖, ∀X ∈
A⊗B(Γfr(k̂0)), for some constant M independent of h.

Let B = A⊗B(Γfr(k̂0))
⊗B(Γ), which can be decomposed as

B =
(
A⊗⊕

m≥0 B(k̂m©
0 )

)⊕Bc for some subspace Bc. Now let us consider the

extensions of all these maps Θ, β(h), b, p(h)
t and P(h)

t as bounded linear maps from B
into itself, given by, for example extention of p(h)

t is
⊕

m≥0 p
(h)
t ⊗ idB(k̂

m©
0 )

⊕ 0Bc . We

denote these extentions by same symbols as the original maps. From the assumption

A1 it follows that

‖βl(h,X)− bl(X)− hεlθl(X)‖ ≤ C‖X‖h1+εl ,∀X ∈ A⊗B(k̂m©
0 ). (4.3. 22)

For h ≥ 0 we define a map Θ(h) :=


 hθ1 h

1
2 (θ2(·))∗

h
1
2 θ3 θ4


 from A to A⊗B(k̂0),

as the map Θ, Θ(h) also extend a bounded map from B into itself. Here we have

the following observations which will be needed later for proving the convergence of

quantum random walk p(h)
t .
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Lemma 4.3.5. For any l,X ∈ A⊗B(k̂m©
0 ), ξ ∈ h0

⊗
k̂m©

0 and f ∈M we have

1. ‖∑n
k=1Np

(h)
(k−1)h

[β(h,X)−b(X)−Θ(h,X)]
[k]ξe(f)‖ ≤

√
hC1(f, t)‖X‖‖ξ‖

2. ‖∑n
k=1

[
N

p
(h)
(k−1)h

(Θ(h,X))
[k]− Λ

p
(h)
(k−1)h

(Θ(X))
[k]

]
ξe(f)‖2

≤ hC2(f, t)‖X‖2‖ξ‖2,

3. ‖∑n
k=1 p

(h)
(k−1)h(X)(1− Ph[k])ξe(f))‖2 ≤ h c(f, t)‖X‖2‖ξ‖2.

where constants c(f, t) is as in Lemma 4.3.3, C1(f, t) = t(1 + ‖f‖∞)‖e(f)‖ and

C2(f, t) = (1 + t)2(‖f‖∞ + ‖f‖2∞)2(1 + ‖Θ‖)2‖e(f)‖2.

Proof. (1). For any l we have

‖
n∑

k=1

N l

p
(h)
(k−1)h

[βl(h,X)−bl(X)−hεlθl(X)]
[k]ξe(f)‖

≤
n∑

k=1

‖N l

p
(h)
(k−1)h

[βl(h,X)−bl(X)−hεlθl(X)]
[k]ξk−1e(f[k])‖‖e(f[kh )‖

where ξk−1 = ξe(f(k−1)h]) is a vector in the initial Hilbert space

h0
⊗

Γfr(k̂0)
⊗

Γ (k−1)h]. For any l, from (4.3. 22) and contractivity of p(h)
t , we get

‖p(h)
(k−1)h[βl(h,X)− bl(X)− hεlθl(X)]‖ ≤ Ch1+εl‖X‖,

hence by (4.3. 4) the above quantity is dominated by
∑n

k=1 h
3
2C(1 + ‖f‖∞)‖X‖ ‖ξe(f)‖ and required estimate follows.

(2). By Lemma 4.3.1 the terms correspond to l = 1, 2 can be estimated as,

‖
n∑

k=1

[
hεlN l

p
(h)
(k−1)h

(θl(X))
[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]
ξe(f)‖

≤
n∑

k=1

‖
[
hεlN l

p
(h)
(k−1)h

(θl(X))
[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]
ξk−1e(f[k])‖‖e(f[kh )‖

≤
n∑

k=1

h
3
2 ‖p(h)

(k−1)h(θl(X))‖‖ξk−1‖(‖f‖∞ + ‖f‖2
∞)‖e(f[(k−1)h)‖

≤ (‖f‖∞ + ‖f‖2
∞)‖Θ‖

n∑

k=1

h
3
2 ‖X‖‖ξe(f)‖.
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Thus the required estimate follows. Now consider other two terms correspond to

l = 3 and 4. Setting for 1 ≤ m ≤ n

Zm =
m∑

k=1

[√
hN l

p
(h)
(k−1)h

(θl(X))
[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]
,

by Lemma 4.3.1 (a), we have

‖Zmue(fmh])‖

≤
m∑

k=1

‖
[√

hN l

p
(h)
(k−1)h

(θl(X))
[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]
ξ(k−1)e(f[k])‖‖e(f(kh,mh])‖

≤
m∑

k=1

h‖p(h)
(k−1)h(θl(X))ξk−1‖ ‖f‖∞ ‖e(f[k])‖‖e(f(kh,mh])‖.

Thus

‖Zmue(fmh])‖ ≤ t‖Θ‖ ‖f‖∞‖X‖‖ξe(fmh])‖. (4.3. 23)

We have the following equality,

‖Znξe(f)‖2

=
n∑

k=1

‖
[√

hN l
(k−1)h(h)(θl(X))

[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]
ξ(k−1)e(f[k])‖2e(f[kh )‖2

+2 Re
n∑

k=1

〈Zk−1ξk−1e(f[k]),
[√

hN l

p
(h)
(k−1)h

(θl(X))
[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]

ξk−1e(f[k])〉‖e(f[kh )‖2.

By the estimate in Lemma 4.3.1,

‖
n∑

k=1

[√
hN l

p
(h)
(k−1)h

(θl(X))
[k]− Λl

p
(h)
(k−1)h

(θl(X))
[k]

]
ξe(f)‖2

≤
n∑

k=1

h2‖p(h)
(k−1)h(θl(X))ξk−1‖2‖f‖2

∞‖e(f[(k−1)h)‖2

+2
n∑

k=1

h2‖Zk−1ξk−1‖‖p(h)
(k−1)h(θl(X))‖ ‖ξk−1‖ ‖f‖2

∞‖e(f[(k−1)h)‖2.

Now using (4.3. 23), above quantity is less than or equal to
n∑

k=1

h2‖f‖2
∞ ‖X‖2‖ξe(f)‖2

+2
n∑

k=1

h2t‖Θ‖2 ‖f‖3
∞‖X‖2‖ξe(f)‖2
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and required estimate follows.

(3.) The proof is same as for estimate (4.3. 9) in Lemma 4.3.3.

Now we shall prove the strong convergence of the quantum random walks p(h)
t . Note

that Jt : A⊗ E(K) → A⊗
Γ is the unique solution of the qsde

Jt = idAN
Γ +

∫ t

0
JsΛΘ(ds). (4.3. 24)

We define a family of maps J (h)
t by

J
(h)
0 (xe(f))u = xue(f)

J
(h)
t (xe(f))u = J

(h)
nh (xe(f))u = xue(f) +

n∑

k=1

J(k−1)h(ΛΘ(x)[k]e(f))u

for t ∈ ((n− 1)h, nh]. Thus by definition

J
(h)
t (xe(f))u = J

(h)
nh (xe(f))u = xue(f) +

n∑

k=1

Λj(k−1)h(Θ(x))[k]ue(f). (4.3. 25)

For u ∈ h0, f ∈M the adapted process Jt satisfies

Jt(xe(f))u = xue(f) +
∫ t

0
JsΛΘ(ds)(xe(f))u

and the map t 7→ Jt(xe(f))u is continuous. Thus by definition of this integral

lim
h→0

‖Jt(xe(f))u− J
(h)
t (xe(f))u‖ = 0

and hence

lim
h→0

‖jt(x)ue(f)− j
(h)
t (x)ue(f)‖ = 0. (4.3. 26)

Under the assumptions A1 we have the following result:

Theorem 4.3.6. Let p(h)
t be the quantum random walk associated with β(h). Then

for each x ∈ A and t ≥ 0, p(h)
t (x) converges strongly to jt(x). Thus jt : A →

A⊗B(Γ) is a ∗-homomorphic flow.

Proof. In order to prove

lim
h→0

‖p(h)
t (x)ue(f))− jt(x)ue(f)‖ = 0, ∀u ∈ h0, f ∈M, (4.3. 27)
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by (4.3. 26) it is sufficient to show that

lim
h→0

‖p(h)
t (x)ue(f))− j

(h)
t (x)ue(f)‖ = 0∀u ∈ h0, f ∈M. (4.3. 28)

For any fixed h > 0, f ∈M let us define a family of bounded linear maps

W
(h)
t : A → A⊗

Γ

given by, for x ∈ A and u ∈ h0,

W
(h)
t (x)u = p

(h)
t (x)ue(f))− j

(h)
t (x)ue(f)

= [P(h)
t (xe(f))− J

(h)
t (xe(f)]u =: Y (h)

t (xe(f))u.

Here, recall that {Jt} extend as a regular adapted process mappingA⊗B(Γfr(k̂0))
⊗ E(C)

into A⊗B(Γfr(k̂0))
⊗

Γ and hence for each X ∈ A⊗B(Γfr(k̂0)) the family {jt(X)}
define by jt(X)ξe(f) = Jt(X ⊗ e(f))ξ,∀ξ ∈ h0

⊗
Γfr(k̂0), f ∈ C, is a regular

(h0
⊗

Γfr,K)-adapted process. For a given f ∈ M ⊆ C by estimate (4.3. 16), W (h)
t

extend as a bounded linear map from A⊗B(Γfr(k̂0)) into A⊗B(Γfr(k̂0))
⊗

Γ.

Viewing A⊗B(Γfr(k̂0)) and A⊗B(Γfr(k̂0))
⊗

Γ as subspaces of B, let us de-

note by same symbol W (h)
t to the canonical extentions of W (h)

t as linear maps from

B into itself preserving the norm.

In order to prove (4.3. 28) we shall show that ‖W (h)
t ‖ (as maps from B into

itself) converges to 0 as h tends to 0. For any X ∈ A⊗B(k̂m©
0 ) and ξ ∈ h0

⊗
k̂m©

0
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by (4.3. 25) and (4.3. 10), we have

W
(h)
t (X)ξ

=
n∑

k=1

[
N

p
(h)
(k−1)h

(β(h,X)−b(X))
[k]− Λj(k−1)h(Θ(X))[k]

]
ξe(f)

−
n∑

k=1

p
(h)
(k−1)h(X)(1− Ph[k])ξe(f)

=
n∑

k=1

[(
N

p
(h)
(k−1)h

(β(h,X)−b(X))
[k]−N

p
(h)
(k−1)h

(Θ(h,X))
[k]

)
ξe(f)

+
(
N

p
(h)
(k−1)h

(Θ(h,X))
[k]− Λ

p
(h)
(k−1)h

(Θ(X))
[k]

)
ξe(f)

+
(

Λ
p
(h)
(k−1)h

(Θ(X))
[k]− Λj(k−1)h(Θ(X))[k]

)
ξe(f)

]

−
n∑

k=1

p
(h)
(k−1)h(X)(1− Ph[k])ξe(f)

Using linearity of N(·)[k] and Λ(·)[k],

‖W (h)
t (X)ξ‖2

≤ 4

(
‖

n∑

k=1

N
p
(h)
(k−1)h

(β(h,X)−b(X)−Θ(h,X))
[k]ξk−1e(f[(k−1)h )‖2

+ ‖
n∑

k=1

[
N

p
(h)
(k−1)h

(Θ(h,X))
[k]− Λ

p
(h)
(k−1)h

(Θ(X))
[k]

]
ξk−1e(f[(k−1)h )‖2

+ ‖
n∑

k=1

p
(h)
(k−1)h(X)(1− Ph[k])ξk−1e(f[(k−1)h )‖2

+ ‖
n∑

k=1

Λh
p
(h)
(k−1)h

−j(k−1)h

i
(Θ(X))

[k]ξk−1e(f[(k−1)h )‖2

)

= 4(I1 + I2 + I3 + I4).

By Lemma 4.3.5 we have

I1 + I2 + I3 ≤ const(f, t)‖X‖2‖ξ‖2h.

Now let us consider the terms in I4. We have by estimate (1.5. 24) in Proposition
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1.5.18

‖
n∑

k=1

Λ
[p

(h)
(k−1)h

−j(k−1)h](Θ(X))
[k]ξe(f)‖2

= ‖
n∑

k=1

Y
(h)
(k−1)hΛΘ[k]Xe(f)ξ‖2

= ‖
∫ nh

0
Y (h)

s ΛΘ(ds)Xe(f)ξ‖2

≤ 2et(1 + ‖f‖2
∞)

∫ nh

0
‖[(Y (h)

s ⊗ 1k̂0
)(Θ(X)f̂(s)e(f))]ξ‖2ds.

It can be easily seen that

(Y (h)
s ⊗1k̂0

)(Θ(X)f̂(s)e(f)) = [(Y (h)
s ⊗idB(k̂0))(Θ(X)e(f))]f̂(s) = [Y (h)

s (Θ(X)e(f))]f̂(s),

so the above quantity is equal to

2et(1 + ‖f‖2
∞)

∫ nh

0
‖[Y (h)

s (Θ(X)e(f))]f̂(s)ξ‖2ds,

= 2et(1 + ‖f‖2
∞)

∫ nh

0
‖W (h)

s (Θ(X))ξ ⊗ f̂(s)‖2ds

≤ 2et(1 + ‖f‖2
∞)2

n∑

k=1

h‖W (h)
(k−1)h‖2‖Θ(X))‖2‖ξ‖2

≤ cf

n∑

k=1

h‖W (h)
(k−1)h‖2‖Θ‖2‖X‖2‖ξ‖2.

Combining all the above estimates, we obtained

‖W (h)
t (X)ξ‖2 (4.3. 29)

≤ hC‖X‖2‖ξ‖2 +D
n∑

k=1

h‖W (h)
(k−1)h‖2‖X‖2‖ξ‖2

for some constant C andD independent of h. For anyX ∈ B and ξ ∈ h0
⊗

Γfr(k̂0)
⊗

Γ

we can write X =
⊕

m≥0Xm ⊕ X ′ with Xm ∈ A⊗B(k̂m©
0 ), X ′ ∈ Bc and ξ =

⊕
m≥0 ξm ⊕ ξ′ with ξm ∈ h0

⊗
k̂m©

0 and ξ′ belong to orthogonal complement of
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h0
⊗

k̂m©
0 for all m ≥ 0. Using the estimate (4.3. 29) we have

‖W (h)
t (X)ξ‖2

=
∑

m≥0

‖W (h)
t (Xm)ξm‖2

≤ hC
∑

m≥0

‖Xm‖2‖ξm‖2 +D
n∑

k=1

h‖W (h)
(k−1)h‖2

∑

m≥0

‖Xm‖2‖ξm‖2

≤ hC‖X‖2‖ξ‖2 +D

n∑

k=1

h‖W (h)
(k−1)h‖2‖X‖2‖ξ‖2

Taking supremum over all ξ ∈ h0
⊗

Γfr(k̂0)
⊗

Γ, X ∈ B such that ‖ξ‖ ≤ 1, ‖X‖ ≤ 1

we get

‖W (h)
t ‖2 = ‖W (h)

nh ‖2 ≤ hC + hD

n∑

k=1

‖W (h)
(k−1)h‖2. (4.3. 30)

By definition ‖W (h)
0 ‖2 = 0 so (4.3. 30) gives ‖W (h)

h ‖2 ≤ hc and

‖W (h)
2h ‖2 ≤ hc+ hD‖W (h)

h ‖2 ≤ ch(1 + hD).

Then by induction it follows that

‖W (h)
t ‖2 = ‖W (h)

nh ‖2 ≤ hC(1 + hD)n−1 ≤ hCeDt

and hence

lim
h→0

‖W (h)
t ‖2 = 0, inparticular lim

h→0
‖p(h)

t (x)ue(f))− j
(h)
t (x)ue(f)‖ = 0.

Which says that for any u ∈ h0 and f ∈ M, {p(h)
t (x)ue(f)) : h > 0} is Cauchy in

h0
⊗

Γ. Since ‖p(h)
t (x)‖ ≤ ‖x‖ and algebraic tensor product h0

⊗ E(M) is dense in

h0
⊗

Γ it follows that {p(h)
t (x)ξ : h > 0} is Cauchy for all ξ ∈ h0

⊗
Γ and hence

for each x ∈ A, {p(h)
t (x)} converges strongly to jt(x). Thus jt : A → A⊗B(Γ) is a

contractive ∗-homomorphic flow.

Remark 4.3.7. (i) It may be observed that in the above quantum stochastic dilation

{jt} of the dynamical semigroup {Tt} there is no “Poisson” term since θ4(x) = 0

for all x ∈ A. This is only to be expected since the choice of representation of A
is x ⊗ 1k0 for all x ∈ A. The more general case of dilation using the convergence
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of quantum random walks where the representation is non trivial (and therefore will

have non zero “Poisson” component) is being investigated.

(ii) The method of proof employed above does not seem to be amenable to adaptation

for a dynamical semigroup with unbounded generator. On the other hand, one has

example of the convergence of random walks to diffusion processes (which of course,

has unbounded generators ) in the classical case. For the handling of these cases,

one may have to find different method to replace the proof of Theorem 4.3.6.



Chapter 5

Weak Stochastic Dilation of

UHF Dynamics by QRW Model

In Chapter-3, EH flows are constructed for a class of QDS associated with relatively

simpler elements of A. There, we have followed the standard iteration method to

obtain the EH flow as a solution of the qsde (3.0. 3). In this chapter, we shall

discuss the same question in a greater generality and consider a larger class of QDS Tt

associated with r ∈ Aloc. Here, our approach is different form the standard method.

Following [23], we adopt the idea of constructing the EH flow as a limit of the

associated quantum random walks. Starting from an r ∈ Aloc, we construct a ∗-
homomorphic family {β(h) : h > 0} : A → A⊗B(k̂0) and then prove that the

family of quantum random walks {p(h)
t } associated with β converges weakly as h

tends to 0. From which it follows that the weak limit {jt} is a CP flow and satisfies

the required qsde.

5.1 Quantum random walk on UHF Model

For a fixed r ∈ Aloc, the closure of the associated Lindbladian (L, C1(A)), generates

a QDS {Tt : t ≥ 0} on A. Here L takes the form:

L(x) =
∑

k∈Zd

Lk(x), ∀x ∈ C1(A) with Lk(x) =
1
2
{[r∗k, x]rk + r∗k[x, rk]},∀k ∈ Zd.

116
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For n ≥ 0, let R(n) be the bounded operator from h0 to h0
⊗

k0, given by R(n) =
∑
|k|=n rk ⊗ ek. Now we define,

δ(x) =
∑

n≥0

δ(n)(x), where δ(n)(x) = (x⊗ 1k0)R(n) −R(n)x =
∑

|k|=n

δk(x)⊗ ek

and

δ†(x) =
∑

n≥0

δ†(n)(x), where δ†(n)(x) = R∗(n)(x⊗ 1k0)− xR∗(n) =
∑

|k|=n

δ†k(x).

The Lindbladian L can be written as

L =
∑

n≥0

L(n), where L(n)(x) = R∗(n)(x⊗1k0R(n)−
1
2
R∗(n)R(n)x−

1
2
xR∗(n)R(n) =

∑

|k|=n

Lk.

It is clear that all these maps L, δ and δ† are well define on Aloc and for a fixed

x ∈ Aloc there exists an nx ≥ 1 such that

L(n)(x) = δ(n)(x) = δ†(n)(x) = 0, ∀n ≥ nx.

Let us recall the family of maps {θµ
ν } given by

θµ
ν = L, for (µ, ν) = (0, 0),

= δi, for (µ, ν) = (i, 0),

= δ†j , for (µ, ν) = (0, j),

= 0, otherwise.

We are looking for a solution of the qsde

djt(x) =
∑

µ,ν≥0

jt(θµ
ν (x))dΛµ

ν (t), (5.1. 1)

j0(x) = x⊗ 1Γ, ∀x ∈ Aloc.

In order to construct QRW let us consider the following. For each n ≥ 0 we define

an operator

R̃n =


 0 −R∗n

Rn 0


 from h0

⊗
k̂ to itself. It is clear that R̃n is a skew symmet-

ric bounded operator and hence is the generator of a one parameter unitary group
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{et eRn : t ∈ R}. For h > 0, let us consider the unitary operator Un(h) := e
√

h eRn

which can be written as


 cos(

√
h|Rn|) −

√
hDn(h)R∗n√

hRnDn(h) cos(
√
h|R∗n|)


 where |Rn|, |R∗n| are the

square root of R∗nRn, RnR
∗
n respectively and Dn(h) is the self adjoint element

sin(
√
h|Rn|)(

√
h|Rn|)−1 ∈ A. We can rewrite Un(h) as

Un(h) =


 1− h

2 |Rn|2 + h2En(h) −
√
hR∗n + h

3
2Fn(h)

√
hRn + h

3
2Gn(h) 1 + hHn(h)


 , whereEn(h), Fn(h), Gn(h)

and Hn(h) are bounded operators given by,

• En(h) = cos(
√

h|Rn|)−1+h
2
|Rn|2

h2

• Hn(h) = cos(
√

h|R∗n|)−1
h

• Gn(h) = −(Fn(h))∗ = Rn
Dn(h)−1

h .

By 4.3. 19) all these operators are uniformly bounded in h (but not in n). Now we

have the following.

Lemma 5.1.1. For each n ≥ 0, Un(h) · · ·U1(h)U0(h)

=


 1− h

2

∑n
k=0 |Rk|2 + h2E(n)(h) −

√
h

∑n
k=0R

∗
k + h

3
2F (n)(h)

√
h

∑n
k=0Rk + h

3
2G(n)(h) 1 + hH(n)(h)


 ,

where E(n)(h), F (n)(h), G(n)(h) and H(n)(h) are bounded operators with uniform

norm bound in h.

Proof. We prove the result by induction. For n = 0, the statement is valid. Now

suppose that it is true for some n ≥ 1. We have U(n+1)(h)Un(h) · · ·U1(h)U0(h)

= U(n+1)(h)


 1− h

2

∑n
k=0 |Rk|2 + h2E(n)(h) −

√
h

∑n
k=0R

∗
k + h

3
2F (n)(h)

√
h

∑n
k=0Rk + h

3
2G(n)(h) 1 + hH(n)(h)




=


 1− h

2

∑n+1
k=0 |Rk|2 + h2E(n+1)(h) −

√
h

∑n+1
k=0 R

∗
k + h

3
2F (n+1)(h)

√
h

∑n+1
k=0 Rk + h

3
2G(n+1)(h) 1 + hH(n+1)(h)


 , where



5.1. Quantum random walk on UHF Model 119

E(n+1)(h), F (n+1)(h), G(n+1)(h) and H(n+1)(h) are bounded operators, given by:

E(n+1)(h)

= E(n)(h) + En+1(h) + h2E(n+1)(h)E
(n)(h)− h

2
En+1(h)

n∑

k=0

|Rk|2

−h
2
|Rn+1|2E(n)(h) +

1
4
|Rn+1|2

n∑

k=0

|Rk|2 −R∗n+1G
(n)(h)

+Fn+1(h)
n∑

k=0

Rk + hFn+1(h)G(n)(h),

F (n+1)(h)

= F (n)(h) +
1
2
|Rn+1|2

n∑

k=0

R∗k −
h2

2
|Rn+1|2F (n)

−h2En+1(h)
n∑

k=0

R∗k + h2En+1(h)F (n)(h)−R∗n+1H
(n)(h)

+F (n+1)(h) + hF (n+1)(h)H(n)(h),

G(n+1)(h)

= −1
2
Rn+1

n∑

k=0

|Rk|2 + hRn+1E
(n)(h) +Gn+1(h)− hGn+1(h)

n∑

k=0

|Rk|2

+h2Gn+1(h)E(n)(h) +G(n)(h) +Hn+1(h)
n∑

k=0

Rk + hHn+1(h)G(n)(h),

and

H(n+1)(h)

= −Rn+1

n∑

k=0

R∗k + hRn+1F
(n)(h)

−hGn+1(h)
n∑

k=0

R∗k + h2Gn+1(h)F (n)(h)

+Hn+1(h) +H(n)(h) + hHn+1(h)H(n)(h).
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This enable us to obtain the required identity for n + 1, thereby completing the

proof.

Now we shall prove the following result which will be needed for proving the weak

convergence of the QRW p
(h)
t .

Proposition 5.1.2. There exists a family of ∗-homomorphism β(h) : A → A⊗B(k̂0),

satisfying, for any µ, ν ∈ Zd ∪ {0}

‖βµ
ν (h, x)− δµ

νx− hεµ,νθµ
ν (x)‖ ≤ Cxh

1+εµ,ν , ∀x ∈ Aloc. (5.1. 2)

Proof. For any n ≥ 0 we consider the ∗-homomorphism β(n)(h) : A → A⊗B(k̂0),

implemented by the unitary Un(h) · · ·U0(h), i.e. for x ∈ A,

β(n)(h, x) = (U0(h))
∗ · · · (Un(h))∗(x⊗ 1k̂0

)Un(h) · · ·U0(h).

A simple computation shows that

β(n)(h, x) =


 x+ h

∑n
k=0 L(k)(x) + h2An(h, x)

√
h

∑n
k=0 δ

†
(k)(x) + h

3
2Bn(h, x)

√
h

∑n
k=0 δ(k)(x) + h

3
2Cn(h, x) x⊗ 1k0 + hDn(h, x)


 .

(5.1. 3)

Here An(h, .), Bn(h, .), Cn(h, .) and Dn(h, .) are bounded maps, given by

An(h, x) = xE(n)(h) +
1
4

n∑

k=0

|Rk|2x
n∑

k=0

|Rk|2

+E(n)(h)x+ h2E(n)(h)xE(n)(h)− h

2

n∑

k=0

|Rk|2xE(n)(h)

−h
2
E(n)(h)x

n∑

k=0

|Rk|2 + (G(n)(h))∗(x⊗ 1k0)
n∑

k=0

Rk

+
n∑

k=0

Rk(x⊗ 1k0)G
(n)(h) + h(G(n)(h))∗(x⊗ 1k0)G

(n)(h),
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Bn(h, x) = xF (n)(h) +
1
2

n∑

k=0

|Rk|2x
n∑

k=0

R∗k

−h
2

2

n∑

k=0

|Rk|2xF (n)(h)− hE(n)(h)x
n∑

k=0

R∗k

+h2E(n)(h)xF (n)(h) + (G(n)(h))∗(x⊗ 1k0) +
n∑

k=0

R∗k(x⊗ 1k0)H
(n)(h)

+h(G(n)(h))∗(x⊗ 1k0)H
(n)(h),

Cn(h, x) =
n∑

k=0

Rkx
n∑

k=0

|Rk|2 − h
n∑

k=0

RkxE
(n)(h)

+(F (n)(h))∗x− h

2
(F (n)(h))∗x

n∑

k=0

|Rk|2

+h2(F (n)(h))∗xE(n)(h) + (x⊗ 1k0)G
(n)(h)

+H(n)(h)(x⊗ 1k0)
n∑

k=0

Rk +H(n)(h)(x⊗ 1k0)G
(n)(h)

and

Dn(h, x) =
n∑

k=0

Rkx
n∑

k=0

R∗k − h
n∑

k=0

RkxF
(n)(h)

+(F (n)(h))∗x
n∑

k=0

R∗k + h2H(n)(h)(x⊗ 1k0)

+(x⊗ 1k0)H
(n)(h+H(n)(h)(x⊗ 1k0)H

(n)(h).

In order to define a ∗-homomorphism β(h) : A → A⊗B(k̂0), we first note that for

any fixed x ∈ Aloc, there exists an integer nx such that

(U(n)(h))
∗(x⊗ 1k̂0

)U(n)(h) = x⊗ 1k̂0
,

so β(m)(h, x) = β(n)(h, x),∀m,n ≥ nx. Now setting β(h)(x) ≡ β(h, x) := β(nx)(h, x),

we get a ∗-homomorphism β(h) from Aloc into A⊗B(k̂0). Since Aloc is norm dense

in A, the map β(h) extends as a ∗-homomorphism from A into A⊗B(k̂0). By 5.1.

3 for any x ∈ Aloc we have,
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β(h, x) =


 x+ hL(x) + h2Anx(h, x)

√
hδ†(x) + h

3
2Bnx(h, x)

√
hδ(x) + h

3
2Cnx(h, x) x⊗ 1k + hDnx(h, x)




where Anx(h, .), Bnx(h, .), Cnx(h, .) and Dnx(h, .) are bounded maps with uniform

norm bound in h. Thus we obtain the required estimates 5.1. 2.

Now we define QRW

p
(h)
t : A → A⊗B(Γ)

associated with β(h) as in previous Chapter. First subdivide the interval [0, t] into

[k] ≡ ((k − 1)h, kh] , 1 ≤ k ≤ n so that t ∈ ((n− 1)h, nh] and set

p
(h)
0 (x) = x⊗ 1,

p
(h)
kh (x) =

∑
µ,ν p

(h)
(k−1)h(βµ

ν (h, x))⊗Nµ
ν [k]



 (5.1. 4)

and p(h)
t = p

(h)
nh .

5.2 Weak convergence of the QRW

Here we shall discuss the weak convergence of QRW constructed in the previous

section. Let S be the collection of all simple function f ∈ L2(R+,k0)) such that

f =
n∑

q=1

1[aq ,bq ] ⊗ ekq

for some n ≥ 1 and partition (0 ≤ a1 < b1 < a2 < b2 · · · an < bn < ∞) of R+. It is

clear that S is total in L2(R+,k0) and hence h0
⊗ E(S) is dense in h0

⊗
Γ.

We have the following approximation result.

Theorem 5.2.1. Let p(h)
t be the QRW associated with β(h). Then

(i). For each x ∈ Aloc

lim
h→0

〈ξ1, p(h)
t (x)ξ2〉 exists, ∀ξ1, ξ2 ∈ h0

⊗E(S).

(ii). For x ∈ Aloc setting a map jt(x) by

〈ξ1, jt(x)ξ2〉 := lim
h→0

〈ξ1, p(h)
t (x)ξ2〉, ∀ξ1, ξ2 ∈ h0

⊗E(S),
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jt(x) extends uniquely as a bounded operator from h0
⊗

Γ to itself. For each t ≥ 0

the map jt extends to a unique bounded CP map from A to A′′⊗B(Γ) satisfying

‖jt(x)‖ ≤ ‖x‖, ∀x ∈ A.
(iii). The CP flow jt satisfies the required qsde 5.1. 1.

Proof. Note that except the generator θ0
0 of the contractive QDS Pt all other struc-

ture maps θµ
ν ’s are bounded and in particular θi

j = 0, ∀i, j ∈ Zd. Thus by Theorem

1.3.3 the closure of each of the operators θ0
0 + θ0

j , θ
0
0 + θi

0 and θ0
0 + θ0

j + θi
0 + θi

j gener-

ates a C0-semigroup of contraction on A. In fact, for any locally bounded functions

f, g ∈ K by Theorem 1.3.6 the evolution equation

dT f,g
t (x)
dt

= T f,g
t (

q∑

µ,ν=0

f̄µ(t)gν(t)θµ
ν (x)), T f,g

0 (x) = e〈f,g〉x,

admits a unique solution.

(i). Let {Tµ,ν
t : µ, ν ≥ 0}, be the family of contractive C0-semigroup on A given

by

Tµ,ν
t = Tt = etθ

0
0 , for (µ, ν) = (0, 0)

= et(θ
0
0+θ0

j ), for (µ, ν) = (0, j)

= et(θ
0
0+θi

0), for (µ, ν) = (i, 0)

= et(θ
0
0+θ0

j +θi
0+θi

j), for (µ, ν) = (i, j).

Let τ ≥ 0 be fixed, 0 ≤ t ≤ τ and f, g ∈ L2(R+,k0). For x ∈ A and u, v ∈ h0 we

have

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉 (5.2. 1)

= 〈u⊗ e(f), ρ1(h) · · · ρn(h, x) v ⊗ e(g)〉
= 〈u,A1 · · ·An(x)v〉〈e(f[nh), e(g[nh)〉,

where Ak’s are bounded linear maps from A to itself given by,

Ak(x) =
∑

µ,ν≥0

〈e(f[k]), N
µ
ν [k]e(g[k])〉βµ

ν (h, x).

For f = g = 0 5.2. 1 gives

〈u⊗ Ω, p(h)
t (x) v ⊗ Ω〉 = 〈u⊗, (β0

0(h))n(x)v〉.
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Since we have by (5.1. 2)

lim
h→0

β0
0(h, x)− x

h
= θ0

0(x), ∀x ∈ Aloc,

theorem (1.3.5) gives,

lim
h→0

(β0
0(h))n(x) = Tt(x)∀x ∈ A.

Thus we obtain

lim
h→0

〈u⊗ Ω, p(h)
t (x) v ⊗ Ω〉 = 〈u, Tt(x)v〉,∀x ∈ A.

Now for f = 1[0,τ ] ⊗ ei, g = 1[0,τ ] ⊗ ej ∈ S and u, v ∈ h0, we have,

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉

= 〈u,A1 · · ·An(x)v〉〈e(f[nh), e(g[nh)〉,

where

Ak(x) =
∑

µ,ν≥0

〈e(f[k]), N
µ
ν [k]e(g[k])〉βµ

ν (h, x)

= 〈Ω[k] + 1[k] ⊗ ei,Ω[k]〉β0
0(h, x)

+〈Ω[k] + 1[k] ⊗ ei,
√
hΩ[k]〉β0

j (h, x)

+
∑

l≥1

〈Ω[k] + 1[k] ⊗ ei,
1[k] ⊗ el√

h
〉βl

0(h, x)

+
∑

l≥1

〈Ω[k] + 1[k] ⊗ ei, 1[k] ⊗ el〉βl
j(h, x)

= β0
0(h, x) +

√
hβ0

j (h, x) +
√
hβi

0(h, x) + hβi
j(h, x).

So we get

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉

= 〈u, (β0
0(h) +

√
hβ0

j (h) +
√
hβi

0(h) + hβi
j(h))

n(x)v〉〈e(f[nh), e(g[nh)〉.

Since p(h)
t is a homomorphic family, we have

‖(β0
0(h) +

√
hβ0

j (h) +
√
hβi

0(h) + hβi
j(h))

n‖ ≤ e〈f,g〉.
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It follows from 5.1. 2 that for all x ∈ Aloc,

lim
h→0

‖1
h

[β0
0(h) +

√
hβ0

j (h) +
√
hβi

0(h) + hβi
j(h)− 1]x− [θ0

0 + θ0
j + θi

0 + θi
j + δi

j1]x‖ = 0

hence by theorem (1.3.5),

lim
h→0

(β0
0(h) +

√
hβ0

j (h) +
√
hβi

0(h) + hβi
j(h))

n(x) = etδ
i
jT i,j

t (x) = e〈f,g〉Tt(x), ∀x ∈ A.

Thus

lim
h→0

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉 = 〈u, e〈f,g〉Tt(x)v〉. (5.2. 2)

Similarly, one can see (5.2. 2) for the cases f ≡ 0, g = 1[0,τ ] ⊗ ej

and f = 1[0,τ ] ⊗ ei, g ≡ 0.

Now for f = (1[0,s]⊗ ei1)⊕ (1[s,τ ]⊗ ei2) and g = (1[0,s]⊗ ej1)⊕ (1[s,τ ]⊗ ej2) such that

s ≤ t ≤ τ let n1 = [ s
h ] and n2 = [ t−s

h ], let us compute the inner product,

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉

= 〈u, (β0
0(h) +

√
hβ0

j1(h) +
√
hβi1

0 (h) + hβi1
j1

(h))n1(β0
0(h)

+
√
hβ0

j2(h) +
√
hβi2

0 (h) + hβi2
j2

(h))n2(x)v〉.

Since ‖(β0
0(h) +

√
hβ0

j1
(h) +

√
hβi1

0 (h) + hβi1
j1

(h))n1‖ ≤ |e〈f,g〉| we get

lim
h→0

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉 = 〈u, e〈f,g〉T i1,j1

s T i2,j2
t−s (x)v〉.

Now let us consider arbitrary f, g ∈ S. For any f, g ∈ S we can choose a partition

(0 = t0 < t1 · · · < tn = t) of R+ such that on the interval [0, t],

• f =
∑n

q=1 1[tq−1,tq ] ⊗ eµq

• g =
∑n

q=1 1[tq−1,tq ] ⊗ eνq .

Here µq, νq include the index 0 with the convention (strictly restricted to here only)

that e0 = 0 ∈ k0. Now we set contractive maps,

T f,g
t = Tµ1,ν1

t1
Tµ2,ν2

t2−t1
· · ·Tµn,νn

t−tn−1

as in [1], then it can be easily shown from the above observations that

lim
h→0

〈u⊗ e(f), p(h)
t (x) v ⊗ e(g)〉 = 〈u, e〈f,g〉T f,g

t (x)v〉.
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Now let us consider arbitrary vector in the algebraic tensor product h0
⊗

alg E(S).

For ξ1 =
∑p

k=1 uk ⊗ e(fk), ξ2 =
∑q

l=1 vl ⊗ e(gl) ∈ h0
⊗

alg E(S),

〈ξ1, p(h)
t (x)ξ2〉 =

∑

k,l

〈uk ⊗ e(fk), p
(h)
t (x)vl ⊗ e(gl)〉.

This implies that limh→0〈ξ1, p(h)
t (x)ξ2〉 exists.

(ii). For x ∈ Aloc, 0 ≤ t ≤ τ, let us define jt(x) by

〈ξ1, jt(x)ξ2〉 = lim
h→0

〈ξ1, p(h)
t (x)ξ2〉, ∀ξ1, ξ2 ∈ h0

⊗E(S).

Since p(h)
t is a contractive family we obtain

|〈ξ1, jt(x)ξ2〉| ≤ ‖x‖‖ξ1‖.‖ξ2‖.

Thus jt(x) extends uniquely to a bounded operator on h0
⊗

Γ, with ‖jt(x)‖ ≤
‖x‖, ∀x ∈ Aloc. Since Aloc is norm dense in A for each t ≤ τ, jt extends uniquely to

a contractive map from A to A′′⊗B(Γ) satisfying ‖jt‖ ≤ 1. As the weak limit of a

∗-homomorphic family p(h)
t , jt is a family of completely positive contractions.

(iii). For 0 ≤ t ≤ τ, x ∈ Aloc, we have,

〈u⊗ e(f), jt(x)v ⊗ e(g)〉 = 〈u, e〈f,g〉T f,g
t (x)v〉, ∀u⊗ e(f), v ⊗ e(g) ∈ h0

⊗E(S)

and T f,g
t (x) satisfies the evolution equation

dT f,g
t (x)
dt

= T f,g
t (

q∑

µ,ν=0

f̄µ(t)gν(t)θµ
ν (x)), T f,g

0 (x) = e〈f,g〉x.

Thus the family jt of completely positive contractions satisfies the qsde (5.1. 1).
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[24] Lindsay, J. M. and Wills, S. J. : Existence, positivity and contractivity for

quantum stochastic flows with infinite dimensional noise, Probab. Theory Re-

lated Fields 116 , no. 4, 505–543 ( 2000).

[25] Lindsay, J. Martin; Wills, Stephen J. : Fock space Markovian cocycles: their

representation, generation, and dilation. Stochastic processes, physics and ge-

ometry: new interplays, II (Leipzig, 1999), 455–470, CMS Conf. Proc., 29,

Amer. Math. Soc., Providence, RI, 2000.

[26] Lindsay, J. Martin; Wills, Stephen J.: Existence of Feller cocycles on a C∗-

algebra. Bull. London Math. Soc. 33, no. 5, 613–621 (2001).

[27] Lindsay, J. Martin; Wills, Stephen J. : Homomorphic Feller cocycles on a

C∗-algebra. J. London Math. Soc. 2 (68), no. 1, 255–272 (2003).

[28] Matsui, Taku : Markov semigroups on UHF algebras. Rev. Math. Phys. 5, no.

3 , 587–600 ( 2000).

[29] Meyer, P.A.: “ Quantum Probability for Probabilist” 2nd ed, Lecture Notes in

mathematics, Vol.1538, springer-Verlag,Heidelberg 1993.



130 Bibliography

[30] Mohari, A. : Quantum stochastic differential equations with unbounded coef-

ficients and dilations of Feller’s minimal solution. Sankhyā Ser. A 53, no. 3,
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