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Preface

This dissertation is devoted to a study of the properties of some matrix classes

in linear complementarity theory, algorithms and an application of linear com-

plementarity in stochastic games. The linear complementarity problem is the

problem of finding a complementary pair of nonnegative vectors in a finite dimen-

sional real vector space that satisfies a given system of inequalities. In particular,

given a square matrix A of order n with real entries and an n dimensional vector

q, the linear complementarity problem (LCP(q, A)) is to find an n dimensional

vector z such that Az + q ≥ 0, z ≥ 0 and zt(Az + q) = 0 or to show that no such

vector z exists. Since several problems in optimization and engineering can be

posed as LCPs, the theory of LCP has a wide range of applications in applied

science and technology. The mathematical structure of the LCP has inspired sev-

eral researchers to study the matrix properties and algorithms for its solution.

A brief outline of the contents are presented in a chapterwise summary.

Chapter 1 is introductory in nature. Here we present the required definitions

and introduce the notations used in this dissertation. We also include a survey

of the results from the literature that will be used in our work.

In Chapter 2, we consider positive subdefinite matrices (PSBD) and

pseudomonotone matrices studied in Martos [46], Crouzeix, Hassouni, Lahlou

and Schaible [10] and Gowda [30]. We show that linear complementarity prob-

lems with positive subdefinite matrices of rank ≥ 2 are processable by Lemke’s

algorithm and that a copositive PSBD matrix (or a copositive pseudomonotone

matrix) of rank ≥ 2 belongs to the class of sufficient matrices introduced by Cot-

tle, Pang and Venkateswaran [8]. We also show that if a matrix A can be written

as a sum of a copositive-plus merely positive subdefinite matrix and a copositive

matrix and if it satisfies a feasibility condition then Lemke’s algorithm applied

to solve LCP(q, A) will terminate with a solution. This extends the results of
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Jones [38] and Evers [18]. The results presented in this chapter have appeared

in Linear Algebra and its Applications, 338 (2001) 275-285.

In Chapter 3, we consider the class of generalized positive subdefinite

(GPSBD) matrices, an interesting matrix class introduced by Crouzeix and

Komlósi [11]. In this chapter, we obtain some properties of GPSBD matrices. We

show that copositive GPSBD matrices are P0 and a merely generalized positive

subdefinite (MGPSBD) matrix with some additional conditions belongs to the

class of row sufficient matrices. Further, it is shown that for a subclass of GPSBD

matrices, the solution set of a linear complementarity problem is same as the set

of KKT-stationary points of the corresponding quadratic programming problem.

We provide a counterexample to show that a copositive GPSBD matrix need not

be sufficient in general. Finally, we show that if a matrix A can be written as

a sum of a copositive-plus MGPSBD matrix with an additional condition and a

copositive matrix and if it satisfies a feasibility condition then Lemke’s algorithm

can solve LCP(q, A). This further extends the applicability of Lemke’s algorithm

obtained in Chapter 2 and a result of Jones [38] and Evers [18]. The results

presented in Chapter 3 will appear in SIAM Journal on Matrix Analysis and

Applications.

Chapter 4 deals with the class of fully copositive matrices (Cf
0 ) and the class

of fully semimonotone matrices (Ef
0 ). Murthy and Parthasarathy [63] proved

that Cf
0 ∩ Q0 matrices are sufficient. We show that this result is a consequence

of a result proved by Cottle and Guu [5]. Further it is shown that if A, At ∈

Cf
0 with positive diagonal entries, then A is a completely Q0-matrix. Murthy

and Parthasarathy [61] proved that if A ∈ R2×2 ∩ Cf
0 ∩ Q0, then A is positive

semidefinite and conjectured that this will be true for all n × n matrices. We

present a counterexample to settle this conjecture. We finally consider the class

of Ef
0 -matrices introduced by Cottle and Stone [9] and partially address Stone’s

conjecture that Ef
0 ∩ Q0 ⊆ P0 by showing that Ef

0 ∩ Dc ⊆ P0 where Dc is
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Doverspike’s class of matrices. The results presented in Chapter 4 have appeared

in Linear Algebra and its Applications, 323 (2001) 87-97.

The concept of an almost type class was introduced by Väliaho and thoroughly

investigated the class of almost copositive matrices in [102], [103]. Pye [82]

studied the class of almost P0-matrices of order n whose determinant is negative

and all proper principal minors are nonnegative. In Chapter 5, we introduce a

new matrix class called almost N̄ (a subclass of almost N0-matrices which are

obtained as a limit of a sequence of almost N -matrices). We obtain a sufficient

condition for a matrix of this class to possess the Q-property (or to be a Q-

matrix). We produce a counterexample to show that an almost N̄ ∩ Q matrix

need not be an R0-matrix. We also introduce another two new limiting matrix

classes, namely N̄ -matrix of exact order 2, Ē(d) for a positive vector d and prove

sufficient conditions for these classes to satisfy the Q-property. Murthy et al. [62]

showed that Pang’s conjecture (E0∩Q ⊂ R0) is not true even when E0 is replaced

by C0. We show that Pang’s conjecture is true if E0 is replaced by almost C0.

Finally, we present a game theoretic proof of necessary and sufficient condition of

an almost P0-matrix satisfying the Q-property. The results presented in Chapter

5 have appeared in Linear and Multilinear Algebra, 53 (2005) 243-257.

The results in Chapter 6 are concerned with the class of matrices for which

PPTs are either in C0 (E0) or almost C0 with at least one PPT almost C0. The

almost classes studied in this chapter have algorithmic significance and if these

classes are also in Q0 then these classes are processable by Lemke’s algorithm.

We also consider the problem of characterizing a class of matrices whose member

possess at least one PPT that is a Z-matrix. The results presented in Chapter 6

have appeared in Linear Algebra and its Applications, 400 (2005) 243-252.

As an application of the LCP, Chapter 7 deals with two classes of structured

stochastic games, namely, undiscounted zero-sum switching controller stochas-

tic games and undiscounted zero-sum additive reward and additive transitions
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(ARAT) games. The problem of computing the value vector and optimal sta-

tionary strategies is formulated as a linear complementarity problem for these

two classes of undiscounted zero-sum games. This provides an alternative proof

of the orderfield property for these two classes of games. The results presented

in this chapter have appeared in an edited refereed volume, titled Operations Re-

search with Economic and Industrial Applications: Emerging Trends, eds: S. R.

Mohan and S. K. Neogy, Anamaya Publishers, New Delhi, India (2005) 156-180.

Numbering

For internal referencing, Section j in Chapter i is denoted by i.j and i.j.k is used

to refer Item k of Section j in Chapter i. For example, the triple 2.3.5 refers to

Item 5 in Section 3 of Chapter 2. All items (e.g., Lemma, Theorem, Example,

Remark etc.) are identified in this fashion. Equation (i.j.k) is used to refer

Equation k in Section j of Chapter i. We use brackets [ ] for a bibliographical

reference.
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List of Notations

The special notations pertaining to a particular chapter are provided in Section

2 of each chapter. The most frequently used notations are given below:

Spaces

Rn real n-dimensional space

R the real line

Rn×n the space of n× n real matrices

Rn
+ the nonnegative orthant of Rn

Sets

∈ element membership

6∈ not an element of

⊆ set inclusion

⊂ proper set inclusion

∪,∩,× union, intersection, Cartesian product

∅ the empty set

ᾱ complement of an index set α

|α| cardinality of a finite set α

Vectors

xt the transpose of a vector x

xty the standard inner product of vectors in Rn

e an n-dimensional vector of all ones

x ≥ y xi ≥ yi, i = 1, . . . , n

x > y xi > yi, i = 1, . . . , n

x+ the vectors whose components are x+
i (= max{xi, 0}) for all i

x− the vectors whose components are x−i (= max{−xi, 0}) for all i

y ∈ Rn is unisigned if either y ∈ Rn
+ or −y ∈ Rn

+
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Matrices

A = [aij] a matrix with real entries aij

det(A) the determinant of a square matrix A

A−1 the inverse of a matrix A

At the transpose of a matrix A

A ≤ B aij ≤ bij for all i and j

A < B aij < bij for all i and j

I the identity matrix

Aαβ submatrix formed by the rows and columns of A

whose indices are in α and β, respectively

Aα· submatrix formed by the rows of A

whose indices are in α

A·α submatrix formed by the columns of A

whose indices are in α

Aαα the principal submatrix of A

det(Aαα) the principal minor of A

For a given integer k (1 ≤ k ≤ n), the leading principal submatrix of A

Aαα where α = {1, . . . , k}

Inertia (ν+(S), ν−(S), ν0(S)) the number of positive, negative and

zero eigenvalues of the symmetric n× n matrix S
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Miscellaneous Symbols

LCP(q, A) the LCP with data (q, A)

F(q, A) the feasible region of LCP(q, A)

S(q, A) the solution set of LCP(q, A)

pos(A) the convex cone generated by the matrix A

= {x | ∃ y ≥ 0, x = Ay}

K(A) the set of all q for which S(q, A) 6= ∅

C(A) the union of the strongly degenerate complementary cones of A

K(A) the union of all facets of all the complementary cones of A
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Chapter 1

General Introduction and Some

Basic Concepts

1.1 Introduction

The linear complementarity problem is a fundamental problem that arises in

optimization, game theory, economics, and engineering. It can be stated as

follows:

Given a square matrix A of order n with real entries and an n dimensional

vector q, find n dimensional vectors w and z satisfying

w − Az = q, w ≥ 0, z ≥ 0 (1.1.1)

wt z = 0. (1.1.2)

This problem is denoted as LCP(q, A). The name comes from the condition

(1.1.2), the complementarity condition which requires that at least one variable

in the pair (wj, zj) should be equal to 0 in the solution of the problem, for each

j = 1, 2, . . . , n. This pair is therefore known as the jth complementary pair in the

problem, and for each j, the variable wj is known as the complement of zj and

1
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vice versa. If a pair of vectors (w, z) satisfies (1.1.1), then the problem LCP(q, A)

is said to have a feasible solution. A pair (w, z) of vectors satisfying (1.1.1) and

(1.1.2) is called a solution to the LCP(q, A). The problem has undergone several

name changes, from composite problem to complementary pivot problem. The

current name linear complementarity problem was proposed by Cottle [7, p. 37].

The LCP is normally identified as a problem of mathematical programming and

provides a unifying framework for several optimization problems like linear pro-

gramming, linear fractional programming, convex quadratic programming and

the bimatrix game problem. More specifically, the LCP models the optimality

conditions of these problems. It is well studied in the literature on mathematical

programming and a number of applications are reported in operations research

[29], multiple objective programming problem [50], mathematical economics [78],

geometry and engineering ([12], [26] and [79]). Some new applications of the lin-

ear complementarity problem have been reported in the area of stochastic games.

For details, see the survey paper by Mohan, Neogy and Parthasarathy [53] and

the references cited therein. This sort of applications and the potential for fu-

ture applications have motivated the study of the LCP, especially the study of

the algorithms for the LCP and the study of matrix classes. In fact, much of

linear complementarity theory and algorithms are based on the assumption that

the matrix A belongs to a particular class of matrices. The early motivation

for studying the linear complementarity problem was that the KKT optimality

conditions for linear and quadratic programs reduce to an LCP of the form given

by (1.1.1) and (1.1.2). The algorithm presented by Lemke and Howson [42] to

compute an equilibrium pair of strategies to a bimatrix game, later extended by

Lemke [41] (known as Lemke’s algorithm) to solve an LCP(q, A), contributed

significantly to the development of the linear complementarity theory. In fact,

the study of the LCP really came into prominence only when Lemke and Howson

[42] and Lemke [41] showed that the problem of computing a Nash equilibrium
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point of a bimatrix game can be posed as an LCP following the publication by

Cottle [1]. However, Lemke’s algorithm does not solve every instance of the linear

complementarity problem, and in some instances of the problem may terminate

inconclusively without either computing a solution to it or showing that no so-

lution to it exists. Extending the applicability of Lemke’s algorithm to more

matrix classes have been considered by many researchers like Eaves [17], Garcia

[27] and Todd [99]. For recent books on the linear complementarity problem and

its applications, see Cottle, Pang and Stone [7], Murty [67] and [19].

A number of generalizations of the linear complementarity problem have been

proposed to accomodate more complicated real life problems as well as to diver-

sify the field of applications. See Gowda and Sznajder [32], Sznajder and Gowda

[91], Mohan, Neogy and Sridhar [55] and Cottle, Pang and Stone [7].

The most frequently used notations are given in page v. However, the nota-

tions pertaining to a particular chapter only are explained therein.

1.2 Some Preliminaries in Linear Complemen-

tarity Theory

In this section, we introduce some basic definitions and the required terminologies

related to linear complementarity theory.

The idea of using complementary cones to study the LCP was considered by

Samelson, Thrall and Wesler [89]. Later, Murty [66] studied the LCP through

complementary cones extensively and obtained some remarkable results. For

details on complementary cones see [7] and [67].

Definition 1.2.1 Given A ∈ Rn×n and α ⊆ {1, 2, . . . , n}, CA(α) is called a

complementary matrix of A with respect to α (or a complementary submatrix of

(I,−A) with respect to α) where CA(α)·j = −A·j if j ∈ α and CA(α)·j = I·j if j 6∈
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α. The associated cone pos CA(α) is called the complementary cone relative to A

with respect to α. If det(CA(α)) 6= 0, then it is called a complementary basis.

Definition 1.2.2 The complementary cone with respect to α is said to be non-

degenerate or full if det(Aαα) 6= 0. Otherwise it is said to be a degenerate com-

plementary cone. A degenerate cone pos CA(α) is said to be strongly degenerate

if there exists 0 6= x ∈ Rn
+ such that CA(α)x = 0.

Definition 1.2.3 Given A ∈ Rn×n and α ⊆ {1, 2, . . . , n}, the matrix A is said

to be nondegenerate if det(Aαα) 6= 0, ∀ α ⊆ {1, 2, . . . , n}. Any solution (w, z)

of LCP(q, A) is said to be nondegenerate if w + z > 0. Otherwise it is called a

degenerate solution. A vector q ∈ Rn is said to be nondegenerate with respect to

A if every solution to LCP(q, A) is nondegenerate.

Definition 1.2.4 A set C ⊆ Rn is connected if there do not exist disjoint open

sets U, V ⊆ Rn such that U ∩ C 6= ∅, V ∩ C 6= ∅ and C ⊆ U ∪ V. For any

set S ⊆ Rn and any x ∈ S, the connected component of a set S containing x is

defined as the union of all connected sets C such that x ∈ C ⊆ S.

The concept of principal pivot transforms (PPTs) was introduced by Tucker

[101]. Consider an LCP(q, A) where q ∈ Rn and A ∈ Rn×n. Let α ⊆ {1, 2, . . . , n}

and suppose that the principal submatrix Aαα is nonsingular. By means of prin-

cipal rearrangement, we may assume that Aαα is a leading principal submatrix

of A.

Definition 1.2.5 The principal pivot transform (PPT) of A with respect to

α ⊆ {1, 2, . . . , n} is defined as the matrix given by

M =

 Mαα Mαᾱ

Mᾱα Mᾱᾱ


where Mαα = (Aαα)−1, Mαᾱ=−(Aαα)−1Aαᾱ, Mᾱα = Aᾱα(Aαα)−1, Mᾱᾱ = Aᾱᾱ −

Aᾱα(Aαα)−1Aαᾱ.
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The PPT of LCP(q, A) with respect to α (obtained by pivoting on Aαα) is

given by LCP(q
′
, M) where q

′
α = −A−1

ααqα and q
′
ᾱ = qᾱ − AᾱαA−1

ααqα.

Note that PPT is only defined with respect to those α for which det Aαα 6= 0.

When α = ∅, by convention det Aαα = 1 and M = A. For further details, see [3],

[7] and [100] in this connection.

1.3 Matrix Games

The linear complementarity problem and the matrix game have some important

connections. Some of the results of the LCP can be stated in terms of the

value of a matrix game. In this connection Kaplansky’s result [39] on matrix

games is useful for deriving certain results. Raghavan [83] used von Neumann’s

[73] minimax theorem and Kaplansky’s game theory results to derive several

interesting properties of Z ∩ P -matrices that arises in the LCP. A matrix game

may be stated as follows:

There are two players, player I and player II and each player has a finite

number of actions (called pure strategies). Let player I have m pure strategies

and player II, n pure strategies. Suppose player I chooses to play a pure strategy

i (i = 1, 2, . . . ,m) and player II chooses a pure strategy j (j = 1, 2, . . . , n)

simultaneously. Then player I pays player II an amount aij (which may be

positive, negative or zero). Since player II’s gain is player I’s loss, the game is

said to be zero-sum. A mixed strategy for player I is a probability vector x ∈ Rm

whose ith component xi represents the probability of choosing pure strategy i

where xi ≥ 0 for i = 1, . . . ,m and
m∑

i=1

xi = 1. Similarly, a mixed strategy for

player II is a probability vector y ∈ Rn.

From von Neumann’s fundamental minimax theorem we know that there exist

mixed strategies x∗, y∗ and a real number v such that
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m∑
i=1

x∗i aij ≤ v, ∀ j = 1, 2, . . . , n.

n∑
j=1

y∗j aij ≥ v, ∀ i = 1, 2, . . . ,m.

The mixed strategies (x∗, y∗) with x∗ ∈ Rm and y∗ ∈ Rn are said to be optimal

strategies for player I and player II respectively and v is called minimax value of

game. We write v(A) to denote the value of the game corresponding to A. In the

game described above, player I is the minimizer and player II is the maximizer.

A mixed strategy is completely mixed if x > 0. The value of the game v(A) is

positive (nonnegative) if there exists a 0 6= x ≥ 0 such that Ax > 0 (Ax ≥ 0).

Similarly, v(A) is negative (nonpositive) if there exists a 0 6= y ≥ 0 such that

Aty < 0 (Aty ≤ 0).

1.4 Matrix Classes in LCP Theory

Matrix classes play an important role in studying the theory and algorithms of

the LCP. The study of special properties of the data matrix A has historically

been an important part of the LCP research. A variety of classes of matrices

are introduced in the context of the linear complementarity problem. Many of

the matrix classes encountered in the context of the LCP are commonly found

in several applications. Some of these matrix classes are of interest because they

characterize certain properties of the LCP and they offer certain nice features

from the view point of algorithms. Several algorithms have been designed for

the solution of the linear complementarity problem. Many of these methods

are matrix class dependent, i.e., they work only for LCPs with some special

classes of matrices and can give no information otherwise. It is useful to review

some matrix classes and their properties which will form the basis for further

discussions.
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Let A be a given n× n matrix, not necessarily symmetric.

Definition 1.4.1 We say that a matrix A = [aij] of order n is a Z-matrix if

aij ≤ 0, ∀ i 6= j.

The class of Z-matrices has been introduced by Fiedler and Pták [20].

Definition 1.4.2 We say that A is positive semidefinite (PSD) if xtAx ≥

0 ∀ x ∈ Rn and A is positive definite (PD) if xtAx > 0 ∀ 0 6= x ∈ Rn.

Definition 1.4.3 A is said to be a P (P0)-matrix if all its principal minors are

positive (nonnegative).

Definition 1.4.4 A is called a N(N0)-matrix if all its principal minors are

negative (nonpositive).

Definition 1.4.5 A is called copositive (C0) (strictly copositive (C)) if xtAx ≥

0 ∀ x ≥ 0 (xtAx > 0 ∀ 0 6= x ≥ 0). A ∈ Rn×n is said to be conegative if xtAx ≤

0 ∀ x ≥ 0.

A is said to be copositive-plus (C+
0 ) if A ∈ C0 and the following implication

holds:

[xtAx = 0, x ≥ 0] ⇒ (A + At)x = 0.

We say that A ∈ Rn×n is copositive-star (C∗
0) if A ∈ C0 and the following

implication holds:

[xtAx = 0, Ax ≥ 0, x ≥ 0] ⇒ Atx ≤ 0.

A is called copositive (strictly copositive, copositive-plus, PSD, PD) of order

k, 0 ≤ k ≤ n, if every principal submatrix of order k is copositive (strictly

copositive, copositive-plus, PSD, PD).



General Introduction and Some Basic Concepts 8

Definition 1.4.6 A is said to be column sufficient if for all x ∈ Rn the following

implication holds:

xi(Ax)i ≤ 0 ∀ i ⇒ xi(Ax)i = 0 ∀ i.

A is said to be row sufficient if At is column sufficient.

A is sufficient if A and At are both column sufficient.

A matrix A is sufficient of order k if all its k × k principal submatrices are

sufficient.

For details on sufficient matrices, see [5], [8] and [104].

Definition 1.4.7 A ∈ Rn×n is called a Q-matrix (or a matrix satisfying Q-

property) if for every q ∈ Rn, LCP(q, A) has a solution.

We say that A is a Q0-matrix (or a matrix satisfying Q0-property) if F (q, A) 6=

∅ implies S(q, A) 6= ∅.

A is said to be a completely Q (Q0)-matrix if all its principal submatrices are

Q (Q0)-matrices.

Definition 1.4.8 A ∈ Rn×n is said to be an E0-matrix if for every 0 6= y ≥ 0,

y ∈ Rn, ∃ an i such that yi > 0 and (Ay)i ≥ 0. The class of such matrices is

called the class of semimonotone matrices.

Definition 1.4.9 A is said to be an R-matrix if for all t ≥ 0, LCP(te, A) has

only the trivial solution. A is said to be an R0-matrix if LCP(0, A) has only the

trivial solution.

Definition 1.4.10 A matrix A ∈ Rn×n is said to be an L2-matrix if for each

0 6= ξ ≥ 0, ξ ∈ Rn satisfying η = A ξ ≥ 0 and ηt ξ = 0, ∃ a 0 6= ξ̂ ≥ 0 such

that ξ ≥ ξ̂ and η ≥ η̂ ≥ 0, where η̂ = −Atξ̂.

A ∈ Rn×n is said to be an L-matrix if it is in both E0 and L2. This class

was introduced by Eaves ([17]) who showed that Lemke’s algorithm processes

LCP(q, A) (see Section 1.4.2) when A ∈ L and hence L ⊆ Q0.
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Definition 1.4.11 We say that a square matrix A is in the class E(d) where

d ∈ Rn if (w̄, z̄), z̄ 6= 0 is a solution for the LCP(d,A) implies that ∃ a 0 6= x ≥ 0

such that y = −Atx ≥ 0, x ≤ z̄, y ≤ w̄.

Definition 1.4.12 We say that a square matrix A is in the class E∗(d) for a

d ∈ Rn if (w̄, z̄) is a solution to the LCP(d,A) implies that w̄ = d, z̄ = 0.

Note that E(d) = E∗(d) for any d > 0 or d < 0, E(0) = L2 of [17] and L(d) =

E(d) ∩ E(0). So, for d > 0, A ∈ E(d) if LCP(d,A) has only the trivial solution

w = d, z = 0.

Todd [99] defines larger classes E1(d) and L1(d) by extending the classes E(d)

and L(d) of Garcia [27] as follows:

Let (w, z) solve LCP(d,A) for some d ∈ Rn. Consider the following conditions

on a given A ∈ Rn×n.

(a) For all α with {j | zj > 0 } ⊆ α ⊆ {j | wj = 0}, the principal submatrix of

A corresponding to α has positive determinant.

(b) There is 0 6= x ≥ 0 with y = −Atx ≥ 0 and x ≤ z, y ≤ w.

Todd defines the classes E1(d) = {A | Either condition (a) or (b) is satisfied} and

L1(d) = E1(d) ∩ E1(0). Note that L(d) ⊆ Q0 [27] and L1(d) ⊆ Q0 [99] if d > 0.

We refer to L(d) as Garcia’s class and to L1(d) as Todd’s class.

Definition 1.4.13 We say that A satisfies Doverspike’s condition [13], if all

the strongly degenerate complementary cones of (I,−A) lie on the boundary of

pos(I,−A). We denote the class of matrices satisfying Doverspike’s condition by

Dc.

Using Lemke’s algorithm, Doverspike [13] proved constructively that E0 ∩Dc ⊂

Q0.
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1.4.1 Some Results in LCP Theory

We state a few results which will be useful for further discussions. For proofs

and more details, we refer the reader to the excellent book of Cottle, Pang, and

Stone [7].

Theorem 1.4.1 ((3,3) Theorem in [20, p. 385] and 4.2 Theorem [66, p.75])

Let A ∈ Rn×n. The following statements are equivalent:

(i) A is a P -matrix.

(ii) A reverses the sign of no nonzero vector, i.e., zi(Az)i ≤ 0 ∀ i implies z = 0.

(iii) All real eigenvalues of A and its principal submatrices are positive.

(iv) LCP(q, A) has a unique solution for every q ∈ Rn.

The following result gives some characterizations for a P0-matrix.

Theorem 1.4.2 ([7]) Let A ∈ Rn×n. The following statements are equivalent:

(i) A is a P0-matrix.

(ii) For each vector z 6= 0 there exists an index k such that zk 6= 0 and zk(Az)k ≥

0.

(iii) All real eigenvalues of A and its principal submatrices are nonnegative.

(iv) For each ε > 0, A + εI is a P -matrix.

Murthy et al. [63] presented a game theoretic proof of the following known results

(see [7, pp. 185-187]).

Theorem 1.4.3 ([63]) Let A ∈ Rn×n. The following statements are equivalent:

(i) A ∈ E0.
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(ii) The LCP(q, A) has a unique solution for every q > 0.

(iii) v(Aαα) ≥ 0 for every index set α ⊆ {1, 2, . . . , n}.

(iv) v(At
αα) ≥ 0 for every index set α ⊆ {1, 2, . . . , n}.

(iv) At ∈ E0.

Murthy and Parthasarathy [60] have proved the following result on nonnegative

matrices.

Theorem 1.4.4 ([60, Theorem 2.5]) Let A ≥ 0 be an n × n matrix. A is a

Q0-matrix if and only if Ai· 6= 0 ⇒ aii > 0 ∀ 1 ≤ i ≤ n.

Theorem 1.4.5 ([16, Lemma 2.3], [80]) If A ∈ Q(Q0) then every PPT of A ∈

Q(Q0).

Remark 1.4.1 It is easy to show that A ∈ Q if and only if A ∈ Q0 with v(A) >

0. Also A ∈ E0 if and only if v(Aαα) ≥ 0 for all α ⊆ {1, 2, . . . , n}. See [63] in

this connection.

We state the following result in connection with the PPT.

Theorem 1.4.6 ([7, Theorem 4.1.2]) Let M be the matrix obtained from the

square matrix A by a principal pivot on the submatrix Aαα. Then, for any prin-

cipal submatrix Mββ of M :

det Mββ = det Aγγ/ det Aαα

where γ = α4β (symmetric difference of sets α and β).
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1.4.2 Lemke’s Algorithm

The complementary pivot scheme due to Lemke [41] (also known as Lemke’s

algorithm) for solving (1.1.1) and (1.1.2) has stimulated a considerable amount

of research in the classes of matrices A for which it can process LCP(q, A). The

steps of the algorithm are given below.

The initial solution to (1.1.1) and (1.1.2) is taken as

w = q + d z0

z = 0

where d ∈ Rn is any given positive vector which is called covering vector and z0

is an artificial variable which takes a large enough value so that w > 0. The ray

is called primary ray [43].

Step 1: Decrease z0 so that one of the variables wi, 1 ≤ i ≤ n, say wr is reduced

to zero. We now have a basic feasible solution with z0 in place of wr and

with exactly one pair of complementary variables (wr, zr) being nonbasic.

Step 2: At each iteration, the complement of the variable which has been re-

moved in the previous iteration is to be increased. In the second iteration,

for instance, zr will be increased.

Step 3: If the variable corresponding to the selected column in step 2 that enters

the basis can be arbitrarily increased, then the procedure terminates in a

secondary ray. If a new basic feasible solution is obtained with z0 = 0, we

have solved (1.1.1) and (1.1.2). If in the new basic feasible solution z0 > 0,

we have obtained a new basic pair of complementary variables (ws, zs). We

repeat step 2.

Lemke’s algorithm consists of the repeated applications of steps 2 and 3. If

nondegeneracy is assumed, the procedure terminates either in a secondary ray or
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in a solution to (1.1.1) and (1.1.2). If degenerate almost complementary solutions

are generated, then cycling can be avoided using the methods discussed by Eaves

[17]. See [7] for a detailed discussion on Lemke’s algorithm.

We say that an algorithm processes a problem if the algorithm can either

compute a solution to it if one exists, or show that no solution exists. For

A ∈ L(d) where d > 0 the success of Lemke’s algorithm applied to LCP(q, A)

with d as the covering vector is guaranteed if it is feasible. Todd [99] proved

that Lemke’s algorithm with covering vector d > 0 processes LCP(q, A) for all

matrices A ∈ L1(d). Also LCP(q, A) are processed by Lemke’s algorithm when

A is a row sufficient matrix. See [8, p. 239]. Ramamurthy [87] showed that

Lemke’s algorithm for the linear complementarity problem can be used to check

whether a given Z-matrix is a P0-matrix and it can also be used to analyze the

structure of finite Markov chains.

1.5 Degree Theory

We use some concepts of degree theory in Chapter 4 and Chapter 5. For the

concept and the properties of the degree we refer to Lloyd [44] and Ortega and

Rheinboldt [76]. For the use of this concept in linear complementarity we refer

to Cottle, Pang and Stone [7], Gowda [31], Howe and Stone [35] and Morris [59].

Let Ω be a bounded open set in Rn with boundary ∂Ω and closure Ω̄. Let

dist (0, S) := inf{||s||, s ∈ S} where S ⊆ Rn and 0 ∈ Rn denote the distance

between 0 and the set S. Let f : Ω̄ → Rn be continuous such that 0 6∈ f(∂Ω).

Then the degree of f at 0 relative to Ω is defined and is an integer. This degree is

denoted by deg(f, Ω, 0). See [76, Definition 6.1.7]. We make use of the following

properties of degree.

Property 1: (Existence property) If deg(f, Ω, 0) 6= 0, then the equation

f(z) = 0 has a solution in Ω.
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Property 2: (Homotopy invariance property) Suppose that

H : [0, 1]× Ω̄ → Rn is continuous and 0 6∈ H(t, ∂Ω) for all t ∈ [0, 1].

Then deg(H(0, ·), Ω, 0) = deg(H(1, ·), Ω, 0).

For convenience, we shall denote H(t, ·) as Ht(·).

Property 3: (Nearness property) Suppose that deg(f, Ω, 0) is defined. If g

is a continuous function on Ω̄ such that

sup
x∈Ω

||g(x) − f(x)|| < dist(0, f(∂Ω))

then deg(g, Ω, 0) is defined and is equal to deg(f, Ω, 0).

Property 4: (Domain decomposition property) Suppose Ω = ∪m
i=1Ωi where

Ωi’s are bounded open sets such that Ωi ∩ Ωj = ∅, i 6= j. Also, suppose that

0 6∈ ∪m
i=1f(∂Ωi). Then deg(f, Ω, 0) =

∑
i

deg(f, Ωi, 0).

Property 5: (Excision property) Suppose that deg(f, Ω, 0) is defined and K

is a compact subset of Ω̄ such that there is no solution of f(x) = 0 in K. Then

deg(f, Ω, 0) = deg(f, Ω\K, 0).

Property 6: Suppose f is differentiable at z∗ where z∗ ∈ Ω is the unique

point satisfying f(z∗) = 0. Suppose also that the Jacobian matrix f
′
(z∗) is

nonsingular. Then,

deg(f, Ω, 0) = sgn (det f
′
(z∗))

where for any real number a, sgn(a) = +1 if a > 0 and −1 if a < 0.

A particular case of Property 6 occurs when f is a piecewise affine function

of the form f(z) = z ∧ (Az + q) where ∧ denotes componentwise minimum.

Let fA : Rn → Rn, be the piecewise linear map for a matrix A ∈

Rn×n given by fA(x) = x+ − Ax− where x+
i = max(0, xi) and x−i =

max(0,−xi) ∀ i = 1, 2, . . . , n. Note that for any x ∈ Rn, x = x+ − x−. An

LCP(q, A) is equivalent to finding an x ∈ Rn such that fA(x) = q. If x belongs

to the interior of an orthant of Rn and det(Aαα) 6= 0 where α = {i | xi < 0},
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then the index of fA(x) at x is well defined and

ind fA(q, x) = sgn det(Aαα) =
det(Aαα)

|det(Aαα)|
.

Let f−1
A (q) stand for the set of all vectors x ∈ Rn, such that fA(x) = q. From the

linear complementarity theory, it is clear that the cardinality of f−1
A (q) denotes

the number of solutions of LCP(q, A). In particular, if q is nondegenerate with

respect to A, each index of fA is well defined and we can then define local degree

of A at q, denoted by degA(q), to be equal to the local degree of fA at q, i.e.,

degA(q) =
∑

x∈ f−1
A (q)

ind fA(q, x) =
∑

x∈ f−1
A (q)

det(Aαα)

|det(Aαα)|

where the summation is taken over the index sets α ⊆ {1, 2, . . . , n} such that

q ∈ posCA(α).

If q, q
′ ∈ Rn\K(A) and lie in the same connected component of Rn\C(A) then

degA(q) = degA(q
′
). See Theorem 6.1.17 in [7, p. 515]. More specifically when

Rn \ C(A) is made up of a single connected component, we have the degree of A

at q defined and equal to the same constant for every q ∈ Rn, except possibly for

a set of vectors which has measure zero. Such a scalar is called the global degree

of A and is denoted by deg(A).

Suppose A ∈ R0 and q be nondegenerate with respect to A. For an R0-matrix

A, the number
∑

z∈S(q,A)

sgn det(Aαα) where α = {i : zi 6= 0} is the same for all

vectors q such that LCP(q, A) has a finite number of solutions and we write

deg(A) =
∑

z∈S(q,A)

sgn det(Aαα) =
∑

z∈S(q,A)

det(Aαα)

| det(Aαα)|
.

Local and global degrees of an LCP map are quite useful in identifying subclasses

of Q and Q0 matrices. Some of the well-known characterizations are given a newer

perspective in terms of degree theory. For further details on degree theory, see

[7, Chapter 6].
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In Chapter 5, we consider various subclasses of Q-matrices that are not known

in the literature and analyse their global degree. We consider R0-matrices here.

This is due to the fact that for matrices that do not belong to R0, the global

degree may not be defined. We state the following result for R0-matrices.

Theorem 1.5.1 Let A ∈ R0. Rn is a single connected component and deg(A) is

well-defined. If deg(A) 6= 0, then A ∈ Q.

An interesting property of degree is that it carries over to the principal pivot

transforms also. This is stated in the following theorem.

Theorem 1.5.2 ([95, Theorem 2.2]) Let A ∈ R0. If deg(A) = r and M is a

PPT of A, then deg(M) = ±r.



Chapter 2

Positive Subdefinite Matrices

and The Linear Complementarity

Problem

2.1 Introduction

The class of positive subdefinite matrices is a generalization of the class of pos-

itive semidefinite (PSD) matrices. The study of pseudoconvex and quasiconvex

quadratic forms leads to this new class of matrices, and it is useful in the study

of quadratic programming problem. We say that a real square matrix A of order

n is positive subdefinite (PSBD) if for all x ∈ Rn

xtAx < 0 implies either Atx ≤ 0 or Atx ≥ 0.

Martos [46] introduced the class of symmetric positive subdefinite matrices in

connection with a characterization of a pseudoconvex function. Cottle and Fer-

land [4] followed the path set by Martos in [46] and among other things, obtained

converses for some of Martos’s results. Rao [86] obtained a characterization of

17
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merely positive subdefinite matrices which enabled the easy recognition of qua-

siconvex and pseudoconvex quadratic forms. He also studied this class with

respect to generalized inverse (g-inverse). Since Martos was considering the Hes-

sians of quadratic functions, he was concerned only about symmetric matrices.

Later, Crouzeix et al. [10] studied nonsymmetric PSBD matrices in the context

of generalized monotonicity and the linear complementarity problem.

The purpose of this chapter is to summarize the known results and to further

the study of properties of PSBD matrices. It is not surprising that many prop-

erties of PSD matrices are lost through the generalization. In Section 2.2, we

present the required definitions and state the relevant results used in this chapter.

In Section 2.3, main results are proved. We show that the linear complementar-

ity problems with positive subdefinite matrices of rank ≥ 2 are processable by

Lemke’s algorithm and that a copositive PSBD matrix of rank ≥ 2 belongs to the

class of sufficient matrices introduced by Cottle et al. [8]. Further, we also show

that if a matrix A which can be written as a sum of a copositive-plus merely

positive subdefinite matrix and a copositive matrix and if it satisfies a feasibility

condition then Lemke’s algorithm applied to solve LCP(q, A) terminates with a

solution. This extends the results of Jones [38] and Evers [18].

2.2 Preliminaries

The class of PSD matrices is a subclass of PSBD matrices. A matrix A is said

to be merely positive subdefinite (MPSBD) if A is a PSBD matrix but not pos-

itive semidefinite (PSD). The concept of PSBD matrices leads to a study of

pseudomonotone matrices. Crouzeix et al. [10] have obtained new characteriza-

tions for generalized monotone affine maps on Rn
+ using PSBD matrices. Given

a matrix A ∈ Rn×n and a vector q ∈ Rn, an affine map F(x) = Ax + q is said to
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be pseudomonotone on Rn
+ if

(y − z)t(Az + q) ≥ 0, y ≥ 0, z ≥ 0 ⇒ (y − z)t(Ay + q) ≥ 0.

A matrix A ∈ Rn×n is said to be pseudomonotone if F(x) = Ax is

pseudomonotone on the nonnegative orthant. Gowda [30] establishes a connec-

tion between affine pseudomonotone mapping and the linear complementarity

problem. It is also shown that for an affine pseudomonotone mapping, the feasi-

bility of the LCP implies its solvability. A result of this type was proved earlier by

Karamardian [40]. Crouzeix et al. ([10]) proved that an affine map F(x) = Ax+q

where A ∈ Rn×n and q ∈ Rn is pseudomonotone if and only if

z ∈ Rn, ztAz < 0 ⇒

 Atz ≥ 0 and ztq ≥ 0 or

Atz ≤ 0, ztq ≤ 0 and zt(Az− + q) < 0.

We require the following theorems in the next section. For the proof of these

results, see [10].

Theorem 2.2.1 ([10, Proposition 2.1]) Let A = abt where a 6= b, a, b ∈ Rn. A

is PSBD if and only if one of the following conditions holds:

(i) ∃ a t > 0 such that b = ta;

(ii) for all t > 0, b 6= ta and either b ≥ 0 or b ≤ 0.

Further suppose that A ∈ MPSBD. Then A ∈ C0 if and only if either (a ≥ 0

and b ≥ 0) or (a ≤ 0 and b ≤ 0) and A ∈ C∗
0 if and only if A is copositive and

ai = 0 whenever bi = 0.

Combining Theorem 2.1 and Proposition 2.5 in [10], we get:

Theorem 2.2.2 ([10, Theorem 2.1, Proposition 2.5]) Suppose A ∈ Rn×n is

PSBD and rank(A) ≥ 2. Then At is PSBD and at least one of the following

conditions holds:
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(i) A is PSD;

(ii) (A + At) ≤ 0;

(iii) A is C∗
0 .

Theorem 2.2.3 ([10, Proposition 2.2]) Assume that A ∈ Rn×n is MPSBD and

rank(A) ≥ 2. Then

(a) ν−(A + At) = 1,

(b) (A + At)z = 0 ⇔ Az = Atz = 0.

Theorem 2.2.4 ([10, Theorem 3.3]) A matrix A ∈ Rn×n is pseudomonotone

if and only if A is PSBD and copositive with the additional condition in case

A = abt, that bi = 0 ⇒ ai = 0.

In fact, the class of psedomonotone matrices coincides with the class of ma-

trices which are both PSBD and copositive-star.

Theorem 2.2.5 ([30, Corollary 4]) If A is pseudomonotone, then A is a row

sufficient matrix.

2.3 Main Results on PSBD and MPSBD Ma-

trices

Since a PSBD matrix is a natural generalization of a PSD matrix, it is of interest

to determine which of the properties of a PSD matrix also holds for a PSBD

matrix. In particular, we may ask whether

(i) A is PSBD if and only if (A + At) is PSBD and

(ii) any PPT (Principal Pivot Transform) of a PSBD matrix is a PSBD matrix.

The following examples show that these statements are false.
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Example 2.3.1 Let A =

 0 2

−1 0

 . Then for any x =

 x1

x2

 , xtAx = x1x2 <

0 implies x1 and x2 are of opposite sign. Clearly A ∈ PSBD since xtAx < 0 and

Atx =

 −x2

2x1

 imply either Atx ≤ 0 or Atx ≥ 0.

Also it is easy to see that A + At =

 0 1

1 0

 is not a PSBD matrix.

Similarly, let A =

 0 −2

1 0

 so that A + At =

 0 −1

−1 0

 . It is easy to

verify that A + At is PSBD but A is not a PSBD matrix.

Example 2.3.2 Let us consider the matrix A =

 0 2

−1 0

 in Example 2.3.1.

Note that A ∈ PSBD but it is easy to see that A−1 =

 0 −1

0.5 0

 is not a PSBD

matrix.

Since A−1 is a PPT of A therefore any PPT of a PSBD matrix is not a PSBD

matrix.

The following theorem says that PSBD is a complete class in the sense of [7,

3.9.5].

Theorem 2.3.1 Suppose A ∈ Rn×n is a PSBD matrix. Then Aαα ∈ PSBD

where α ⊆ {1, . . . , n}.

Proof. Let A ∈ PSBD and α ⊆ {1, . . . , n}. Let xα ∈ R|α| and

A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ

 .

Suppose that xt
αAααxα < 0. Now define z ∈ Rn by taking zα = xα and zᾱ =

0. Then ztAz = xt
αAααxα. Since A is a PSBD matrix, ztAz = xt

αAααxα <
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0 ⇒ either Atz ≥ 0 which implies that At
ααxα ≥ 0 or Atz ≤ 0 (which implies

At
ααxα ≤ 0). Hence Aαα ∈ PSBD. As α is arbitrary, it follows that every principal

submatrix of A is a PSBD matrix.

Theorem 2.3.2 Suppose A ∈ Rn×n is a PSBD matrix. Let D ∈ Rn×n be a

positive diagonal matrix. Then A ∈ PSBD if and only if DADt ∈ PSBD.

Proof : Let A ∈ PSBD. For any x ∈ Rn, let y = Dtx. Note that xtDADtx =

ytAy < 0 ⇒ Aty = AtDtx ≤ 0 or Aty = AtDtx ≥ 0. This implies that either

DAtDtx ≤ 0 or DAtDtx ≥ 0 since D is a positive diagonal matrix. Thus DADt ∈

PSBD. The converse follows from the fact that D−1 is a positive diagonal matrix

and A = D−1(DADt)(D−1)t.

Theorem 2.3.3 PSBD matrices are invariant under principal rearrangement,

i.e., if A ∈ Rn×n is a PSBD matrix and P ∈ Rn×n is any permutation matrix,

then PAP t ∈ PSBD.

Proof. Let A ∈ PSBD and let P ∈ Rn×n be any permutation matrix. For any

x ∈ Rn, let y = P tx. Note that xtPAP tx = ytAy < 0 ⇒ Aty = AtP tx ≤ 0 or

Aty = AtP tx ≥ 0. This implies that either PAtP tx ≤ 0 or PAtP tx ≥ 0 since P

is just a permutation matrix. It follows that PAP t is a PSBD matrix.

Now we settle the question whether PSBD ⊆ Q0 and Lemke’s algorithm

processes PSBD matrices. In this connection, we rewrite Theorem 2.2.1 as fol-

lows.

Theorem 2.3.4 Let A = abt ∈ Rn×n, a, b ∈ Rn, a, b 6= 0 be a PSBD matrix.

Suppose either a ≥ 0 or a ≤ 0 when b 6= ta for any t > 0. Then A ∈ Q0 if and

only if one or more of the following conditions hold:

(i) A is PSD;

(ii) a and b have opposite signs;
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(iii) a and b have the same sign and

ai = 0 whenever bi = 0 ∀ i = {1, 2, . . . , n}. (2.3.1)

Proof. We need to consider two cases.

Case 1: There exists a t > 0 so that b = ta. It is easy to see that A is PSD and

hence A ∈ Q0.

Case 2: For all t > 0, b 6= ta. In this case, it follows from Theorem 2.2.1 that

either b ≥ 0 or b ≤ 0. Under our hypothesis about a, either A ≤ 0 or A ≥ 0. If

A ≤ 0 then A ∈ Q0. But if A ≥ 0 then from Theorem 1.4.4, it is easy to see that

A ∈ Q0 if and only if

ai = 0 whenever bi = 0 ∀ i = {1, 2, . . . , n}.

Remark 2.3.1 Note that any PSBD matrix A = abt ∈ Rn×n, a, b ∈ Rn, a, b 6= 0

is a sufficient matrix if ai = bi = 0 or aibi > 0. See [104, Corollary 4.2].

Lemma 2.3.1 Let A ∈ Rn×n be a PSBD matrix with rank(A) ≥ 2 and let

A + At ≤ 0. We have

(i) If aii < 0, then the column/row containing aii is nonpositive.

(ii) If A has a principal submatrix of the form 0 aks

ask 0


with (aks + ask) < 0 then the sth and kth rows as well as sth and kth columns of

A are nonpositive.

Proof. By Theorem 2.2.2, At is a PSBD matrix. By Theorem 2.3.1, every

principal submatrix of A as well as At is also a PSBD matrix. To prove (i) we
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proceed as follows. Suppose the diagonal entry aii < 0. Let (assuming i < k) α =

{i, k}. Consider the 2×2 submatrix Aαα =

 aii aik

aki akk

 which is a PSBD matrix.

Now for any x =

 x1

x2

 ∈ R2, xtAααx = aiix
2
1 + x1x2(aik + aki) + akkx

2
2 < 0

if x is nonnegative with x1 > 0 since by hypothesis, akk ≤ 0 and aik + aki ≤ 0.

Thus (Aαα)tx is unisigned for any nonnegative x with x1 > 0. Now by taking

x2 = 0, x1 > 0 we conclude that aik ≤ 0. Applying the same argument for At

and (At
αα) = (Aαα)t, we conclude that Aααx is also unisigned and hence aki ≤ 0.

This completes the proof of (i).

To prove (ii) we proceed as follows: Note that for any y ∈ Rn,

ytAy =
n∑

i=1

aiiy
2
i +

∑
i<j

(aij + aji)yiyj.

By our hypothesis aii and aij + aji are nonpositive for all i and j. Suppose now

akk = ass = 0 and (aks + ask) < 0. In this case, note that if z ∈ Rn be any vector

such that zi = 0, i 6= k, s, zk > 0 and zs > 0, then ztAz = zszk(aks + ask) < 0.

Therefore, it follows that for such a z, Atz is unisigned. Suppose now for some

r, r 6= s, k, akr > 0. Choose zk = 1. Let δ be a positive number such that

akr +asrδ > 0. It is easy to see that such a δ exists. Define the vector z̄ by taking

z̄i = 0, i 6= k, s, z̄k = 1, z̄s = δ. Note that Atz̄ is not unisigned, a contradiction.

This contradiction shows that akr ≤ 0, ∀ r. In a similar manner, it can be shown

that asr is nonpositive for all r. From the fact that At is also a PSBD matrix, by

a similar argument it follows that ark and ars are also nonpositive for all r. This

completes the proof.

Lemma 2.3.2 Suppose A ∈ Rn×n is a PSBD matrix with rank(A) ≥ 2 and

A + At ≤ 0. If A is not a skew-symmetric matrix, then A ≤ 0.

Proof. Let the index sets L1, L2 and L be defined as follows:

L1 = {i|aii < 0}; L2 = {i|aii = 0, ∃ k, with akk = 0, aik + aki < 0}.
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Note that if i ∈ L2, then L2 will also contain the index k that satisfies the defining

conditions of L2 for i. Let L = L1 ∪ L2. By the hypothesis of the lemma L is

nonempty, for otherwise, A is skew symmetric. Consider the following partitioned

form of A induced by the index set L.

PAP t =

 ALL ALL̄

AL̄L AL̄L̄

 ,

where L̄ denotes the set of indices {1, 2, . . . , n} \ L and P is the appropriate

permutation matrix. (In what follows we will simply use the symbol A to denote

PAP t). By the earlier lemma, ALL ≤ 0, ALL̄ ≤ 0 and AL̄L ≤ 0. Also note that

by definition, AL̄L̄ is a skew symmetric matrix. For any y ∈ Rn, let y =

 yL

yL̄


denote the corresponding partition of y. Note that

ytAy = yt
LALLyL + yt

L̄AL̄L̄yL̄ + yt
L̄(AL̄L + At

LL̄)yL.

Since AL̄L̄ is skew-symmetric, it follows that for all y ∈ Rn, yt
L̄AL̄L̄yL̄ = 0. It

follows that for all vectors y such that yL is positive, ytAy is negative and hence

both Ay and Aty are unisigned. To complete the proof, we need to show that

none of the entries of AL̄L̄ is positive. Suppose to the contrary that for some

s ∈ L̄, r ∈ L̄, asr > 0. Choose ε such that

ε
∑
i∈L

air + asr > 0.

Define the vector ȳ by taking yi = ε ∀ i ∈ L and yi = 0 ∀ i 6= r ∈ L̄

and yr = 1. Note that since each row and column of ALL contains at least one

negative entry and all the entries of ALL, and AL̄L are nonpositive, it follows that

(Aty)i < 0 ∀ i ∈ L. Also by construction (Aty)r > 0. This is a contradiction.

Hence AL̄L̄ ≤ 0 and the lemma follows.

Theorem 2.3.5 Suppose A ∈ Rn×n is a PSBD matrix with rank(A) ≥ 2. Then

A is a Q0 matrix.
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Proof. By Theorem 2.2.2, At is a PSBD matrix. Also by the same theorem,

either A ∈ PSD or (A+At) ≤ 0 or A ∈ C∗
0 . If A ∈ C∗

0 then A ∈ Q0 (see [7]). Now

if (A + At) ≤ 0, and A is not skew-symmetric then by Lemma 2.3.2 it follows

that A ≤ 0. In this case, A ∈ Q0 [7]. However, if A is skew-symmetric then

A ∈ PSD. Therefore, A ∈ Q0.

Corollary 2.3.1 Suppose A is a PSBD matrix with rank(A) ≥ 2. Then

LCP(q, A) is processable by Lemke’s algorithm. If rank(A) = 1, (i.e., A =

abt, a, b 6= 0) and A ∈ C0 then LCP(q, A) is processable by Lemke’s algorithm

whenever bi = 0 ⇒ ai = 0.

Proof. Suppose rank(A) ≥ 2. From Theorem 2.2.2 and the proof of Theorem

2.3.5, it follows that A is either a PSD matrix or A ≤ 0 or A ∈ C∗
0 . Hence

LCP(q, A) is processable by Lemke’s algorithm (see [7]). For PSBD ∩ C0 matrices

of rank(A) = 1, i.e., for A = abt, a, b 6= 0, such that bi = 0 ⇒ ai = 0. Note that

A ∈ C∗
0 by Theorem 2.2.1. Hence LCP(q, A) with such matrices are processable

by Lemke’s algorithm.

Theorem 2.3.6 Suppose A is a PSBD ∩ C0 matrix with rank(A) ≥ 2. Then

A ∈ Rn×n is a sufficient matrix.

Proof. Note that by Theorem 2.2.2, At is a PSBD ∩ C0 matrix with rank(At) ≥

2. Now by Theorem 2.2.4, A and At are pseudomonotone. Hence A and At are

row sufficient by Theorem 2.2.5. Therefore, A is sufficient.

Corollary 2.3.2 Suppose A ∈ C0 ∩ PSBD. Then A ∈ P0.

Proof. If rank(A) = 1, then A ∈ P0 since A ∈ C0. If rank(A) ≥ 2, then the

inclusion A ∈ P0 follows from Theorem 2.3.6.

The following example shows that in general PSBD matrices need not belong

to P0.
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Example 2.3.3 Let A =

 0 −1

−1 0

 . Then for any x =

 x1

x2

 , xtAx =

−2x1x2 < 0 implies x1 and x2 are of same sign. A ∈ PSBD, since Atx =

 −x2

−x1


implies either Atx ≤ 0 or Atx ≥ 0 but A 6∈ P0.

The following example shows that a PSBD matrix need not be a Q0-matrix in

general.

Example 2.3.4 Let A =

 1 0

1 0

 . Then for any x =

 x1

x2

 , Atx

=

 x1 + x2

0

 , implies either Atx ≤ 0 or Atx ≥ 0. Hence A ∈ PSBD. Taking

q =

 −1

−2

 we note that LCP(q, A) is feasible but has no solution. Therefore,

A is not a Q0-matrix.

The following theorem provides a new sufficient condition to solve LCP(q, A)

by Lemke’s algorithm (See Section 1.4.2 for a discussion on Lemke’s algorithm).

Theorem 2.3.7 Suppose A ∈ Rn×n can be written as M + N where M ∈

MPSBD ∩ C+
0 , rank(M) ≥ 2 and N ∈ C0. If the system q+Mx−N ty ≥ 0, y ≥ 0

is feasible, then Lemke’s algorithm for LCP(q, A) with covering vector d > 0 ter-

minates with a solution.

Proof. Assume that the feasibility condition of the theorem holds so that

there exist an x0 ∈ Rn and a y0 ∈ Rn
+ such that q + Mx0 − N ty0 ≥ 0. First we

shall show that for any x ∈ Rn
+, if Ax ≥ 0 and xtAx = 0, then xtq ≥ 0. Note

that for given x ≥ 0, xtAx = 0 ⇒ xt(M + N)x = 0 and since M, N ∈ C0, this

implies that xtMx = 0. As M is a MPSBD matrix xtMx = 0 ⇔ xt(M +M t)x =

0 ⇔ (M + M t)x = 0 ⇔ M tx = 0 ⇔ Mx = 0. See Theorem 2.2.3. Also
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since Ax ≥ 0, it follows that Nx ≥ 0 and hence xtN ty0 ≥ 0. Further since

q + Mx0 − N ty0 ≥ 0 and x ≥ 0, it follows that xt(q + Mx0 − N ty0) ≥ 0. This

implies that xtq ≥ xtN ty0 ≥ 0.

Now from Corollary 4.4.12 and Theorem 4.4.13 of [7, p.277] it follows that

Lemke’s algorithm for LCP(q, A) with covering vector d > 0 terminates with a

solution.

The following example shows that the class MPSBD ∩ C+
0 is non-empty.

Example 2.3.5 Let M =


2 5 0

1 4 0

0 0 0

 . Note that xtMx = 2(x1 +x2)(x1 +2x2).

Using this expression it is easy to verify that xtMx < 0 ⇒ either M tx ≤ 0 or

M tx ≥ 0. Also it is easy to see that M ∈ C+
0 .

Remark 2.3.2 The above theorem cannot be extended to a PSBD matrix. Note

that the class PSBD matrices includes PSD matrices. In the example below, we

consider a matrix A which may be written as M +N , where M ∈ non-symmetric

PSD and N ∈ C0 and show that Theorem 2.3.7 does not hold.

Example 2.3.6 Let A =

 1 1

1 0

 . Taking q =

 −1

−2

 we note that LCP(q, A)

is feasible but the problem has no solution. Therefore, A is not a Q0 matrix.

Let M =

 1 −1

1 0

 and N =

 0 2

0 0

 . Note that M is a non-symmetric

PSD matrix of rank 2 and N ∈ C0 and it is easy to check that the system

q + Mx − N ty ≥ 0, y ≥ 0 is feasible. Lemke’s algorithm for LCP(q, A) with

covering vector d > 0 (for example d = e where e is a n dimensional column

vector of all 1’s) terminates with a secondary ray for this q, as LCP(q, A) has

no solution. Thus if M is a non-symmetric PSD matrix, Theorem 2.3.7 does not

hold.



Chapter 3

Generalized Positive Subdefinite

Matrices and their Properties

3.1 Introduction

The class of generalized positive subdefinite (GPSBD) matrices is an interesting

matrix class introduced by Crouzeix and Komlósi [11]. This class is a generaliza-

tion of the class of symmetric positive subdefinite (PSBD) matrices introduced

by Martos [46] and nonsymmetric PSBD matrices studied by Crouzeix et al. [10].

We recall that A is called a PSBD matrix if for all x ∈ Rn, xtAx < 0 implies Atx

is unisigned. A is said to be merely positive subdefinite (MPSBD) if A is a PSBD

matrix but not a PSD matrix. The solution set of a linear complementarity prob-

lem (S(q, A)) can be linked with the set of KKT-stationary points (S
′′
(q, A)) of

the corresponding quadratic programming problem. The row sufficient matrices

have been characterized by Cottle et al. [8] as the class for which the solution set

of LCP(q, A) is the same as the solution set of KKT points of the corresponding

quadratic program. In [11], Crouzeix and Komlósi showed that the property

(S
′′
(q, A) ⊆ S(q, A)) holds for generalized positive subdefinite (GPSBD) matri-

29
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ces. However, we show that (S
′′
(q, A) ⊆ S(q, A)) holds for GPSBD matrices

under some additional assumptions. We produce a counterexample to show that

the assumption cannot be relaxed further (see Section 3.3).

In this chapter, we study generalized positive subdefinite (GPSBD) matrices

and obtain some properties of this matrix class. In Section 3.2, we introduce the

notations and provide the relevant definitions used in this chapter. In Section

3.3, we show that every principal submatrix of a GPSBD matrix is also GPSBD

and prove that a copositive GPSBD matrix is a P0-matrix. We show that a

copositive merely generalized positive subdefinite (MGPSBD) matrix with some

additional conditions on it belongs to the class of row sufficient matrices. Further,

it is shown that for a subclass of GPSBD matrices, the solution set of a linear

complementarity problem is the same as the set of KKT-stationary points of the

corresponding quadratic programming problem. We provide a counterexample

to show that a copositive GPSBD matrix need not be sufficient. Finally, we show

that if a matrix A which can be written as a sum of a copositive-plus MGPSBD

matrix with an additional condition and a copositive matrix and if it satisfies a

feasibility condition then Lemke’s algorithm can solve LCP(q, A). This further

extends the result obtained in Chapter 2 and a result of Jones [38] and Evers

[18].

A large subclass of GPSBD matrices is identified as row sufficient matrices in

this chapter. This has practical relevance to the study of quadratic programming

and interior point algorithms. In addition, our result mentioned above on the

applicability of Lemke’s algorithm extends the class of LCP solvable by Lemke’s

algorithm.
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3.2 Preliminaries

A matrix A ∈ Rn×n is called generalized positive subdefinite matrix (GPSBD)

[11] if there exist nonnegative multipliers si, ti with si + ti = 1, i = 1, 2, . . . , n

such that

∀ z ∈ Rn, ztAz < 0 ⇒

 either − sizi + ti(A
tz)i ≥ 0 for all i,

or − sizi + ti(A
tz)i ≤ 0 for all i.

(3.2.1)

Let S and T be two nonnegative diagonal matrices with diagonal elements

si, ti where si + ti = 1 for i = 1, . . . , n. Note that S and T are independent of z.

A matrix A ∈ Rn×n is said to be GPSBD if there exist two nonnegative diagonal

matrices S and T with S + T = I such that

∀ z ∈ Rn, ztAz < 0 ⇒

 either − Sz + TAtz ≥ 0

or − Sz + TAtz ≤ 0.
(3.2.2)

Note that GPSBD reduces to PSBD if S = 0. A is called nondegenerate GPSBD

if for all z ∈ Rn, ztAz < 0, implies −Sz + TAtz 6= 0 and unisigned, i.e., at least

one of the inequalities in (3.2.2) should hold as a strict inequality. A is said to

be a merely generalized positive subdefinite (MGPSBD) matrix if A is a GPSBD

matrix but not a PSBD matrix.

The following is a nontrivial example of a GPSBD matrix.

Example 3.2.1 Let A =


0 2 0

−1 0 −1

0 1 0

 . Note that ν−(A + At) = 1. Then for

any z = [z1 z2 z3]
t, ztAz = z1z2 < 0 implies z1 and z2 are of opposite sign.

Clearly, Atz = [−z2 2z1 + z3 − z2]
t and for z = [−1 1 5]t, ztAz < 0 but Atz

is not unisigned. Therefore, A is not a PSBD matrix. However, with the choice

s1 = 0, s2 = 1 and s3 = 0, it is easy to check that A is a GPSBD matrix.

A careful examination of the definition of GPSBD matrix leads to the follow-

ing result.
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Proposition 3.2.1 Let S and T be two nonnegative diagonal matrices such that

S + T = I. Then A is a GPSBD matrix if any one of the following conditions

holds:

(i). Z1 ⊆ Z2, where Z1 = {z | ztAz < 0} and Z2 = {z | zt(−S + TAt)z < 0}

and (−S + AT ) is PSBD.

(ii). ti = k, 0 ≤ k ≤ 1, ∀ i and (−S + AT ) is PSBD.

(iii). Z̄ = {z | ztAz < 0} ⊆ Rn
+ ∪ −Rn

+.

(iv). aii ≥ 0, ∀ i and there exists an i = i0 such that Ai0· ≥ 0 and aij =

0, ∀ i, j, i 6= i0, j 6= i.

(v). aii ≥ 0, ∀ i and there exists a j = j0 such that A·j0 6= 0 and aij =

0, ∀ i, j, i 6= j, j 6= j0.

Proof. (i). This part follows from the fact that ztAz < 0 ⇒ zt(−S+TAt)z < 0

and (−S + AT ) is PSBD.

(ii). When ti = k, ∀ i then Z1 ⊆ Z2.

(iii). The conclusion follows if we take si = 1, ∀ i.

(iv) and (v). Choose ti = 1
1+aii

.

3.3 Main Results on GPSBD Matrices

Theorem 3.3.1 Suppose A is a GPSBD matrix. Then Aαα ∈ GPSBD where

α ⊆ {1, . . . , n}.

Proof. Let xα ∈ R|α| and

A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ
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where α ⊆ {1, . . . , n}.

Suppose that xt
αAααxα < 0. Now define z ∈ Rn by taking zα = xα and zᾱ =

0. Then ztAz = xt
αAααxα. Since A is a GPSBD matrix, ztAz = xt

αAααxα <

0 ⇒ either (−S + TAt)z ≥ 0 which implies that (−Sαα + TααAt
αα)xα ≥ 0 or

(−S + TAt)z ≤ 0 which implies (−Sαα + TααAt
αα)xα ≤ 0. Hence Aαα ∈ GPSBD.

This theorem says that GPSBD is a complete class in the sense of [7, 3.9.5].

Crouzeix et al. [10, Theorem 2.1] observed that if A is a PSBD matrix with

rank(A) ≥ 2, then At is also PSBD. However, this is not true for GPSBD matrices

in general. This is shown in the following example.

Example 3.3.1 Let A =


1 −1 0

−1 1 0

10 0 1

 . Take z = [1 5
2
− 1]t. Clearly, A and

At are not PSBD. Now with the choice s1 = 1, s2 = 1
2
, s3 = 1

2
, it is easy to see

that A is a GPSBD matrix. Now consider At. Note that for z = [1 5
2
− 1]t,

(−S + TA)z =


(1− 2s1)z1 − (1− s1)z2

−(1− s2)z1 + (1− 2s2)z2

10(1− s3)z1 + (1− 2s3)z3

 =


1
2
s1 − 3

2

−4s2 + 3
2

−8s3 + 9

 .

It is easy to see that no s1, s2, s3 exists for which At satisfies the definition of a

GPSBD matrix.

The following theorem is observed in [11]. For the sake of completeness, we

include the proof here.

Theorem 3.3.2 Suppose A is a nondegenerate MGPSBD matrix. Then

ν−(A + At) = 1.

Proof. Let B = A+At. Note that B has at least one negative eigenvalue since

A is not PSD. Suppose for contradiction there exist λ1, λ2, z1, z2 so that

Bz1 = 2λ1z1, Bz2 = 2λ2z2, ||z1||2 = ||z2||2 = 1,
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λ1 ≤ λ2 < 0 and zt
1z2 = 0.

It is easy to see that zt
1Az1 < 0 and zt

2Az2 < 0. Without loss of generality, assume

that Ãtz1 ≤ 0 and Ãtz2 ≥ 0 where Ãt = −S + TAt.

Now for µ ∈ [0, 1], we define z(µ) = µz1 + (1 − µ)z2. Then z(µ)tBz(µ) =

2µ2λ1 + 2(1− µ)2λ2 < 0. Since A is a nondegenerate GPSBD matrix, it follows

that 0 6= Ãtz(µ) = µÃtz1 + (1− µ)Ãtz2 ∈ Rn
+ ∪ −Rn

+, since Ãtz(µ) is unisigned.

Now, since Ãtz(0) ≥ 0 and Ãtz(1) ≤ 0, it follows that there exists a µ̄ ∈ (0, 1)

such that Ãtz(µ̄) = 0, which contradicts the nondegeneracy assumption.

Theorem 3.3.3 Suppose A is a nondegenerate MGPSBD matrix where all the

diagonal entries of T are positive. Then (A + At)z = 0 ⇒ Az = Atz = 0.

Proof. Let B = A + At. Suppose there exist λ1, z1 with λ1 < 0 and

||z1||2 = 1 such that Bz1 = 2λ1z1. Let z0 satisfy Bz0 = 0. For µ ∈ R, define

z(µ) = z1 + µz0. Then it is easy to see that zt(µ)Bz(µ) = 2λ < 0. With-

out loss of generality, assume that Ãtz1 ≤ 0 where Ãt = −S + TAt. Since

A is a nondegenerate MGPSBD matrix, Ãtz(µ) 6= 0. Now for all µ ∈ R,

0 6= Ãtz(µ) = Ãtz1 − µSz0 + µTAtz0 ∈ Rn
+ ∪ −Rn

+, since Ãtz(µ) is unisigned.

Now, since 0 6= Ãtz(µ) is unisigned, the terms containing the coefficient µ should

vanish. Therefore, Atz0 = 0. Since Bz0 = 0, it follows that Az0 = 0.

Theorem 3.3.4 Suppose A ∈ GPSBD ∩C0. Then A ∈ P0.

Proof. To show that A ∈ P0, it is enough to show that At ∈ P0. In view of a

result of Fiedler and Pták [21, Theorem 1.3] it is enough to show that for any

nonzero z, max
zi 6=0

[zi(A
tz)i] ≥ 0. Given a nonzero z ∈ Rn, let I1 = {i : zi > 0} and

I2 = {i : zi < 0}. We need to consider three cases.

Case-I: I2 = ∅. Then ztAtz = ztAz ≥ 0 as A ∈ C0. Hence max
i

[zi(A
tz)i] ≥ 0.

Case-II: I1 = ∅. Then (−z)tAt(−z) = ztAz ≥ 0 as A ∈ C0. Hence

max
i

[zi(A
tz)i] ≥ 0.
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Case-III: I1 6= ∅ and I2 6= ∅. Suppose that max
i

[zi(A
tz)i] < 0. Now ztAz =

ztAtz =
∑

i

[zi(A
tz)i] < 0. This implies −sizi + ti(A

tz)i ≥ 0, ∀ i or −sizi +

ti(A
tz)i ≤ 0, ∀ i. Suppose −sizi + ti(A

tz)i ≥ 0, ∀ i. Then for all i ∈ I1,

−siz
2
i +ti[zi(A

tz)i] ≥ 0. But since max
i

[zi(A
tz)i] < 0, we get −siz

2
i +ti[zi(A

tz)i] <

0, ∀ i ∈ I1. This leads to a contradiction. Therefore, max
i

[zi(A
tz)i] ≥ 0. Similarly,

when −sizi + ti(A
tz)i ≤ 0, ∀ i ∈ I2, we consider −siz

2
i + ti[zi(A

tz)i] ≥ 0. But

since max
i

[zi(A
tz)i] < 0, we get −siz

2
i + ti[zi(A

tz)i] < 0, ∀ i ∈ I2. This leads to a

contradiction. Therefore, max
i

[zi(A
tz)i] ≥ 0. This completes the proof.

In Chapter 2, it is shown that if A is a copositive PSBD matrix of rank ≥ 2,

then A is sufficient. However, the following example shows that a GPSBD matrix

need not be sufficient.

Example 3.3.2 Consider the copositive GPSBD matrix A in Example 3.3.1.

Note that A is not PSBD. It is easy to check that A is a row sufficient matrix.

However, A is not a column sufficient matrix.

We prove the following result on row sufficiency.

Theorem 3.3.5 Suppose A ∈ MGPSBD ∩C0 with 0 < ti < 1 for all i. Then A

is a row sufficient matrix.

Proof. Suppose zi(A
tz)i ≤ 0 for i = 1, . . . , n. Let I1 = {i : zi > 0} and

I2 = {i : zi < 0}. We need to consider three cases.

Case-I: I2 = ∅. Then ztAz = ztAtz =
∑

i

zi(A
tz)i ≤ 0. Since A ∈ C0,

[zi(A
tz)i] = 0, ∀ i.

Case-II: I1 = ∅. Then (−z)tAt(−z) = ztAtz =
∑

i

zi(A
tz)i ≤ 0. Since A ∈ C0,

[zi(A
tz)i] = 0, ∀ i.

Case-III: Suppose there exists a vector z such that zi(A
tz)i ≤ 0 for i =

1, 2, . . . , n and zk(A
tz)k < 0 for at least one k ∈ {1, 2, . . . , n}. Let I1 6= ∅ and
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I2 6= ∅. ztAz = ztAtz =
∑

i

[zi(A
tz)i] < 0. This implies −sizi + ti(A

tz)i ≥ 0, ∀ i

or −sizi + ti(A
tz)i ≤ 0, ∀ i.

Without loss of generality, assume −sizi + ti(A
tz)i ≥ 0, ∀ i. Then for all

i ∈ I1, −siz
2
i + tizi(A

tz)i ≥ 0. This implies [zi(A
tz)i] ≥ si

ti
z2

i > 0, ∀ i ∈ I1.

Therefore,
∑
i∈I1

[zi(A
tz)i] > 0. Since zi(A

tz)i ≤ 0 for i = 1, . . . , n, this leads to a

contradiction. Therefore, [zi(A
tz)i] = 0, ∀ i. So A is row sufficient.

Note that the assumption in the above theorem 0 < ti < 1, ∀ i, can not be

relaxed.

Example 3.3.3 Consider the matrix A =


1 0 0

2 1 0

10 0 0

 . Note that A is copos-

itive but it is not row sufficient.

For z = [−1 − 1 1]t, ztAz < 0. Clearly A is not PSBD. Now for z =

[−1 − 1 1]t,

(−S + TAt)z =


(1− 2s1)z1 + (1− s1)2z2 + (1− s1)10z3

(1− 2s2)z2

−s3z3

 =


7− 6s1

2s2 − 1

−s3

 .

It is easy to see that no s1, s2, s3 exists where 0 < si < 1,∀ i, i.e., no t1, t2, t3

exists where 0 < ti < 1, ∀ i for which the definition of GPSBD matrix is satisfied.

However, with the choice s1 = 1
2
, s2 = 1

2
, s3 = 0, A is a MGPSBD matrix.

The following result is a consequence of the characterization of row sufficient

matrices observed by Cottle et al. [8].

Lemma 3.3.1 Suppose A ∈ MGPSBD ∩C0 with 0 < ti < 1 for all i. For each

vector q ∈ Rn, if (z∗, u∗) is a Karush-Kuhn-Tucker pair of the quadratic program

QP(q, A) : [min zt(Az+q); z ≥ 0, Az+q ≥ 0], then z∗ solves LCP(q, A) : [z ≥ 0,

Az + q ≥ 0, zt(Az + q) = 0].
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Proof. From Theorem 3.3.5 and [8, Theorem 4, p.238], the result follows.

Remark 3.3.1 The Example 3.3.3 and Lemma 3.3.1 show that the statement

S
′′
(q, A) ⊆ S(q, A) in [11] holds for GPSBD matrices only with some additional

assumptions as stated in Theorem 3.3.5.

Theorem 3.3.6 Assume A is a nonnegative merely generalized positive subdef-

inite matrix with 0 < ti < 1, ∀ i. Then A ∈ C∗
0 .

Proof. By Theorem 3.3.5, A is row sufficient. Therefore, A ∈ Q0 [8, p.239].

Now by Theorem 1.4.4, for any nonnegative Q0-matrix Ai· 6= 0 ⇒ aii > 0. Let

α = {i | aii > 0}. Then Aᾱ· = 0. For any x ≥ 0 such that xtAx = 0, we have

xα = 0. Hence xtA = 0, so A ∈ C∗
0 .

From Theorem 3.3.5, it follows that LCP(q, A) where A is a copositive MG-

PSBD matrix with 0 < ti < 1 is processable by Lemke’s algorithm.

The following theorem extends the result of Evers [18] and the result obtained

in [49] for solving LCP(q, A) by Lemke’s algorithm when A satisfies certain con-

ditions stated in the following theorem. The proof follows along the similar lines

of the proof given in Theorem 2.3.7.

Theorem 3.3.7 Suppose A ∈ Rn×n can be written as M + N where M ∈

MGPSBD ∩ C+
0 , is nondegenerate with 0 < ti < 1, ∀ i and N ∈ C0. If the system

q + Mx−N ty ≥ 0, y ≥ 0 is feasible, then Lemke’s algorithm for LCP(q, A) with

covering vector d > 0 terminates with a solution.

Proof. Suppose there exist an x∗ ∈ Rn and a y∗ ∈ Rn
+ such that q + Mx∗ −

N ty∗ ≥ 0. First we shall prove that for any x ≥ 0, if Ax ≥ 0 and xtAx = 0, then

xtq ≥ 0. Note that for given x ≥ 0, xtAx = 0 ⇒ xt(M + N)x = 0 and since

M, N ∈ C0, this implies that xtMx = 0. As M is a nondegenerate MGPSBD

matrix, by Theorem 3.3.3 we get xtMx = 0 ⇒ xt(M+M t)x = 0 ⇒ (M+M t)x =
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0 ⇒ M tx = 0 ⇒ Mx = 0. Also since Ax ≥ 0, it follows that Nx ≥ 0 and hence

xtN ty∗ ≥ 0. Further since q + Mx∗ − N ty∗ ≥ 0 and x ≥ 0, it follows that

xt(q + Mx∗ −N ty∗) ≥ 0. This implies that xtq ≥ xtN ty∗ ≥ 0.

Now from Corollary 4.4.12 and Theorem 4.4.13 of [7, p.277], it follows that

Lemke’s algorithm for LCP(q, A) with covering vector d > 0 terminates with a

solution.

The following example demonstrates that the class MGPSBD ∩ C+
0 is non-

empty.

Example 3.3.4 Consider the copositive-plus matrix A =


1 0 0

2 1 0

8 0 1

 .

Take z = [−1 − 1 1]t. It is easy to check that A is not MPSBD. However, with

choice si = 1
2
∀ i, A is a MGPSBD matrix.



Chapter 4

Fully Copositive and Fully

Semimonotone Matrices

4.1 Introduction

In linear complementarity theory, the issue of uniqueness of solution has received

much attention. A result of Samelson, Thrall and Wesler [89] which was later

discovered independently by Ingleton [36] and Murty [66] states that LCP(q, A)

has a unique solution for all q ∈ Rn if and only if A has positive principal minors.

However, the literature on the uniqueness of solution is rather small. Cottle

and Stone [9] introduced a matrix class U for which LCP(q, A) has a unique

solution for all q ∈ int K(A) where K(A) is the union of all complementary cones

corresponding to A. Further, in the same paper Cottle and Stone [9] enlarged

the class U by demanding uniqueness of solution for LCP(q, A) only for those

q’s which lie in the interior of a full complementary cone. This is a geometric

characterization of the class Ef
0 of so-called fully semimonotone matrices.

Stone [97] studied various properties of Ef
0 and conjectured that Ef

0 ∩ Q0 ⊆

P0. In [60], the conjecture was resolved for Ef
0 -matrices of order 4 and for some

39
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subcases under various assumptions on A. In the same paper, Ef
0 was replaced

by its subclass (defined in the next section) called fully copositive matrices (Cf
0 );

the conjecture was shown to hold for Cf
0 -matrices with positive diagonal entries.

Murthy and Parthasarathy [61] proved that Cf
0 ∩Q0 ⊆ P0, that Cf

0 ∩Q0 matrices

of order 2 are PSD and that a bisymmetric Q0-matrix is PSD if and only if it is

fully copositive. It is known that PSD matrices are sufficient. They conjectured

that if A ∈ Cf
0 ∩Q0 then it is PSD.

In this chapter, we study Cf
0 and Ef

0 -matrices. In Section 4.2, we present the

required definitions, results and introduce the notations used in this chapter. In

Section 4.3, we present a different proof of the result that Cf
0 ∩Q0 matrices are

sufficient. We also consider Cf
0 -matrices with positive diagonal entries [60] and

show that they are column sufficient. We provide an example to show that Cf
0 ∩

Q0 6⊆ PSD and thus settle the conjecture made by Murthy and Parthasarathy

[61]. Finally, in Section 4.4 we consider Ef
0 -matrices introduced by Cottle and

Stone [9] and partially address Stone’s conjecture [97] that Ef
0 ∩ Q0 ⊆ P0 by

showing that Ef
0 ∩ Dc matrices are contained in P0 where Dc is Doverspike’s

class of matrices for which all the strongly degenerate complementary cones of

(I,−A) are contained in the boundary of pos (I,−A). See Section 1.4 for details.

This generalizes the result of Sridhar [94] to the effect that Ef
0 ∩R0 ⊆ P0.

4.2 Preliminaries

We require the following definitions, theorems and lemma in the next section.

Definition 4.2.1 We say that A is fully semimonotone (Ef
0 ) if every legitimate

PPT of A is in E0. By a legitimate principal pivot transform we mean the PPT

obtained from A by performing a principal pivot on its nonsingular principal

submatrices.
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Definition 4.2.2 We say that A is fully copositive (Cf
0 ) if every legitimate PPT

of A is C0.

Note that P ⊆ P0 ⊆ Ef
0 ⊆ E0 and Cf

0 ⊆ Ef
0 . If A belongs to any one of the

classes E0, C0, E, C,Ef
0 , Cf

0 or the class of sufficient matrices then so is (i) any

principal submatrix of A and (ii) any principal permutation of A. For details on

the class of fully copositive matrices, see [60], [61], [63] and [64].

In [63], Murthy et al. proved that Cf
0 ∩ Q0 matrices are sufficient. The

elements of Cf
0 ∩Q0 are completely Q0-matrices ([61]) and share many properties

of positive semidefinite (PSD) matrices. Symmetric Cf
0 ∩Q0 matrices are PSD.

The principal pivoting algorithm of Graves ([33]) for solving LCPs with PSD

matrices also processes matrices in the class Cf
0 ∩Q0.

Theorem 4.2.1 ([61, Theorem 4.5]) Suppose A ∈ Cf
0 ∩Q0. Then A ∈ P0.

Theorem 4.2.2 ([61, Theorem 3.3]) Let A ∈ Cf
0 . The following statements are

equivalent:

(a) A is a Q0-matrix.

(b) for every PPT M of A, mii = 0 ⇒ mij + mji = 0, ∀ i, j ∈ {1, 2, . . . , n}.

(c) A is a completely Q0-matrix.

Theorem 4.2.3 ([61, Theorem 4.9]) If A ∈ R2×2 ∩ Cf
0 ∩ Q0, then A is a PSD

matrix.

Lemma 4.2.1 ([63, Lemma 14]) Let A ∈ P0 and q ∈ Rn. If (w, z) and (y, x) are

two distinct solutions of LCP(q, A) then there exists an index i, 1 ≤ i ≤ n, such

that either zi = xi = 0 or wi = yi = 0.
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4.3 Fully Copositive Matrices and the Conjec-

ture of Murthy and Parthasarathy

It is known that positive semidefinite matrices are sufficient. Murthy and

Parthasarathy [63] proved that Cf
0 ∩ Q0 matrices are sufficient. Here, we show

that this result is a consequence of the following result proved by Cottle and Guu

[5].

Theorem 4.3.1 A ∈ Rn×n is sufficient if and only if every matrix obtained from

it by means of a PPT operation is sufficient of order 2.

As a consequence we have the following theorem.

Theorem 4.3.2 Let A ∈ Cf
0 ∩Q0. Then A is sufficient.

Proof. Note that all 2× 2 submatrices of A or its PPTs are Cf
0 ∩Q0 matrices

since A and all its PPTs are completely Q0-matrices. Now by Theorem 4.2.3, all

2×2 submatrices of A or its PPTs are positive semidefinite, and hence sufficient.

Therefore A or every matrix obtained by means of a PPT operation is sufficient

of order 2. Now by Theorem 4.3.1, A is sufficient.

Remark 4.3.1 In [61], it is shown that Graves’s principal pivoting algo-

rithm [33] for solving LCP(q, A) where A is positive semidefinite also processes

LCP(q, A) with A ∈ Cf
0 ∩Q0. By Theorem 4.3.2, it follows that Cottle’s principal

pivoting method also processes LCP(q, A) when A ∈ Cf
0 ∩ Q0. See [3] and other

references cited therein.

Murthy and Parthasarathy [60] proved the following theorem.

Theorem 4.3.3 Suppose A ∈ Rn×n ∩ Cf
0 . Assume that aii > 0 ∀ i ∈

{1, 2, . . . , n}. Then A ∈ P0.
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In contrast to the above we observe that with the assumption of positive

diagonal entries, a Cf
0 -matrix is a column sufficient matrix and that if a matrix

A with positive diagonal entries, and its transpose are in Cf
0 , then such a matrix

is in Q0 and hence it is a completely Q0-matrix.

Theorem 4.3.4 Let A ∈ Rn×n ∩ Cf
0 . Assume that aii > 0 ∀ i ∈ {1, 2, . . . , n}.

Then

(i) A is column sufficient.

(ii) In addition, if At ∈ Cf
0 , then A is a completely Q0-matrix.

Proof. We shall first show that A is column sufficient.

Let q ∈ Rn and consider the solution set S(q, A) of the LCP(q, A). From

Theorem 4.3.3, it follows that A ∈ P0. From Theorem 4.3 in [104], it follows

that A is sufficient if n = 1 or 2. Let us make the induction hypothesis that if

B ∈ R(n−1)×(n−1) ∩Cf
0 with the assumption bii > 0, ∀ i = 1, . . . , n− 1, then B is

sufficient of order (n − 1). Let A ∈ Cf
0 be of order n with aii > 0, ∀ i. To show

that A is column sufficient, it is enough to show that S(q, A) is convex ∀ q ∈ Rn

by Theorem 6 in [8]. Let (w, z), (y, x) be two solutions to LCP(q, A) and let

0 < λ < 1 be given. Now since A ∈ P0, from Lemma 4.2.1 it follows that there

is an index i, 1 ≤ i ≤ n, such that either xi = zi = 0 or wi = yi = 0.

Case (i): xi = zi = 0.

In this case xα 6= zα ∈ S(qα, Aαα) where α = {1, 2, . . . , i − 1, i + 1, . . . , n}.

From the induction hypothesis λ xα + (1 − λ)zα ∈ S(qα, Aαα). Hence it follows

that λ x + (1− λ)z ∈ S(q, A).

Case (ii): yi = wi = 0.

Without loss of generality, we assume that i = 1. We have a11 > 0 by the

hypothesis of the theorem. Let LCP(q̄, M) be the PPT of LCP(q, A) with respect

to α = {1}. Let (ȳ, x̄), (w̄, z̄) be the solutions to LCP(q̄, M) corresponding to the

solutions (y, x), (w, z) of LCP(q, A), respectively. It follows that x̄1 = 0 and
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z̄1 = 0. From here it follows that λ (ȳ, x̄) + (1 − λ)(w̄, z̄) ∈ S(q̄, M) and hence

λ (y, x) + (1− λ)(w, z) ∈ S(q, A). Thus it follows that S(q, A) is convex.

By the principle of induction, it follows that A is column sufficient for all n.

Now to conclude (ii) under the additional assumption that At is a Cf
0 -matrix.

we proceed as follows. As At ∈ Cf
0 and has positive diagonal entries, from the

part(i) it follows that At is also column sufficient. Thus A is sufficient and hence

A ∈ Q0. Since the above arguments apply to every principal submatrix of A, it

follows that A is a completely Q0-matrix.

The following example shows that in the above theorem for the stronger

conclusion in (ii), it is necessary to assume that At is also a Cf
0 -matrix.

Example 4.3.1

A =


1 −1 2

−1 1 0

0 0 1

 .

It is easy to verify that the above matrix is a Cf
0 -matrix but it is not a Q0-matrix.

For example, the vector

q =


−8

−5

2


is feasible but LCP(q, A) has no solution. It is also easy to verify that At is not

a Cf
0 -matrix.

Murthy and Parthasarathy [61] proved that if A ∈ R2×2 ∩Cf
0 ∩Q0, then A is

positive semidefinite and conjectured that this will be true for all n×n matrices.

However, we present below a counterexample to this conjecture.
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Example 4.3.2

A =


1 7

4
0

0 1 1

0 0 1


Note that principal submatrices of order 2 of A + At are positive definite but

det(A+At) < 0. Therefore A is not positive semidefinite. However, A ∈ Q0 since

A is strictly copositive.

We now show that A ∈ Cf
0 .

Note that there are four distinct PPTs of A, each of which happens to corre-

spond to four choices of the index set α. The first of these PPTs is the strictly

copositive matrix itself. It is the PPT of A corresponding to

α = ∅ or α = {3}.

The other PPTs are

M1 =


1 −7

4
0

0 1 1

0 0 1

 , M2 =


1 7

4
−7

4

0 1 −1

0 0 1

 , M3 =


1 −7

4
7
4

0 1 −1

0 0 1

 .

The index set α to which these PPTs correspond are, respectively,

(1) {1} and {1, 3};

(2) {2} and {2, 3};

(3) {1, 2} and {1, 2, 3}.

The copositivity of the matrices M1, M2 and M3 can be demonstrated by

determinantal criteria such as those given in [6] or by an analysis of the corre-

sponding quadratic forms which can be rewritten as follows:

(1) xtM1x = (x1 − 7
8
x2)

2 + 15
64

x2
2 + x2x3 + x2

3

(2) xtM2x = (x2 − 1
2
x3)

2 + x2
1 + 7

4
x1x2 − 7

4
x1x3 + 3

4
x2

3

(3) xtM3x = (x3 − 1
2
x2)

2 + x2
1 + 7

4
x1x3 − 7

4
x1x2 + 3

4
x2

2

Hence A ∈ Cf
0 ∩Q0. But A is not positive semidefinite.
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4.4 Fully semimonotone Matrices and Stone’s

Conjecture

Stone ([97]) conjectured that within the class of Q0-matrices, fully semimonotone

matrices are P0. Note that Ef
0 ∩ Dc ⊆ Q0. We now prove a special case of

Stone’s conjecture [97] by showing that Ef
0 ∩Dc ⊆ P0. This generalizes the result

Ef
0 ∩R0 ⊆ P0, due to Sridhar ([94]).

Theorem 4.4.1 Let A be an n × n real matrix. Let K(A) denote the union of

all the facets of the complementary cones of (I,−A). Consider q ∈ Rn\K(A)

where q is nondegenerate with respect to A. Let β ⊆ {1, 2, . . . , n} be such that

det(Aββ) 6= 0 and let M̄ be a PPT of A with respect to β. Then

degM̄(q̄) =
det(Aββ)

| det(Aββ)|
. degA(q).

Proof. Note that this is a generalization of Theorem 6.6.23 in [7]. This theorem

asserts the conditions of Theorem 6.6.23 without assuming that A is R0, for the

local degree when it is defined. The proof of this theorem is similar to that of

Theorem 6.6.23 in [7, p. 595].

Let ζ = pos (I,−A) and let C(A) denote the union of all strongly degenerate

cones of (I,−A). Further suppose that C(A) is contained in the boundary of ζ.

Then ζ, being convex, is a connected component of Rn\C(A). Hence by Theorem

6.1.17, [7, p.515] it follows that if q and q
′
are two nondegenerate vectors in ζ,

then

degA(q) = degA(q
′
) (4.4.1)

We denote this common degree of A, restricted to ζ, by degζ(A). Let M̄ be

any PPT of A with respect to a given index set β ⊆ {1, 2, . . . , n} such that

det(Aββ) 6= 0. Let pos(I,−M̄) = ζ̄ . We now have the following theorem.
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Theorem 4.4.2 Let A ∈ Rn×n ∩ Ef
0 ∩ Dc. Then degζ(A) = 1 where ζ =

pos (I,−A).

Proof. It is well-known that if A ∈ Rn×n ∩ Ef
0∩Dc then the strongly degenerate

complementary cones of (I,−A) are contained in the boundary of pos (I,−A).

See [14]. Further since A is a Q0-matrix, pos(I,−A) = {q |S(q, A) 6= ∅} = ζ,

is a convex set. Hence the interior of ζ is a connected component of Rn \ C(A).

Thus degζ(A) is well defined. Further if q∗ > 0 then LCP(q∗, A) has a unique

solution, namely w = q∗, z = 0. Hence degA(q∗) = 1. It follows from (4.4.1) that

degζ(A) = 1.

We now prove our main result.

Theorem 4.4.3 Let A ∈ Rn×n ∩ Ef
0 ∩Dc. Then A is a P0-matrix.

Proof. Suppose not. Then there is a set β ⊆ {1, . . . , n} such that det(Aββ) < 0.

Let M̄ be the PPT of A with respect to β. Note that M̄ is again a Ef
0 ∩Dc-matrix

and hence degζ̄(M̄) = 1 by Theorem 4.4.2 where pos(I,−M̄) = ζ̄ . Now however,

from Theorem 4.4.1, it follows that for any q ∈ ζ which is nondegenerate with

respect to A,

degM̄(q̄) =
det(Aββ)

| det(Aββ)|
· degA(q) = −1. degA(q) = −1.

Therefore degζ̄(M̄) = −1 which is a contradiction.

We conclude this chapter after stating a corollary whose proof is obvious since

Ef
0 ∩ L ⊆ Ef

0 ∩Dc.

Corollary 4.4.1 Suppose A ∈ Ef
0 ∩ L. Then A is a P0-matrix.



Chapter 5

Almost Type Classes of Matrices

with Q-property

5.1 Introduction

The notion of an almost type class was introduced by Väliaho [103], [102]. There

he defined and thoroughly investigated the class of almost copositive matrices

and show that such matrices are of crucial importance in deriving criteria for

copositivity. Olech et al. [75] introduced the class of almost N -matrices, namely

the class of matrices whose determinant is positive and all proper principal minors

are negative. Pye [82] studied the class of almost P0-matrices of order n whose

determinant is negative and all proper principal minors are nonnegative.

Let Y be the class of all square matrices of all orders that satisfy a partic-

ular property. Then a square matrix A is almost-Y if Y contains all principal

submatrices of A except for A itself. For example, for an almost N0 (N)-matrix,

det Aαα ≤ 0 (< 0) ∀ α ⊂ {1, 2, . . . , n} and det A > 0. We say that A is an almost

P0 (P )-matrix if det Aαα ≥ 0 (> 0) ∀ α ⊂ {1, 2, . . . , n} and det A < 0. The

almost type classes are referred as matrices of exact order 1 in Mohan et al. [58].

48
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In linear complementarity theory, much of the research is devoted to find-

ing constructive characterizations of matrices having the Q-property. The class

of matrices due to Saigal [88] for which LCP(0, A) has a unique solution and

LCP(q, A) has an odd number of solutions for some nondegenerate q with re-

spect to A is a large class satisfying the Q-property. The almost P0 and almost

C0 classes satisfying the Q-property are in R0.

In Section 5.2, some notations, definitions and some well-known results in

linear complementarity and matrix games are presented which will be used in

the sequel. In Section 5.3, we introduce almost N̄ -matrix (a new subclass of

almost N0-matrices which are obtained as a limit of a sequence of almost N -

matrices) and obtain a sufficient condition for the almost N̄ class with positive

value to possess the Q-property. We give a counterexample to show that an

almost N̄ ∩ Q matrix need not be an R0-matrix. In Section 5.4, we consider a

generalization of almost N̄ -matrix, namely, N̄ -matrix of exact order 2 and extend

the results proved for almost N̄ class to this class. In Section 5.5, we introduce

another new class called Ē(d) and show that Ē(d) ∩R0 ⊂ Q. Finally, in Section

5.6, we show that Pang’s conjecture is true if E0 is replaced by almost C0. We

also consider almost P0-matrices and give a game theoretic proof of necessary

and sufficient condition for this class to possess the Q-property.

5.2 Preliminaries

In this section, we define some well-known matrix classes and state results which

will be used in Chapter 5 and Chapter 6.

Definition 5.2.1 A matrix A ∈ Rn×n is said to be an N0 (N)-matrix of exact

order k, (1 ≤ k ≤ n) if every principal submatrix of order (n− k) is an N0 (N)-

matrix and every principal minor of order r, (n− k) < r ≤ n is positive.
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N -matrices of exact order 1 and 2 are studied in detail by Sridhar [96] and

Mohan, Parthasarathy and Sridhar [58].

Definition 5.2.2 A ∈ Rn×n is said to be an almost copositive if it is copositive

of order (n − 1) but not of order n. A copositive matrix A ∈ Rn×n is said to

be an almost strictly copositive (almost copositive plus) if it is strictly copositive

(copositive plus) of order (n− 1) but not of order n.

Definition 5.2.3 A ∈ Rn×n is said to be copositive of exact order 2 if it is

copositive of order (n− 2) but not of order n and (n− 1). Similarly, a copositive

matrix A ∈ Rn×n is said to be strictly copositive (copositive-plus) of exact order

2 if it is strictly copositive (copositive-plus) of order (n − 2) but not of order n

and (n− 1).

Remark 5.2.1 Almost copositive matrices are also called exact order matrices

of order (n− 1) in Väliaho [102]. However, in this dissertation we mean almost

copositive matrices as copositive matrices of exact order 1. For details see [102]

and [103].

We make use of the following result on the class R0 due to Murty [66] and Saigal

[88].

Theorem 5.2.1 If A ∈ R0 and LCP(q, A) has an odd number of solutions for

a nondegenerate q, then A ∈ Q.

The following results were proved by Väliaho [102] for symmetric almost coposi-

tive matrices. However, it is easy to see that these results hold for nonsymmetric

almost copositive matrices as well.

Theorem 5.2.2 Let A ∈ Rn×n be almost copositive. Then A is PSD of order

(n− 1) and A is PD of order (n− 2).
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Theorem 5.2.3 Suppose A is almost strictly copositive. Then A is PSD and

PD of order (n− 1).

Theorem 5.2.4 Suppose that A is almost copositive-plus (or copositive-plus of

exact order 1). Then it is strictly copositive of exact order 2.

The following result on semimonotone matrices is due to Pang [77].

Theorem 5.2.5 ([77]) Suppose A ∈ E0 ∩ Q. Then the system Ax = 0, x > 0

has no solution.

The inconsistency of the above system is equivalent to the fact that any nonzero

solution to LCP(0, A) must have some zero components. Further, every nontrivial

solution of LCP(0, A) has at least two nonzero coordinates.

The following results will be used in the sequel.

Theorem 5.2.6 ([60]) Suppose A ∈ Rn×n is an almost P0-matrix. Let B =

A−1. Then there exists a nonempty subset α of {1, 2, . . . , n} such that Bαα ≤ 0,

Bᾱᾱ ≤ 0, Bᾱα ≥ 0 and Bαᾱ ≥ 0.

Theorem 5.2.7 ([60, p.1271]) Suppose A ∈ Q (Q0). Assume that Ai· ≥ 0 for

some i ∈ {1, 2, . . . , n}. Then Aαα ∈ Q (Q0), where α = {1, 2, . . . , n}\{i}.

Theorem 5.2.8 ([88, p.45]) A sufficient condition for LCP(q, A) to have even

number of solutions for all q for which each solution is nondegenerate is that

there exists a vector z > 0 such that ztA < 0.

Theorem 5.2.9 ([63, p.195]) Let A ∈ Rn×n be an E0-matrix with n ≥ 3. Sup-

pose any one of the following conditions holds:

(i) Every principal submatrix of order (n− 1) is an R0-matrix.

(ii) Every principal submatrix of order less than or equal to (n − 2) is an

R0-matrix.

Then A is a Q-matrix if and only if A is an R0-matrix.
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5.3 Almost N̄-matrices

The class of N̄ -matrices was introduced by Mohan and Sridhar in [57]. The class

of almost N -matrices is studied in [58]. We introduce here a new matrix class

almost N̄ which is a subclass of the almost N0-matrices. See also [75, p.119].

Definition 5.3.1 A matrix A ∈ Rn×n is said to be an almost N̄-matrix if there

exists a sequence {A(k)} where A(k) = [a
(k)
ij ] are almost N -matrices such that a

(k)
ij

→ aij for all i, j ∈ {1, 2, . . . , n}.

Example 5.3.1 Let A =


−1 2 2

0 0 2

1 1 −1

 . Note that A is an almost N0-matrix.

It is easy to see that A ∈ almost N̄ since we can get A as a limit point of the

sequence of almost N -matrices

A(k) =


−1 2 2

1
k
− 1

k
2

1 1 −1

 .

Remark 5.3.1 It is well-known that for P0 (almost P0)-matrices, by perturbing

the diagonal entries alone one can get a sequence of P (almost P )-matrices that

converges to an element of P0 (almost P0). However, this is not true for N0

(almost N0)-matrices. One of the reasons is that an N (almost N)-matrix needs

to have all its entries nonzero. In the above example, we can see that even though

the matrix A ∈ almost N0, it cannot be obtained as a limit point of almost N-

matrices by perturbing the diagonal. However, we show in the above example that

A ∈ almost N̄ .

The following example shows that an almost N0-matrix need not be an almost

N̄ -matrix.
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Example 5.3.2 Let A =



0 −1 −1 0

0 0 0 1

0 1 0 0

1 1 0 −1


. Here A is an almost N0-matrix.

However, it is easy to verify that A is not an almost N̄ -matrix since we cannot

get A as a limit point of a sequence of almost N -matrices.

Now we consider almost N0-matrices and ask the following question. Suppose

A ∈ almost N0. Then is it true that (i) A ∈ Q implies A ∈ R0 (ii) A ∈ R0 implies

A ∈ Q?

In the sequel, we partially settle the above questions. The following example

demonstrates that A ∈ almost N0 ∩Q but A 6∈ R0.

Example 5.3.3 Consider the matrix A =



−1 1 1 1

1 0 0 0

1 0 0 −1

1 0 −1 0


. It is easy to

check that A ∈ almost N0. Now taking a PPT with respect to α = {1, 3} we get

M =



0 0 1 1

0 0 1 1

1 −1 1 0

−1 1 0 1


. Now A ∈ Q since M (a PPT of A) ∈ Q (see [63, p.

193]). However, (0, 1, 0, 0) solves LCP(0, A). Hence A 6∈ R0.

The following example due to Olech et al. [75, p.120] shows that an almost

N0-matrix, even with value positive, need not be a Q-matrix or an R0-matrix.

Example 5.3.4 Let A =



−2 −2 −2 2

−2 −1 −3 3

−2 −3 −1 3

2 3 3 0


q =



−1001

−500

−500

500


. It is easy to

check that A ∈ almost N0 but A 6∈ Q even though v(A) is positive. Furthermore,
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A 6∈ R0.

However, if A ∈ almost N̄ ∩R0 and v(A) > 0, then we show that A ∈ Q.

In the statement of some theorems that follow, we assume that n ≥ 4, to

make use of the sign pattern stated in the following lemma.

Lemma 5.3.1 Suppose A ∈ Rn×n is an almost N̄-matrix of order n ≥ 4. Then

there exists a nonempty subset α of {1, 2, . . . , n} such that A can be written in

the partitioned form as (if necessary, after a principal rearrangement of its rows

and columns)

A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ


where Aαα ≤ 0, Aᾱᾱ ≤ 0, Aᾱα ≥ 0 and Aαᾱ ≥ 0.

Proof. This follows from Remark 3.1 in [58, p. 623] and from the definition of

almost N̄ -matrices.

Remark 5.3.2 In the proof of the sign pattern in Lemma 5.3.1, we assume

n ≥ 4 since lemma requires that all the principal minors of order 3 or less are

negative.

Theorem 5.3.1 Suppose A ∈ E0 ∩ almost N̄ (n ≥ 4). Then there exists a

principal rearrangement

B =

 Bαα Bαᾱ

Bᾱα Bᾱᾱ


of A where Bαα, Bᾱᾱ are nonpositive strict upper triangular matrices and Bᾱα,

Bαᾱ are nonnegative matrices.

Proof. Note that A is an almost N̄ -matrix of order n ≥ 4. By Lemma 5.3.1

there exists a nonempty subset α of {1, 2, . . . , n} satisfying

A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ
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where Aαα ≤ 0, Aᾱᾱ ≤ 0, Aᾱα ≥ 0 and Aαᾱ ≥ 0.

A ∈ E0 implies Aαα ∈ E0. It is easy to see that there exist permutation

matrices L ∈ R|α|×|α| and M ∈ R|ᾱ|×|ᾱ| such that LAααLt and MAᾱᾱMt are

strict upper triangular matrices. Let

P =

 L 0

0 M


be a permutation matrix. Then

B = PAP t =

 LAααLt LAαᾱMt

MAᾱαLt MAᾱᾱMt


where LAααLt and MAᾱᾱMt are nonpositive strict upper triangular matrices

and LAαᾱMt, MAᾱαLt are nonnegative matrices. Hence the result.

The following example shows that almost N̄ ∩ E0 is nonempty.

Example 5.3.5 Let A =



0 −1 0 2

0 0 1 0

0 1 0 −1

1 0 0 0


. Here A is an E0 ∩ N0-matrix. It

is easy to see that A ∈ almost N̄ since we can get A as a limit point of the

sequence A(k) =



− 1
k

−1 2
k

2

− 1
k
− 1

k
1 2

k

4
k

1 − 1
k

−1

1 2
k
− 1

k
− 1

k


of almost N -matrices which converges

to A as k →∞.

Theorem 5.3.2 Suppose A ∈ Rn×n is an almost N̄ ∩ Q0 ∩ E0-matrix with

n ≥ 4. Then there exists a principal rearrangement B of A such that all the

leading principal submatrices of B are Q0-matrices.
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Proof. Note that A is an almost N̄ ∩ Q0 ∩ E0-matrix with n ≥ 4. Then by

Theorem 5.3.1 there exists a principal rearrangement

B =

 Bαα Bαᾱ

Bᾱα Bᾱᾱ


of A such that Bαα, Bᾱᾱ are nonpositive strict upper triangular matrices and

Bᾱα, Bαᾱ are nonnegative matrices. It is easy to conclude from the structure of

B that Bn· ≥ 0. Note that B ∈ Q0, since B is a principal rearrangement of A.

Therefore, by Theorem 5.2.7, Bββ ∈ Q0 where β = {1, 2, . . . , n}\{n}. Repeating

the same argument, it follows that all leading principal submatrices of B are Q0.

Theorem 5.3.3 Let A ∈ almost N̄ ∩ Rn×n, n ≥ 4 with v(A) > 0. Then A ∈ Q

if A ∈ R0.

Proof. Let A ∈ almost N̄ ∩ R0. Then by Lemma 5.3.1, there exists ∅ 6=

α ⊆ {1, 2, . . . , n}, A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ

 where Aαα ≤ 0, Aᾱᾱ ≤ 0, Aᾱα ≥ 0 and

Aαᾱ ≥ 0.

Now consider Aαα. Suppose Aαα contains a nonnegative column vector. Then

clearly LCP(0, A) has a nontrivial solution which contradicts our hypothesis that

A ∈ R0. Hence every column of Aαα should have at least one negative entry.

Hence there exists an x ∈ R|α|, x > 0, such that xtAαα < 0. It now follows from

Theorem 5.2.8 that for any qα > 0, where qα is nondegenerate with respect to

Aαα, LCP(qα, Aαα) has r solutions (r ≥ 2 and even). Similarly, LCP(qᾱ, Aᾱᾱ)

has s solutions (s ≥ 2 and even) for any qᾱ > 0, where qᾱ is nondegenerate with

respect to Aᾱᾱ. Now suppose (wi
α, zi

α) is a solution for LCP(qα, Aαα). Note that

w =

 wi
α

qᾱ

 and z =

 zi
α

0

 solves LCP(q, A). Similarly, associated with every

solution (wi
ᾱ, zi

ᾱ) we can construct a solution of LCP(q, A). Thus LCP(q, A) has
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(r+s−1) solutions accounting for only once the solution w = q, z = 0. Thus there

are an odd number (r + s − 1 ≥ 3) of solutions to LCP(q, A) with all solutions

nondegenerate. We shall show that (r + s − 1) ≤ 3 and hence there are only 3

solutions to LCP(q, A). Since q is nondegenerate with respect to A, this is a finite

set [66, p.85]. Suppose (w̄, z̄) is a nondegenerate solution to LCP(q, A). Then

(w̄, z̄) ∈ S(q, A). Now since A is a limit point of almost N -matrices {A(k)}, we

note that the complementary basis corresponding (w̄, z̄) will also yield a solution

to LCP(q, A(k)) for all k sufficiently large. By Theorem 3.2 [58, p. 625], which

asserts that there are exactly 3 solutions for LCP(q, A(k)) for any nondegenerate

q(> 0) with respect to A(k), we obtain (r + s− 1) ≤ |S(q, A)| ≤ |S(q, A(k))| = 3.

But (r+s−1) ≥ 3. Hence LCP(q, A) has exactly 3 solutions for any nondegenerate

q(> 0) with respect to A. Since A ∈ R0 and LCP(q, A) has an odd number of

solutions, it follows from Theorem 5.2.1 that A ∈ Q.

Corollary 5.3.1 Suppose A ∈ almost N̄ ∩R0 with v(A) > 0. Then |deg(A)| =

odd.

Proof. This follows from the fact that LCP(q, A) has 3 solutions for any

nondegenerate q(> 0) with respect to A and A ∈ R0.

However, the converse of Theorem 5.3.3 is not true.

Consider the matrix A =



−1 1 1 1

1 0 0 0

1 0 0 −1

1 0 −1 0


in example 5.3.3 which is also

a Q-matrix. Note that A ∈ almost N̄ since we can get A as a limit point

of the sequence of almost N -matrices A(k) =



−1 1 1 1

1 − 1
k2 − 1

k
− 1

k

1 − 1
k
− 1

k
−1

1 − 1
k

−1 − 1
k


. However,

A 6∈ R0.
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The converse of the Theorem 5.3.3 is not true for n < 4 is illustrated in the

following example.

Example 5.3.6 Consider the matrix A =


−1 2 1

2 −1 1

1 1 0

 . It is easy to see

that A ∈ almost N̄ since we can get A as a limit point of the sequence

A(k) =


−1 2 1

2 −1 1

1 1 − 1
k

 of almost N -matrices which converges to A as k →∞.

We show that A ∈ Q, by showing that its A−1 ∈ Q. Now look at

A−1 =


−1

6
1
6

1
2

1
6
−1

6
1
2

1
2

1
2
−1

2

 . Suppose that q1 ≥ q2 in LCP(q, A) where q =


q1

q2

q3

 .

It is easy to see that A23 ∈ Q and A13 ∈ Q. Since A23 ∈ Q there exists a

solution


 w2

w3

 ,

 z2

z3


 to LCP(qα, Aαα) where α = {2, 3}. Now define

w =


w1

w2

w3

 and z =


0

z2

z3

 where w1 = w2 + q1 − q2 + 1
3
z2. It is easy to check

that (w, z) is a solution to LCP(q, A).

If q1 < q2, then we can get a solution to LCP(q, A) using a solution to

LCP(qα, Aαα) where α = {1, 3}. Now define w =


w1

w2

w3

 and z =


z1

0

z3

 where

w2 = w1 + q2− q1 + 1
3
z1. It is easy to check that (w, z) is a solution to LCP(q, A).

Since q is arbitrary, it follows that A ∈ Q. However, A 6∈ R0.
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5.4 A generalization of Almost N̄-matrix

Mohan, Parthasarathy and Sridhar [58] introduced N -matrix of exact order 2

as a generalization of the almost N -matrix studied by Olech, Parthasarathy

and Ravindran [75]. In this section we introduce a new class of matrices as a

generalization of the almost N̄ -matrix introduced in the earlier section. This

class originates from the limit of a sequence of N -matrices of exact order 2.

Definition 5.4.1 A matrix A ∈ Rn×n is said to be an N̄-matrix of exact order

2 if there exists a sequence {A(k)} where A(k) = [a
(k)
ij ] are N -matrices of exact

order 2 such that a
(k)
ij → aij for all i, j ∈ {1, 2, . . . , n}.

Example 5.4.1 Let A =



0 −90 −80 −70 0

−90 −2 −2 −2 2

−70 −2 −1 −3 3

−50 −2 −3 −0.8 3

0 2 3 3 0


. Here A is an N0-

matrix of exact order 2.

Also A is an N̄ -matrix of exact order 2 since we can get A as a limit point of

the sequence of N -matrices of exact order 2

A(k) =



− 1
k2 −90 −80 −70 1

k

−90 −2 −2 −2 2

−70 −2 −1 −3 3

−50 −2 −3 −0.8 3

1
k

2 3 3 − 1
k2


.

The following example shows that the class of N̄ -matrices of exact order 2 is a

proper subclass of N0-matrices of exact order 2.
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Example 5.4.2 Let A =



0 0 0 1 2

0 0 −1 −1 2

0 −1 0 −1 1

1 −1 −1 0 0

2 1 0 0 0


. It is easy to check that A is

an N0-matrix of exact order 2. Note that all 3 × 3 principal submatrices of A

are the limit of a sequence of 3× 3, N matrices. However, A is not an N̄ -matrix

of exact order 2, since we cannot get A as a limit of a sequence of N -matrices

of exact order 2 such that the principal submatrices Aαα for α = {1, 2, 4} and

α = {1, 2, 5} belongs to the class N.

Remark 5.4.1 It is easy to see that Lemma 5.3.1 holds for N̄-matrices of exact

order 2 for n ≥ 5.

Theorem 5.4.1 For n ≥ 5, let A ∈ N̄ ∩ Rn×n be of exact order 2 with v(A) >

0. Suppose there exists at most one nonpositive principal submatrix of order

(n − 1) and the values of the proper principal submatrices of order ≥ 2 of A

which contains at least one positive entry are positive. Then A ∈ Q if A ∈ R0.

Proof. There are two cases.

Case-I: Suppose there is a nonpositive principal submatrix of order (n− 1). We

may assume, without loss of generality that Aαα ≤ 0 where α = {2, . . . , n}. Since

A ∈ N̄∩Rn×n, n ≥ 5 of exact order 2 with v(A) > 0 and A ∈ R0, the sign pattern

of A can be written as

A =



− ⊕ ⊕ . . . ⊕

+

+ Aαα

...

+
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where the sign symbol ⊕ denotes a nonnegative real number. Choose a q > 0

which is nondegenerate with respect to A and the partitioned form of q is q =

[q1, qα]t where |α| = (n − 1). By repeating a similar argument as in Theorem

5.3.3, we can show that LCP(qα, Aαα) has r solutions (r ≥ 2 and even). Similarly,

LCP(q1, a11) has 2 solutions. Thus there are an odd number (r + 1 ≥ 3) of

solutions to LCP(q, A) with all solutions nondegenerate.

Now we show that for this q (q > 0), LCP(q, A) has no other solution. Sup-

pose (ŵ, ẑ) is another solution distinct from the odd number of solutions listed

above.

Let β = {i : ẑi > 0}. Since (ŵ, ẑ) is different from the solutions listed above,

it follows that the index 1 ∈ β and β∩{2, . . . , n} 6= φ. Note that all Aββ contains

at least one positive entry. So, by assumption v(Aββ) > 0.

Now ŵ − Aẑ = q, leads to Aββ ẑ < 0 which contradicts our assumption

v(Aββ) > 0.

Thus LCP(q, A) has an odd number of solutions. Since A ∈ R0 and LCP(q, A)

has an odd number of solutions, it follows from Theorem 5.2.1 that A ∈ Q.

Case-II: Suppose there is no nonpositive principal submatrix of order (n− 1).

Then by Remark 5.4.1, there exists a ∅ 6= α ⊆ {1, 2, . . . , n} so that A can be

written in the partitioned form as

A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ


where Aαα ≤ 0, Aᾱᾱ ≤ 0, Aᾱα ≥ 0 and Aαᾱ ≥ 0.

Now consider Aαα. We proceed as in Theorem 5.3.3. Thus there are an odd

number (≥ 3) of solutions to LCP(q, A) with all solutions nondegenerate. As

before (Case-I) we can show that there are no other solutions. Since A ∈ R0 and

LCP(q, A) has an odd number of solutions, it follows from Theorem 5.2.1 that

A ∈ Q.
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Remark 5.4.2 Now since A is a limit of a sequence {A(k)} of N-matrices of

exact order 2, we note that the complementary basis corresponding to a solution

will also yield a solution to LCP(q, A(k)) for all k sufficiently large. Hence there

are exactly 5 solutions [58, p. 634] for LCP(q, A(k)) for any nondegenerate q(> 0)

with respect to A(k). Therefore, 3 ≤ |S(q, A)| ≤ |S(q, A(k))| = 5.

5.5 Ē(d)-matrices

Garcia [27] introduced the class of matrices E(d) which is dependent only on d

as a generalization of E0. For a given d > 0, E(d) is the class of matrices for

which LCP(d,A) has a unique solution w = d, z = 0. Now we ask the following

question.

Is E(d) closed for a given d > 0?

The answer is no and it is illustrated in the following example.

Example 5.5.1 Consider the following matrix

A =

 −2 3

−3 4

 and A(k) =

 −2 3

−3− 1
k

4

 .

It is easy to see that for d =

 2

3

 , LCP(d,A(k)) has a unique solution w =

d, z = 0 but LCP(d,A) has 2 solutions. Thus we have a sequence {A(k)} of

matrices where A(k) ∈ E(d) and as k →∞, a
(k)
ij → aij for all i, j ∈ {1, 2, . . . , n}.

However, A 6∈ E(d). Thus the class E(d) is not closed.

We now introduce a new matrix class.

Definition 5.5.1 For a given positive vector d ∈ Rn, a matrix A ∈ Rn×n is

said to be an Ē(d)-matrix if there exists a sequence {A(k)} where A(k) = [a
(k)
ij ]

are in E(d) such that a
(k)
ij → aij for all i, j ∈ {1, 2, . . . , n}.
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Note that the matrix A in the above example belongs to Ē(d). Although E(d)

is not closed, so that LCP(d,A) may have more than one solution, we have the

following theorem.

Theorem 5.5.1 Suppose A ∈ Ē(d) ∩ R0 for a given positive vector d ∈ Rn.

Then A ∈ Q.

Proof. Since A ∈ Ē(d) there exists a sequence {A(k)} of matrices such that

A(k) ∈ E(d) and A(k) → A. Note that d is nondegenerate with respect to A(k)

for all k and d > 0. Suppose d is degenerate with respect to A. Since the set

{q | q is degenerate with respect to A} has dimension ≤ (n − 1), it follows that

we can find an ε > 0 and d∗ ∈ Nε(d) where Nε(d) is the ε-neighborhood of d

such that d∗ is nondegenerate with respect to A and also A(k) for all k. Now let

S(d∗, A) = {(w, z) | (w, z) is a solution to LCP(d∗, A)}. Note that S(d∗, A) 6= ∅,

since (d∗, 0) ∈ S(d∗, A) and also S(d∗, A) is finite since d∗ is nondegenerate with

respect to A [66, p.85].

Let ε > 0 be given. Suppose (w∗, z∗) ∈ S(d∗, A). Thus for k large enough

S(d∗, A(k)) ∩ Nε(w
∗, z∗) 6= ∅ where Nε(w

∗, z∗) is the ε-neighborhood of (w∗, z∗).

To see this, let B be the complementary basis submatrix of (I,−A) induced

by (w∗, z∗) and let B(k) be the corresponding complementary basis submatrix

of (I,−A(k)). Note that B(k) is arbitrarily close to B for large k and hence

(B(k))−1d∗ can be made arbitrarily close to B−1d∗ and in particular (B(k))−1d∗ >

0. Therefore the corresponding solution (wk, zk) of LCP(d∗, A(k)) ∈ Nε(w
∗, z∗).

Thus every solution of LCP(d∗, A) corresponds to a distinct solution of

LCP(d∗, A(k)) for k sufficiently large. Hence ∅ 6= |S(d∗, A)| ≤ |S(d∗, A(k))| =

1, since LCP(d∗, A(k)) has a unique solution by our choice of d∗. Therefore

LCP(d∗, A) has a unique nondegenerate solution. Using Theorem 5.2.1, it follows

that A ∈ Q.

Corollary 5.5.1 Suppose A ∈ Ē(d) ∩R0. Then deg(A) = 1.
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Proof. This follows from the uniqueness of the solution of LCP(q, A) for a

nondegenerate q = d∗ > 0 and det A∅∅ = 1.

For implementation of Lemke’s algorithm (see Section 1.4.2 for details), one

needs a positive vector d. The above proof uses the fact that if A(k) → A with

A(k) ∈ E(d) one can find a d∗ by perturbing d slightly, to be used as covering

vector for processing LCP(q, A) by Lemke’s algorithm. In the above example

one may take d∗ =

 2

2.98

 . It is easy to check that LCP(d∗, A) has a unique

solution w = d∗, z = 0.

5.6 Almost C0 and almost P0-matrices

Väliaho [103], [102] introduced symmetric almost C0-matrices. The following

example shows that an almost C0-matrix need not be an E0-matrix.

Example 5.6.1 Consider the following matrix A =


1 −2 0

0 1 −2

−2 0 1

 . It is easy

to see that A ∈ almost C0 but A 6∈ E0.

Pang [77] proved the following theorem.

Theorem 5.6.1 Suppose A ∈ E0. If A ∈ R0 then A ∈ Q.

Pang conjectured that the converse must be true, i.e., E0∩Q ⊂ R0. However,

this was disproved by Jeter and Pye [37]. Murthy et al. [62] showed that the

conjecture is not true even if E0-matrix is replaced by C0-matrix. Here we show

that if the class of E0-matrices is replaced by the class of almost C0-matrices

then Pang’s conjecture is true. We present a game theoretic proof.

Theorem 5.6.2 Suppose A ∈ almost C0 with n ≥ 3. If A ∈ Q then A ∈ R0.
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Proof. A ∈ Q implies v(A) > 0. Suppose v(Aαα) < 0 for α ⊂ {1, 2, . . . , n}.

Then there exists a mixed strategy y such that yt
αAαα < 0. Define x ∈ Rn

+ such

that yα = xα and xᾱ = 0. Hence xtAx = yt
αAααyα < 0 which contradicts the fact

that submatrices of order (n − 1) are copositive. Therefore, v(Aαα) ≥ 0 ∀ α ⊆

{1, 2, . . . , n}. It follows from Remark 1.4.1 that A ∈ E0. From Theorem 5.2.2, it

follows that A is PD of order (n− 2). Hence every principal submatrix of order

less than or equal to (n− 2) is an R0-matrix. Since A ∈ Q, by Theorem 5.2.9 it

follows that A ∈ R0.

To prove the converse we need the additional assumption v(A) > 0.

Theorem 5.6.3 Suppose A ∈ almost C0 with v(A) > 0. If A ∈ R0 then A ∈ Q.

Proof. Using a similar argument we can see that A ∈ E0. Since E0∩R0-matrix

is a Q0-matrix with v(A) > 0, it follows from the Remark 1.4.1 that A ∈ Q.

Theorem 5.6.4 Suppose a copositive matrix A is almost copositive-plus with

n ≥ 3. Then A ∈ Q if and only if A ∈ R0.

Proof. By Theorem 5.2.4, A is strictly copositive of exact order 2. So, by

definition every principal submatrix of order less than or equal to (n − 2) is a

strictly copositive matrix. It follows that every principal submatrix of order less

than or equal to (n− 2) is an R0-matrix. Since every C0-matrix is an E0-matrix,

by Theorem 5.2.9, it follows that A ∈ Q if and only if A ∈ R0.

The following result was proved by W. C. Pye [82]. We present a game

theoretic proof.

Theorem 5.6.5 Let A be a nonsingular almost P0∩Rn×n matrix with v(A) > 0.

Then the following statements hold.

(i) If A ∈ R0, then A ∈ Q.

(ii) If A ∈ Q, then A ∈ R.
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Proof. Note that A ∈ E0 since v(Aαα) ≥ 0 ∀ α ⊆ {1, 2, . . . , n}. Assume

A ∈ R0. Then A ∈ Q0 with v(A) > 0. Hence A ∈ Q. Conversely assume that

A ∈ Q. We show that A ∈ R. Suppose A 6∈ R. Let z be a nontrivial solution of

LCP(te, A) where t ≥ 0. There are two cases.

Case(a): t > 0. Let β = {i | zi = 0}. Let α = {1, 2, . . . , n} \ β. Note that

(wα, zα), zα 6= 0 is a solution of LCP(teα, Aαα). Hence Aααzα < 0, zα > 0.

Therefore, zt
αAt

αα < 0, zα > 0. But this implies v(At
αα) < 0. This contradicts

the fact that At
αα is a P0-matrix. Therefore, LCP(te, A) where t > 0 has no

nontrivial solution.

Case(b): t = 0. By Theorem 5 [82, p.441], it follows that if LCP(0, A) has a

nontrivial solution then A 6∈ Q. Hence A ∈ R.



Chapter 6

Principal Pivot Transforms of

Some More Classes of Matrices

6.1 Introduction

Introduced by Tucker [101], the concept of principal pivot transforms (PPTs)

plays an important role in the study of linear complementarity theory. In prin-

cipal pivoting algorithm for linear complementarity problem, PPTs are used to

exchange the role of basic and nonbasic variables. The PPT, under the name

sweep operator also plays an important role in statistics mainly because of con-

ceptual and computational advantages it enjoys in solving least squares regression

problems. The PPT also appears under the term gyration and is mentioned in a

survey of Schur complements by Cottle [2]. See also [100].

Tucker [101] proved that if the diagonal entries for every PPT of A are posi-

tive, then A is a P -matrix. However if the diagonal entries for every PPT of A

is nonnegative, then A need not be a P0-matrix. Cottle and Stone [9] introduced

the notion of a fully semimonotone matrix (Ef
0 ) by requiring that every PPT

of such a matrix be a semimonotone matrix. We recall that A is called fully

67
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copositive (Cf
0 ) if every legitimate PPT of A is C0.

Motivated by the class of almost C0 matrices introduced by Väliaho, we

introduce two new classes of matrices based on principal pivot transforms in this

chapter. One of the new classes has the property that its PPTs are either C0 or

almost C0 with at least one PPT almost C0, and the other class has the property

that its PPTs are either E0 or almost C0 with at least one PPT almost C0.

In Section 6.2, some notations, definitions and a few well-known results in

linear complementarity and matrix games are presented that will be used in the

next section. In Section 6.3, we present some results on the class for which PPTs

are either in C0 (E0) or almost C0 with at least one PPT almost C0. The almost

classes studied in this chapter have algorithmic significance. If A belongs to the

intersection of this class and Q0, then LCP(q, A) can be processed by Lemke’s

algorithm. For a description of Lemke’s algorithm see Section 1.4.2. For many

results we present proofs which use some terminology from matrix games. Finally

in Section 6.4, we consider the problem of characterizing a class of matrices whose

member possess at least one PPT that is a Z-matrix.

6.2 Preliminaries

The following definitions and notations are needed in Section 6.4.

Definition 6.2.1 We say that a matrix A is called an N(P )-matrix of exact

order k, 1 ≤ k ≤ n, if every principal submatrix of order (n− k) is an N -matrix

(P -matrix) and if every principal minor of order r, n − k < r ≤ n is positive

(negative).

Definition 6.2.2 A is called a matrix of exact order k if it is a P -matrix or a

N -matrix of exact order k.
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Note that an N(P )-matrix is an N(P )-matrix of exact order 0, and an almost

N(P )-matrix is an N(P )-matrix of exact order 1.

Definition 6.2.3 An N -matrix of exact order 1 is of first category if both A

and A−1 have at least one positive entry, otherwise it is N -matrix of exact order

1 of second category.

Definition 6.2.4 A P -matrix of exact order 1 is of first category if A−1 has a

positive entry otherwise it is said to be of second category.

Given a matrix A ∈ Rn×n, let Bi ∈ R(n−1)×(n−1), i = 1, 2, . . . , n denote the

principal submatrices of A, obtained by deleting the ith row and ith column of

A. Note that if A is of exact order k, then Bi, 1 ≤ i ≤ n, are matrices of exact

order (k − 1).

Definition 6.2.5 We say that a matrix A(A 6< 0) of exact order 2 is of the

first category if there exists at most one index k (1 ≤ k ≤ n) such that the

(n− 1)× (n− 1) exact order 1 principal submatrix Bk is nonpositive and every

(n− 1)× (n− 1) principal submatrix Bi which is 6< 0, 1 ≤ i ≤ n is exact order 1

of the first category. We say that it is of the second category, if all Bi are of the

second category.

For further details, see [58].

We make use of the following result in the sequel.

Lemma 6.2.1 Let M ∈ Rn×n be a PPT of a given matrix A ∈ Rn×n. Then

v(A) > 0 if and only if v(M) > 0.

Proof. It is enough to show that v(A) > 0 ⇒ v(M) > 0. Let v(A) > 0. Then

there exists a z > 0 such that Az > 0.

Let

 wα

wᾱ

 =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ


 zα

zᾱ

 .
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Premultiplying by

 −Aαα 0

−Aᾱα Iᾱᾱ


−1

=

 −A−1
αα 0

−AᾱαA−1
αα Iᾱᾱ

 and rewriting we get

 zα

wᾱ

 =

 Mαα Mαᾱ

Mᾱα Mᾱᾱ


 wα

zᾱ


where Mαα = (Aαα)−1, Mαᾱ=−(Aαα)−1Aαᾱ, Mᾱα = Aᾱα(Aαα)−1, Mᾱᾱ = Aᾱᾱ −

Aᾱα(Aαα)−1Aαᾱ. Since

 zα

wᾱ

 > 0 and

 wα

zᾱ

 > 0, it follows that v(M) > 0.

If A is a Q-matrix then v(A) > 0 [63]. Since any PPT M of a Q-matrix is

again a Q-matrix, it follows that for any Q-matrix v(M) > 0 in all of its PPTs

M . It is easy to prove that for any matrix A with v(A) > 0, A ∈ Q if and only

if A ∈ Q0.

The following results are needed in sequel.

Theorem 6.2.1 ([60]) Suppose A ∈ Rn×n (n ≥ 3) is a nonsingular N0-

matrix. Then there exists a nonempty subset α of {1, 2, . . . , n} such that

A =

 Aαα Aαᾱ

Aᾱα Aᾱᾱ

 , Aαα ≤ 0, Aᾱᾱ ≤ 0, Aᾱα ≥ 0 and Aαᾱ ≥ 0.

Theorem 6.2.2 ([60]) Suppose A ∈ Rn×n (n ≥ 3) is a nonsingular E0 ∩ N0

matrix. Then there exists a principal rearrangement

B =

 Bαα Bαᾱ

Bᾱα Bᾱᾱ


of A such that α 6= ∅, α 6= {1, 2, . . . , n}, Bᾱα ≥ 0, Bαᾱ ≥ 0 and Bαα, Bᾱᾱ are

strict upper triangular nonpositive matrices.

It is easy to observe the following.

Theorem 6.2.3 Assume A ∈ Rn×n (n ≥ 3) is an E0 ∩ N0 ∩ Q0 matrix. Then

there exists a principal rearrangement B of A such that all the leading principal

submatrices of B are Q0-matrices.



Principal Pivot Transforms of Some More Matrix Classes 71

Proof. By Theorem 6.2.2, there exists a principal rearrangement

B =

 Bαα Bαᾱ

Bᾱα Bᾱᾱ


of A such that α 6= ∅, α 6= {1, 2, . . . , n}, Bᾱα ≥ 0, Bαᾱ ≥ 0 and Bαα, Bᾱᾱ are strict

upper triangular nonpositive matrices. It is easy to conclude from the structure

of B that Bn· ≥ 0. Note that B ∈ Q0, since B is a principal rearrangement of A.

Therefore by Theorem 5.2.7, Bββ ∈ Q0 where β = {1, 2, . . . , n}\{n}. Similarly,

we can show that the other leading principal submatrices of B are Q0.

6.3 Some PPT Based Matrix Classes and their

Subclasses

Stone [97] conjectured that a fully semimonotone Q0-matrix has nonnegative

principal minors. Various subclasses of Ef
0 , Cf

0 were studied earlier in [9], [60],

[61], [48]. In this section, we consider some more classes, defined using principal

pivot transforms. One of these classes has the property that its PPTs are either

C0 or almost C0 with at least one PPT almost C0. The other class considered in

this chapter has the property that its PPTs are either E0 or almost C0 with at

least one PPT almost C0. Note that an almost C0-matrix is not necessarily E0.

We show that the intersection of this class and Q0 is in Ef
0 by showing that this

class is in P0.

Definition 6.3.1 A is said to be an almost fully copositive (almost Cf
0 ) matrix

if its PPTs are either C0 or almost C0 and there exists at least one PPT M of A

for some α ⊂ {1, 2, . . . , n} that is almost C0.
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Example 6.3.1 The following matrix A is almost fully copositive.

A =


1 −2 0

0 1 0

−1 0 1


Theorem 6.3.1 If A ∈ Rn×n∩ almost Cf

0 ∩Q0 (n ≥ 3), then A is a P0-matrix.

Proof. Suppose M is a PPT of A so that M ∈ almost C0. By Theorem 5.2.2,

all the principal submatrices of order (n−1) of M are PSD. Now to show M ∈ P0

it is enough to show that det M ≥ 0. Suppose det M < 0. Then M is an almost

P0-matrix. Therefore M−1 ∈ N0 follows from Theorem 1.4.6. Now, by Theorem

6.2.1 there exists a nonempty subset α ⊆ {1, 2, . . . , n} satisfying

M−1
αα ≤ 0, M−1

ᾱᾱ ≤ 0, M−1
αᾱ ≥ 0 and M−1

ᾱα ≥ 0. (6.3.1)

But M−1 is a PPT of M and by definition of almost Cf
0 , M−1 ∈ almost C0 or

M−1 ∈ C0. We consider the following cases:

Case (i) : M−1 ∈ almost C0. Note that by Theorem 5.2.2, the principal sub-

matrices of order (n − 2) are PD. Therefore the diagonal entries of M−1 are

positive. But M−1 ∈ N0 and hence contradicts (6.3.1). Therefore det(M) ≥ 0

and M ∈ P0. Since M is a PPT of A it follows that of A ∈ P0.

Case (ii). M−1 ∈ C0∩Q0. Since M−1 ∈ N0 we must have M−1
αα = 0, M−1

ᾱᾱ = 0.

Therefore

M−1 =

 0 M−1
αᾱ

M−1
ᾱα 0


But this contradicts that M−1 is a Q0-matrix. See Theorem 1.4.4. Therefore

M ∈ P0.

Now we consider the matrix class whose members have PPTs that are either

E0 or almost C0 with at least one PPT that is almost C0. The following example

shows that this class is nonempty.
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Example 6.3.2 Consider the following matrix

A =


1 −1 0

−1 1 0

0 −2 1

 .

It is easy to verify that A ∈ Q0 and all its PPTs are either E0 or almost C0.

Theorem 6.3.2 Suppose A ∈ Rn×n ∩Q0 (n ≥ 3) and the PPTs of A are either

E0 or almost C0 with at least one PPT almost C0. Then A ∈ P0.

Proof. Suppose M be a PPT of A so that M ∈ almost C0. By Theorem 5.2.2,

all the submatrices of order (n− 1) of M are PSD. Now to complete the proof,

we need to show that det M ≥ 0. Suppose det M < 0. Then M is an almost

P0-matrix. Therefore M−1 ∈ N0 and by Theorem 6.2.1 there exists a nonempty

subset α ⊆ {1, 2, . . . , n} satisfying

M−1
αα ≤ 0, M−1

ᾱᾱ ≤ 0, M−1
αᾱ ≥ 0 and M−1

ᾱα ≥ 0. (6.3.2)

But M−1 is a PPT of M and by definition M−1 ∈ almost C0 or M−1 ∈ E0. We

consider the following cases:

Case (i) : M−1 ∈ almost C0. Then the diagonal entries of M−1 are positive.

But M−1 ∈ N0 and contradicts (6.3.2). Therefore det(M) ≥ 0 and M ∈ P0.

Since M is a PPT of A it follows that of A ∈ P0.

Case (ii) : M−1 ∈ E0 ∩Q0. Since M−1 ∈ E0 ∩N0 then by Theorem 6.2.2 there

exists a principal rearrangement

B =

 Bαα Bαᾱ

Bᾱα Bᾱᾱ


of M−1 such that Bαα, Bᾱᾱ are nonpositive strict upper triangular matrices and

Bαᾱ, Bᾱα are nonnegative matrices.
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Take α = {1, 2, . . . , p} and γ = {1, 2, . . . , (p + 1)}. Note that by Theorem

6.2.3, Bγγ ∈ Q0. Consider

B =


Bαα Bα(p+1) Bαγ̄

B(p+1)α B(p+1)(p+1) B(p+1)γ̄

Bγ̄α Bγ̄(p+1) Bγ̄γ̄


Note that

Bᾱᾱ =

 B(p+1)(p+1) B(p+1)γ̄

Bγ̄(p+1) Bγ̄γ̄


is a strict upper triangular matrix nonpositive matrix. Therefore B(p+1)(p+1) = 0

and Bγ̄(p+1) = 0.

Now look at the principal submatrix Bγγ of order (p+1). We shall show that

Bα(p+1) = 0. Suppose bi0(p+1) > 0 for some i0 ∈ α. Since bi0(p+1) > 0 there exists

a qγ such that qi0 < 0 and qi > 0 for all i ∈ γ, i 6= i0, and the set of feasible

solution F (qγ, Bγγ) of LCP(qγ, Bγγ) is nonempty. Let (wγ, zγ) be a solution of

LCP(qγ, Bγγ). Then zp+1 > 0. Now B(p+1)α ≥ 0 implies wp+1 > 0 contradicts

Bγγ ∈ Q0. Therefore Bα(p+1) = 0. Hence B is singular. But this leads to a

contradiction. Therefore A ∈ P0.

Remark 6.3.1 Note that Theorem 6.3.1 also follows from Theorem 6.3.2. How-

ever, in the proof of Theorem 6.3.1, we use different arguments that use the

structure of a C0-matrix.

Theorem 6.3.3 Let A ∈ Ef
0 have exactly one zero principal minor. Assume

that A ∈ Q0\Q. Then there exists a PPT M of A such that the following holds:

(i) rank(M) = n− 1, (ii) Mz = 0 and πtM = 0 for some vectors z, π > 0.

Proof. Assume det(Aαα) = 0 for some α ⊆ {1, 2, . . . , n}. Let M be a PPT

of A with respect to a nonsingular principal submatrix, say Aββ of A such that

det(M) = 0. This follows from Theorem 1.4.6. Hence rank(M) = n − 1. Since
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M ∈ Ef
0 , LCP(d,M) has a unique solution for d > 0. Note that M ∈ Q0\Q since

M is a PPT of A. Thus there exists a q ∈ Rn such that LCP(q, M) does not have

a solution. Therefore Lemke’s algorithm when applied LCP(q, M) terminates in

a secondary ray. Since no proper principal minor of M is zero and M ∈ Ef
0 , it

follows that, we get a positive vector z such that Mz = 0. Now we show that

there is a positive vector π > 0 such that πtM = 0. Without loss of generality,

assume that z and π are probability vectors. Note that M t ∈ E0. Therefore

v(M t) ≥ 0 by Theorem 1.4.3. Let 0 6= π ≥ 0 be the optimal strategy for M t.

Therefore M tπ ≥ 0. Now since ztM t = 0, therefore v(M t) = 0 which implies

M tπ = 0. Since det(M t) = 0 and the principal minors are nonzero, it follows

that there is a positive vector π > 0 such that πtM = 0.

The class of Q0-matrices identified in the above theorem is contained in the

class of Q0-matrices of order n and rank (n − 1) with positive vectors z and π

satisfying Mz = 0 and πtM = 0 mentioned in [15]. Note that the class is not

contained in any well-known classes of Q0-matrices such as those studied in Gar-

cia [27]. Lemke’s algorithm is not applicable for this class. However, Algorithm-I

of Eagambaram and Mohan[15] can be applied to solve LCP(q, A) with A in the

class identified above. Finally, we conclude the chapter by mentioning an open

problem associated with PPTs in the next section.

6.4 Characterization of Matrices for which at

least one PPT is a Z-matrix: An Open

Problem

The principal pivot transform of a Z-matrix need not be a Z-matrix. However

Väliaho [103] observed that the inverse of a symmetric almost copositive matrix

is a Z-matrix. Mohan et al. [58] considered a class of matrices of exact order 2
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whose inverses belong to class Z and observed the following result.

Theorem 6.4.1 Let A ∈ Rn×n(n ≥ 5) be a matrix of exact order 2. A−1 ∈ Z if

and only if v(A) < 0 and A is of second category with each Bi 6< 0.

For the class stated in the theorem the following result on algorithmic significance

was also proved by Mohan et al. [58].

Theorem 6.4.2 Let A ∈ Rn×n(n ≥ 5) be a matrix of exact order 2 of the second

category with Bi 6< 0 for 1 ≤ i ≤ n. Then a solution to LCP(q, A), if one exists,

can be computed by obtaining a solution to LCP(−A−1q, A−1), in at most n steps.

However, the complete characterization of the class of matrices for which at

least one PPT is a Z-matrix remains an interesting open problem.



Chapter 7

Linear Complementarity and

Two Classes of Structured

Stochastic Games

7.1 Introduction

Stochastic games were first formulated by Shapley [92] in 1953. The games

considered by Shapley are now called two-person zero-sum discounted games with

finite state and action space. In this fundamental paper, Shapley [92] proved

the existence of a value and optimal stationary strategies for discounted case

which gave a method for iterative computation of the value of a stochastic game

with discounted payoff. Gillette [28] studied the undiscounted case or limiting

average payoff case. Since then there have been a number of papers on stochastic

game dealing with the problem of finding sufficient conditions for the existence

of their value and their optimal or ε-optimal strategies. As a generalization of

Shapley’s stochastic games, nonzero-sum stochastic games have been considered

by many researchers. See [25], [98], [93] and the references therein. The theory of

77
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stochastic games has been applied to study many practical problems like search

problems, military applications, advertising problems, the traveling inspector

model, and various economic applications. For details see [24].

Another major area of research in this field is to identify those classes of zero-

sum stochastic games for which there is a possibility of obtaining a finite step

algorithm to compute a solution. Many of the results in this area are for zero-sum

games with special structures. We will refer to these zero-sum stochastic games

with special structure collectively as the class of structured stochastic games. The

class of structured stochastic games contains single controller games, switching

controller games, games with state independent transitions and separable rewards

and additive reward and additive transitions (ARAT) games. For the above class

of structured stochastic games, it is known that optimal stationary strategies

exist and the game satisfies the orderfield property (i.e., the solution to the game

lie in the same ordered field as the data of the game (e.g., rational)). Many of

the researchers have attempted either to give a finite step method of computing

a value and optimal strategies or at least to give a constructive proof for their

existence.

Filar and Schultz [23] observed that an undiscounted zero-sum stochastic

game possesses optimal stationary strategies if and only if a global minimum

with optimum value zero can be found to an appropriate linearly constrained

nonlinear program. Perhaps, a more interesting problem is the reduction of these

nonlinear programs to linear complementarity problems or linear programs.

We look at the problem of formulating zero-sum structured stochastic game

as linear complementarity problem. The linear complementarity problem arises

in some classes of stochastic game problems, for example, see [51], [52], [53] and

[90].

In Section 7.2, we present the necessary definitions and theorems to be used

in subsequent sections. In Section 7.3 and Section 7.4, we formulate the problem
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of computing the value vector and optimal stationary strategies for zero-sum

undiscounted switching controller and zero-sum ARAT stochastic games as linear

complementary problems. We conclude this chapter by indicating some areas of

further research in Section 7.5.

7.2 Preliminaries

A stochastic game with a finite state space and action space is defined below.

A two-player finite state/action space zero-sum stochastic game is defined by

the following objects.

1. A state space S = {1, 2, . . . , N}.

2. For each s ∈ S, finite action sets A(s) = {1, 2, . . . ,ms} for Player I and

B(s) = {1, 2, . . . , ns} for Player II.

3. A reward law R(s) for s ∈ S where R(s) = [r(s, i, j)] is an ms × ns matrix

whose (i, j)th entry denotes the payoff from Player II to Player I corre-

sponding to the choices of action i ∈ A(s), j ∈ B(s) by Player I and

Player II respectively.

4. A transition law q = (qij(s, s
′) : (s, s′) ∈ S×S, i ∈ A(s), j ∈ B(s)), where

qij(s, s
′) denotes the probability of a transition from state s to state s′ given

that Player I and Player II choose actions i ∈ A(s), j ∈ B(s) respectively.

The game is played in stages t = 0, 1, 2, . . . At some stage t, the players find

themselves in a state s ∈ S and independently choose actions i ∈ A(s), j ∈ B(s).

Player II pays Player I an amount r(s, i, j) and at stage (t + 1), the new state is

s
′
with probability qij(s, s

′
). Play continues at this new state.
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The players guide the game via strategies and in general, strategies can de-

pend on complete histories of the game until the current stage. We are however

concerned with the simpler class of stationary strategies which depend only on

the current state s and not on stages. So for Player I, a stationary strategy

f ∈ FS = {fi(s) | s ∈ S, i ∈ A(s), fi(s) ≥ 0,
∑

i∈A(s)

fi(s) = 1}

indicates that the action i ∈ A(s) should be chosen by Player I with probability

fi(s) when the game is in state s.

Similarly for Player II, a stationary strategy

g ∈ GS = {gj(s) | s ∈ S, j ∈ B(s), gj(s) ≥ 0,
∑

j∈B(s)

gj(s) = 1}

indicates that the action j ∈ B(s) should be chosen with probability gj(s) when

the game is in state s.

Here FS and GS will denote the set of all stationary strategies for Player

I and Player II, respectively. Let f(s) and g(s) be the corresponding ms- and

ns-dimensional vectors, respectively.

Fixed stationary strategies f and g induce a Markov chain on S with transi-

tion matrix P (f, g) whose (s, s
′
)th entry is given by

Pss′ (f, g) =
∑

i∈A(s)

∑
j∈B(s)

qij(s, s
′
)fi(s)gj(s)

and the expected current reward vector r(f, g) has entries defined by

rs(f, g) =
∑

i∈A(s)

∑
j∈B(s)

r(s, i, j)fi(s)gj(s) = f t(s)R(s)g(s)

With fixed general strategies f, g and an initial state s, the stream of expected

payoff to Player I at stage t, denoted by vt
s(f, g), t = 0, 1, 2, . . . is well defined

and the resulting discounted and undiscounted payoffs are

φβ
s (f, g) =

∞∑
t=0

βtvt
s(f, g) for a β ∈ (0, 1)
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and

φs(f, g) = lim
T↑∞

inf
1

T + 1

T∑
t=0

vt
s(f, g).

A pair of strategies (f ∗, g∗) is optimal for Player I and Player II in the undis-

counted game if for all s ∈ S

φs(f, g∗) ≤ φs(f
∗, g∗) = v∗s ≤ φs(f

∗, g),

for any strategies f and g of Player I and Player II. The number v∗s is called the

value of the game starting in state s and v∗ = (v∗1, v
∗
2, . . . , v

∗
N) is called the value

vector. The definition for discounted case is similar.

We require the following definition and the results established by Filar and

Schultz [23, Theorem 2.1, 2.2].

Definition 7.2.1 A pair of optimal stationary strategies (f ∗, g∗) for an undis-

counted stochastic game is asymptotically stable if there exist a β0 ∈ (0, 1) and

stationary strategy pairs (fβ, gβ) optimal in the β discounted stochastic game

for each β ∈ (β0, 1) such that

(i) lim
β↑1

fβ = f ∗, lim
β↑1

gβ = g∗

(ii) for all β ∈ (β0, 1), r(fβ, gβ) = r(f ∗, g∗), P (f, gβ) = P (f, g∗) for f ∈ FS

and P (fβ, g) = P (f ∗, g) for g ∈ GS where P (f, g) is the transition matrix and

r(f, g) is the current expected reward vector which are defined earlier.

Theorem 7.2.1 ([23, Theorem 2.1]) An undiscounted stochastic game possesses

value vector v∗ and optimal stationary strategies f ∗ for Player I and g∗ for Player

II if and only if there exists a solution (v∗, t∗, u∗, f∗, g∗) with t∗, u∗ ∈ R|S| to the

following nonlinear system SYS1a.

SYS1a: Find (v, t, u, f, g) where v, t, u ∈ R|S|, f ∈ FS and g ∈ GS such that

vs −
∑
s′∈S

vs′

ns∑
j=1

qij(s, s
′)gj(s) ≥ 0, i ∈ A(s), s ∈ S (7.2.1)
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vs + ts −
∑
s′∈S

ts′
ns∑

j=1

qij(s, s
′)gj(s)− [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S (7.2.2)

−vs +
∑
s′∈S

vs′

ms∑
i=1

qij(s, s
′)fi(s) ≥ 0, j ∈ B(s), s ∈ S (7.2.3)

−vs − us +
∑
s′∈S

us′

ms∑
i=1

qij(s, s
′)fi(s) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S (7.2.4)

Theorem 7.2.2 ([23, Theorem 2.2]) If a stochastic game possesses asymptoti-

cally stable stationary optimal strategies then feasibility of the nonlinear system

(SYS1b) is both necessary and sufficient for existence of a stationary optimal

solution.

SYS1b: Find (v, t, f, g) where v, t ∈ R|S|, f ∈ FS and g ∈ GS such that (7.2.1),

(7.2.2), (7.2.3) are satisfied and

−vs − ts +
∑
s′∈S

ts′
ms∑
i=1

qij(s, s
′)fi(s) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S (7.2.5)

7.3 Switching Controller Stochastic Games

The class of switching controller stochastic games was introduced by Filar [22].

In a switching controller stochastic game the law of motion is controlled by Player

I alone when the game is played in a certain subset of states and Player II alone

when the game is played in other states. In other words, a switching controller

game is a stochastic game in which the set of states is partitioned into sets S1

and S2 where the transition function is given by

qi,j(s, s
′
) =

 qi(s, s
′
), for s′ ∈ S, s ∈ S1, i ∈ A(s) and ∀j ∈ B(s)

qj(s, s
′
), for s′ ∈ S, s ∈ S2, j ∈ B(s) and ∀i ∈ A(s)

(7.3.1)

While the above transition structure is a natural generalization of the single

controller game from the algorithmic point of view, this class of games appear

to be more difficult.
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The game structure was used to develop a finite algorithm in Vrieze et al.

[106] but that algorithm requires solving a large number of single controller sto-

chastic games. In [51] and [52], Mohan, Neogy and Parthasarathy formulated

a single controller game as solving a single linear complementarity problem and

proved that Lemke’s algorithm can solve such an LCP. Mohan and Raghavan

[56] proposed an algorithm for discounted switching controller games which is

based on two linear programs. Schultz [90] formulated the discounted switching

controller game as a linear complementarity problem.

For an undiscounted switching controller game, Filar and Schultz [23] formu-

lated the problem of computing a value vector and an optimal pair of stationary

strategies as a bilinear programming problem. In this section, we consider the

problem of formulating zero-sum undiscounted switching controller games as a

linear complementarity problem.

Theorem 7.3.1 For an undiscounted, zero-sum, switching controller game, the

value vector and an optimal pair of stationary strategies can be derived from

any solution to the following system of linear and nonlinear inequalities (SYS2).

Conversely, for such a game, a solution of the SYS2 can be derived from any

pair of asymptotically stable stationary strategies.

SYS2: Find (v, t, θ, η, f, g) where v, t, θ, η,∈ R|S|, f ∈ FS and g ∈ GS such that

vs −
∑
s′∈S

vs′qi(s, s
′) ≥ 0, i ∈ A(s), s ∈ S1 (7.3.2)

−vs + θs ≥ 0, s ∈ S1 (7.3.3)

vs + ts −
∑
s′∈S

ts′qi(s, s
′)− [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (7.3.4)

−vs − ts + ηs + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S1 (7.3.5)

−vs +
∑
s′∈S

vs′qj(s, s
′) ≥ 0, j ∈ B(s), s ∈ S2 (7.3.6)

vs − θs ≥ 0, s ∈ S2 (7.3.7)
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vs + ts − ηs − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S2 (7.3.8)

−vs − ts +
∑
s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2 (7.3.9)

f ∈ FS, g ∈ GS (7.3.10)

fi(s)[vs −
∑
s′∈S

vs′qi(s, s
′)] = 0, i ∈ A(s), s ∈ S1 (7.3.11)

fi(s)[−vs + θs] = 0, s ∈ S1, i ∈ A(s) (7.3.12)

fi(s)[vs + ts −
∑
s′∈S

ts′qi(s, s
′)− [R(s)g(s)]i] = 0, i ∈ A(s), s ∈ S1 (7.3.13)

gj(s)[−vs − ts + ηs + [f(s)R(s)]j] = 0, j ∈ B(s), s ∈ S1 (7.3.14)

gj(s)[vs − θs] = 0, s ∈ S2, j ∈ B(s) (7.3.15)

gj(s)[−vs +
∑
s′∈S

vs′qj(s, s
′)] = 0, j ∈ B(s), s ∈ S2 (7.3.16)

fi(s)[vs + ts − ηs − [R(s)g(s)]i] = 0, i ∈ A(s), s ∈ S2 (7.3.17)

gj(s)[−vs − ts +
∑
s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j] = 0, j ∈ B(s), s ∈ S2 (7.3.18)

Proof. We prove this theorem by showing that a feasible solution to SYS2

can be used to derive a solution of SYS1b and, by Theorem 7.2.2, this solution

solves the switching controller game. Conversely, we show that any solution of

SYS1b can be used to construct a solution of SYS2. Note that the existence of

asymptotic stable stationary strategies for a switching controller game has been

proved by Filar [22]. Let z∗ = (v∗, t∗, θ∗, η∗, f∗, g∗) be a feasible solution of the

SYS2. From (7.3.11) through (7.3.18) we get

θ∗s =


∑
s′∈S

ms∑
i=1

v∗s′qi(s, s
′)f ∗

i (s), s ∈ S1

∑
s′∈S

ns∑
j=1

v∗s′qj(s, s
′)g∗j (s), s ∈ S2

(7.3.19)

η∗s =


∑
s′∈S

ms∑
i=1

t∗s′qi(s, s
′)f ∗

i (s), s ∈ S1

∑
s′∈S

ns∑
j=1

t∗s′qj(s, s
′)g∗j (s), s ∈ S2

(7.3.20)
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Now substituting the value of θ∗s and η∗s in the system of inequalities (7.3.2)

through (7.3.9) we get the system of inequalities in SYS1b. Note that the in-

equalities (7.3.2) and (7.3.7) yield after substitution

v∗s −
∑
s′∈S

v∗s′qi(s, s
′)[

ns∑
j=1

g∗j (s)] ≥ 0, i ∈ A(s), s ∈ S1

i.e.,

v∗s −
∑
s′∈S

v∗s′
ns∑

j=1

qi(s, s
′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S1

since
ns∑

j=1

g∗j (s) = 1. Substituting θ∗s in (7.3.7) and combining with the above using

the definition of a switching controller game we get

v∗s −
∑
s′∈S

v∗s′
ns∑

j=1

qi,j(s, s
′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S

which is same as (7.2.1). Inequalities (7.2.2), (7.2.3) and (7.2.5) can be obtained

similarly.

Conversely, from any solution (v∗, t∗, f∗, g∗) of SYS1b we define θ∗s , η
∗
s as in

(7.3.19), (7.3.20). Rewriting SYS1b using the switching controller assumption

(7.3.1) and using (7.3.19), (7.3.20), we get (7.3.2) through (7.3.9). Finally, using

(7.3.19), (7.3.20) and (7.3.2) through (7.3.9) we get (7.3.11) through (7.3.18). So,

(v∗, t∗, f∗, g∗) is a solution of SYS1b and the simplified SYS1b system is exactly

the same system of linear and nonlinear inequalities in SYS2 after substitution

of θ∗s , η
∗
s . Therefore, (v∗, t∗, θ∗s , η

∗
s , f

∗, g∗) is a solution of SYS2.

Corollary 7.3.1 For an undiscounted, zero-sum, switching controller game,

the values vs for s ∈ S and optimal stationary strategies f(s) and g(s) for s ∈ S

can be computed by solving an LCP.

Proof. It is enough to show that SYS2 in Theorem 7.3.1 can be written as an

LCP.
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First we consider the inequalities (7.3.2) through (7.3.4) and (7.3.8) and let

w1
1(s, i) = vs −

∑
s′∈S

vs′qi(s, s
′) ≥ 0, i ∈ A(s), s ∈ S1 (7.3.21)

w1
2(s, i) = −vs + θs ≥ 0, i ∈ A(s), s ∈ S1 (7.3.22)

w1
3(s, i) = vs + ts −

∑
s′∈S

ts′qi(s, s
′)− [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (7.3.23)

Also let w1
c (s, i) = w1

1(s, i) + w1
2(s, i) + w1

3(s, i). We impose the complementarity

condition as

fi(s)w
1
c (s, i) = 0, i ∈ A(s), s ∈ S1

which will imply fi(s)w
1
1(s, i) = 0, fi(s)w

1
2(s, i) = 0 and fi(s)w

1
3(s, i) = 0, for

s ∈ S1. Therefore, we get (7.3.11) through (7.3.13). Let

w1
d(s, i) = vs + ts − ηs − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S2

and from fi(s)w
1
d(s, i) = 0, i ∈ A(s), s ∈ S2 we get (7.3.17). Similarly, consider

inequalities (7.3.6), (7.3.7) and (7.3.9) and let

w2
1(s, j) = −vs +

∑
s′∈S

vs′qj(s, s
′) ≥ 0, j ∈ B(s), s ∈ S2,

w2
2(s, j) = vs − θs ≥ 0, j ∈ B(s), s ∈ S2,

w2
3(s, j) = −vs − ts +

∑
s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2.

Write w2
c (s, j) = w2

1(s, j)+w2
2(s, j)+w2

3(s, j). Now the complementarity condition

fi(s)w
2
c (s, j) = 0, j ∈ B(s), s ∈ S2

implies gj(s)w
2
1(s, j) = 0, gj(s)w

2
2(s, j) = 0, gj(s)w

2
3(s, j) = 0. Thus we get

(7.3.15), (7.3.16) and (7.3.18) of SYS2. Now consider (7.3.5) and write

w2
d(s, j) = −vs − ts + ηs + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S1

and from complementarity condition gj(s)w
2
d(s, j) = 0, s ∈ S1, we get (7.3.14).
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Now we express the variables vs, θs, ηs and ts as difference of nonnegative

variables as a standard method of representing free variables, i.e.,

vs = v̄s − v̂s, θs = θ̄s − θ̂s, ηs = η̄s − η̂s, ts = t̄s − t̂s.

Now we write down the constraints pertaining to probability vector f(s) and

g(s) as follows.

w̄1(s) = −1 +
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S

ŵ1(s) = 1−
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S

w̄2(s) = −1 +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S

ŵ2(s) = 1−
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S

The complementarity conditions involving the inequalities related to the proba-

bility vector constraints are v̄sw̄1(s) = 0, v̂sŵ1(s) = 0, θ̄sw̄2(s) = 0, θ̂sŵ2(s) = 0

for s ∈ S.

We introduce a few dummy variables and inequalities in order to arrive at

the standard LCP formulation.

w̄3(s) = −k̄3(s) +
∑

i∈A(s)

ξ1
1(s, i) ≥ 0, s ∈ S1,

w̄3(s) = −k̄3(s) +
∑

j∈B(s)

ξ2
1(s, j) ≥ 0, s ∈ S2,

ŵ3(s) = −k̂3(s) +
∑

i∈A(s)

ξ1
2(s, i) ≥ 0, s ∈ S1,

ŵ3(s) = −k̂3(s) +
∑

j∈B(s)

ξ2
2(s, j) ≥ 0, s ∈ S2,

w̄4(s) = −k̄4(s) +
∑

i∈A(s)

ξ1
3(s, i) ≥ 0, s ∈ S1,

w̄4(s) = −k̄4(s) +
∑

j∈B(s)

ξ2
3(s, j) ≥ 0, s ∈ S2,
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ŵ4(s) = −2 +
∑

i∈A(s)

fi(s) +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S

In the above inequalities k̄3(s), k̂3(s), k̄4(s) and k̂4(s) for s ∈ S are appropriate

constants.

The complementarity conditions pertaining to the above inequalities are given

below.

t̄sw̄3(s) = 0, t̂sŵ3(s) = 0,

η̄sw̄4(s) = 0, η̂sŵ4(s) = 0, where s ∈ S

The complementarity relationships of the dummy variables which appears in the

above inequalities are

ξ1
1(s, i)w

1
1(s, i) = 0, i ∈ A(s), s ∈ S1, ξ1

2(s, i)w
1
2(s, i) = 0, i ∈ A(s), s ∈ S1

ξ1
3(s, i)w

1
3(s, i) = 0, i ∈ A(s), s ∈ S1, ξ2

1(s, j)w
2
1(s, j) = 0, j ∈ B(s), s ∈ S2,

ξ2
2(s, j)w

2
2(s, j) = 0, j ∈ B(s), s ∈ S2, ξ2

3(s, j)w
2
3(s, j) = 0, j ∈ B(s), s ∈ S2

Finally the LCP formulation is as follows:

LCP1:

w1
c (s, i) = vs + θs + ts −

∑
s′∈S

vs′qi(s, s
′)−

∑
s′∈S

ts′qi(s, s
′)− [R(s)g(s)]i ≥ 0,

i ∈ A(s), s ∈ S1

(7.3.24)

w1
d(s, i) = vs + ts − ηs − [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S2 (7.3.25)

w2
c (s, j) = −vs − ts − θs +

∑
s′∈S

vs′qj(s, s
′) +

∑
s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ≥ 0,

j ∈ B(s), s ∈ S2

(7.3.26)

w2
d(s, j) = −vs − ts + ηs + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S1 (7.3.27)

w1
1(s, i) = vs −

∑
s′∈S

vs′qi(s, s
′) ≥ 0, i ∈ A(s), s ∈ S1 (7.3.28)
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w1
2(s, i) = −vs + θs ≥ 0, i ∈ A(s), s ∈ S1 (7.3.29)

w1
3(s, i) = vs + ts −

∑
s′∈S

ts′qi(s, s
′)− [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S1 (7.3.30)

w2
1(s, j) = −vs +

∑
s′∈S

vs′qj(s, s
′) ≥ 0, j ∈ B(s), s ∈ S2 (7.3.31)

w2
2(s, j) = vs − θs ≥ 0, j ∈ B(s), s ∈ S2 (7.3.32)

w2
3(s, j) = −vs − ts +

∑
s′∈S

ts′qj(s, s
′) + [f(s)R(s)]j ≥ 0, j ∈ B(s), s ∈ S2

(7.3.33)

w̄1(s) = −1 +
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S (7.3.34)

ŵ1(s) = 1−
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S (7.3.35)

w̄2(s) = −1 +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S (7.3.36)

ŵ2(s) = 1−
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S (7.3.37)

w̄3(s) = −k̄3(s) +
∑

i∈A(s)

ξ1
1(s, i) ≥ 0, s ∈ S1 (7.3.38)

w̄3(s) = −k̄3(s) +
∑

j∈B(s)

ξ2
1(s, j) ≥ 0, s ∈ S2 (7.3.39)

ŵ3(s) = −k̂3(s) +
∑

i∈A(s)

ξ1
2(s, i) ≥ 0, s ∈ S1 (7.3.40)

ŵ3(s) = −k̂3(s) +
∑

j∈B(s)

ξ2
2(s, j) ≥ 0, s ∈ S2 (7.3.41)

w̄4(s) = −k̄4(s) +
∑

i∈A(s)

ξ1
3(s, i) ≥ 0, s ∈ S1 (7.3.42)

w̄4(s) = −k̄4(s) +
∑

j∈B(s)

ξ2
3(s, j) ≥ 0, s ∈ S2 (7.3.43)

ŵ4(s) = −2 +
∑

i∈A(s)

fi(s) +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S (7.3.44)

fi(s)w
1
c (s, i) = 0, i ∈ A(s), s ∈ S1 (7.3.45)

fi(s)w
1
d(s, i) = 0, i ∈ A(s), s ∈ S2 (7.3.46)
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gj(s)w
2
c (s, j) = 0, j ∈ B(s), s ∈ S2 (7.3.47)

gj(s)w
2
d(s, j) = 0, j ∈ B(s), s ∈ S1 (7.3.48)

ξ1
1(s, i)w

1
1(s, i) = 0, i ∈ A(s), s ∈ S1 (7.3.49)

ξ1
2(s, i)w

1
2(s, i) = 0, i ∈ A(s), s ∈ S1 (7.3.50)

ξ1
3(s, i)w

1
3(s, i) = 0, i ∈ A(s), s ∈ S1 (7.3.51)

ξ2
1(s, j)w

2
1(s, j) = 0, j ∈ B(s), s ∈ S2 (7.3.52)

ξ2
2(s, j)w

2
2(s, j) = 0, j ∈ B(s), s ∈ S2 (7.3.53)

ξ2
3(s, j)w

2
3(s, j) = 0, j ∈ B(s), s ∈ S2 (7.3.54)

v̄sw̄1(s) = 0, s ∈ S (7.3.55)

v̂sŵ1(s) = 0, s ∈ S (7.3.56)

θ̄sw̄2(s) = 0, s ∈ S (7.3.57)

θ̂sŵ2(s) = 0, s ∈ S (7.3.58)

t̄sw̄3(s) = 0, s ∈ S (7.3.59)

t̂sŵ3(s) = 0, s ∈ S (7.3.60)

η̄sw̄4(s) = 0, s ∈ S (7.3.61)

η̂sŵ4(s) = 0, s ∈ S (7.3.62)

v̄s, v̂s, t̄s, t̂s, θ̄s, θ̂s, η̄s, η̂s, w̄i(s), ŵi(s) ≥ 0, s ∈ S, i = 1, 2, 3, 4,

ξ1
1(s, i), ξ

1
2(s, i), ξ

1
3(s, i) ≥ 0, i ∈ A(s), s ∈ S1,

ξ2
1(s, j), ξ

2
2(s, j), ξ

2
3(s, j) ≥ 0, j ∈ B(s), s ∈ S2,

f(s), g(s) ≥ 0, s ∈ S (7.3.63)

where as usual f(s) = (fi(s))i∈A(s) and g(s) = (gi(s))j∈B(s).

It is easy to check that a solution of LCP1 also solves SYS2.
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Example 7.3.1 Consider the undiscounted switching controller stochastic game

with 2 states and m1 = m2 = n1 = n2 = 2. The rewards and transition proba-

bilities are as follows:

R(1) =

 1 4

2 3

 , R(2) =

 1 4

5 1

 ,

 q1(1, 1)

q2(1, 1)

 =

 0.5

0

 ,

 q1(1, 2)

q2(1, 2)

 =

 0.5

1

 ,

 q1(2, 1)

q2(2, 1)

 =

 0.5

1

 ,

 q1(2, 2)

q2(2, 2)

 =

 0.5

0

 .

The values v1 and v2 for the undiscounted, zero-sum, switching controller

game, and optimal stationary strategies f(1), f(2) and g(1), g(2) can be com-

puted by solving the following LCP(q, M).

Here the decision variable is z = [z1 z2 z3]
t where

z1 = [f1(1), f2(1), f1(2), f2(2), g1(1), g2(1), g1(2), g2(2)]
t,

z2 = [ξ1
1(1, 1), ξ1

1(1, 2), ξ1
2(1, 1), ξ1

2(1, 2), ξ1
3(1, 1), ξ1

3(1, 2), ξ2
1(2, 1), ξ2

1(2, 2), ξ2
2(2, 1),

ξ2
2(2, 2), ξ2

3(2, 1), ξ2
3(2, 2)]t, z3 = [v̄1, v̂1, v̄2, v̂2, θ̄1, θ̂1, θ̄2, θ̂2, t̄1, t̂1, t̄2, t̂2, η̄1, η̂1, η̄2, η̂2]

t

and vs = v̄s − v̂s, θs = θ̄s − θ̂s, ηs = η̄s − η̂s, ts = t̄s − t̂s, for s = 1, 2.

The matrix M and q are shown in the following partitioned form.

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

, q =


q1

q2

q3


where
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M11 =



0 0 0 0 −1 −4 0 0

0 0 0 0 −2 −3 0 0

0 0 0 0 0 0 −1 −4

0 0 0 0 0 0 −5 −1

0 0 1 5 0 0 0 0

0 0 4 1 0 0 0 0

1 2 0 0 0 0 0 0

4 3 0 0 0 0 0 0



, M21 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 −4 0 0

0 0 0 0 −2 −3 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 5 0 0 0 0

0 0 4 1 0 0 0 0



,

M13 =



0.5 −0.5 −0.5 0.5 1 −1 0 0 0.5 −0.5 −0.5 0.5 0 0 0 0

1 −1 −1 1 1 −1 0 0 1 −1 −1 1 0 0 0 0

0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1

0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1

0.5 −0.5 −0.5 0.5 0 0 −1 1 0.5 −0.5 −0.5 0.5 0 0 0 0

1 −1 −1 1 0 0 −1 1 1 −1 −1 1 0 0 0 0

−1 1 0 0 0 0 0 0 −1 1 0 0 1 −1 0 0

−1 1 0 0 0 0 0 0 −1 1 0 0 1 −1 0 0



,
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M23 =



0.5 −0.5 −0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0.5 −0.5 −0.5 0.5 0 0 0 0

1 −1 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0.5 −0.5 −0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0.5 −0.5 −0.5 0.5 0 0 0 0

0 0 −1 1 0 0 0 0 1 −1 −1 1 0 0 0 0



M31 =



1 1 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 −1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1



,
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M32 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



,

M12 = [0]8×12, M22 = [0]12×12, M33 = [0]16×16, q1 = [0]8×1, q2 = [0]12×1,

q3 = [−1 1 − 1 1 − 1 1 − 1 1 − 10 − 20 − 30 − 40 − 50 − 60 − 2 − 2]t.

7.4 Additive Reward Additive Transition

Games (ARAT Games)

ARAT games have been studied in the literature earlier by Raghavan et al. [85].

Both the discounted and the limiting average criterion of evaluation of strategies

have been considered. It is known for example, that for a β-discounted zero-sum

ARAT game, the value exists and both players have stationary optimal strategies,

which may also be taken as pure strategies. Raghavan et al. [85], have shown that

undiscounted ARAT game possesses uniformly discounted optimal stationary
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strategies and therefore asymptotically stable optimal stationary strategies. In

[85], a finite step method to compute a pair of pure stationary optimal strategies

and the value of the game has been suggested. However this approach involves

solving a series (finite number) of Markov decision problems. See also [24] and

[84].

A stochastic game is said to be an Additive-Reward- Additive Transition game

(ARAT game) if the reward

(i) r(s, i, j) = r1
i (s) + r2

j (s) for i ∈ A(s), j ∈ B(s), s ∈ S

and the transition probabilities

(ii) qi,j(s, s
′
) = q1

i (s, s
′
) + q2

j (s, s
′
) for i ∈ A(s), j ∈ B(s), (s, s′) ∈ S × S.

The following lemma was proved by Filar and Schultz [23].

Lemma 7.4.1 ([23, Lemma 2.4]) (i) If (v∗, t∗, u∗, f∗, g∗) satisfy SYS1a, then for

all s ∈ S

v∗s = [P (f ∗, g∗)v∗]s.

(ii) If (v∗, t∗, u∗, f∗, g∗) solves SYS1b, then for all s ∈ S

v∗s + t∗s = [P (f ∗, g∗)t∗ + r(f ∗, g∗)]s

Mohan, Neogy, Parthasarathy [53] formulated the undiscounted ARAT game

as a vertical linear complementarity problem. For the LCP formulation of dis-

counted version of ARAT game, see [54]. In this section, we present a new LCP

formulation for the undiscounted ARAT game.
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Theorem 7.4.1 For an undiscounted zero-sum ARAT game, the value vector

and an optimal pair of stationary strategies can be derived from any solution to

the following system of linear and nonlinear inequalities (SYS3). Conversely, for

such a game, a solution of SYS3 can be derived from any pair of asymptotically

stable stationary strategies.

SYS3: Find (θ, η, φ, γ, f, g) where θ, η, φ, γ ∈ R|S|, f ∈ FS and g ∈ GS such that

φs −
N∑

s′=1

(θs′ + φs′)q
1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S (7.4.1)

γs −
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
1
i (s, s

′)− r1
i (s) ≥ 0, i ∈ A(s), s ∈ S (7.4.2)

−θs +
N∑

s′=1

(θs′ + φs′)q
2
j (s, s

′) ≥ 0, j ∈ B(s), s ∈ S (7.4.3)

−ηs +
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
2
j (s, s

′) + r2
j (s) ≥ 0, j ∈ B(s), s ∈ S (7.4.4)

fi(s)[φs −
N∑

s′=1

(θs′ + φs′)q
1
i (s, s

′)] = 0, i ∈ A(s), s ∈ S (7.4.5)

fi(s)[γs −
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
1
i (s, s

′)− r1
i (s)] = 0, i ∈ A(s), s ∈ S (7.4.6)

gj(s)[−θs +
N∑

s′=1

(θs′ + φs′)q
2
j (s, s

′)] = 0, j ∈ B(s), s ∈ S (7.4.7)

gj(s)[−ηs +
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
2
j (s, s

′) + r2
j (s)] = 0, j ∈ B(s), s ∈ S

(7.4.8)

f ∈ FS, g ∈ GS (7.4.9)

Proof. This theorem is proved by following a similar approach as in Theorem

7.3.1. We show that a feasible solution of SYS3 also solves SYS1b and by Theo-

rem 7.2.2, this solution solves the game problem. Let (θ∗, η∗, φ∗, γ∗, f∗, g∗) be a

feasible solution of the SYS3.
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We define

v∗s = θ∗s + φ∗
s for s ∈ S (7.4.10)

t∗s = η∗s + γ∗s − θ∗s − φ∗
s for s ∈ S (7.4.11)

From (7.4.10) and (7.4.11) we get

η∗s + γ∗s = v∗s + t∗s for s ∈ S

Substituting v∗s for (θ∗s + φ∗
s) and (v∗s + t∗s) for (η∗s + γ∗s ) in (7.4.1) through (7.4.4)

and (7.4.5) through (7.4.8) we get

φ∗
s −

N∑
s′=1

v∗s′q
1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S (7.4.12)

γ∗s −
N∑

s′=1

t∗s′q
1
i (s, s

′)− r1
i (s) ≥ 0, i ∈ A(s), s ∈ S (7.4.13)

−θ∗s +
N∑

s′=1

v∗s′q
2
j (s, s

′) ≥ 0, j ∈ B(s), s ∈ S (7.4.14)

−η∗s +
N∑

s′=1

t∗s′q
2
j (s, s

′) + r2
j (s) ≥ 0, j ∈ B(s), s ∈ S (7.4.15)

φ∗
s =

N∑
s′=1

ms∑
i=1

v∗s′q
1
i (s, s

′)f ∗
i (s), s ∈ S (7.4.16)

γ∗s =
N∑

s′=1

ns∑
j=1

t∗s′q
1
i (s, s

′)f ∗
i (s) +

ms∑
i=1

r1
i (s)f

∗
i (s), s ∈ S (7.4.17)

θ∗s =
N∑

s′=1

ns∑
j=1

v∗s′q
2
j (s, s

′)g∗j (s), s ∈ S (7.4.18)

η∗s =
N∑

s′=1

ns∑
j=1

t∗s′q
2
j (s, s

′)g∗j (s) +
ns∑

j=1

r2
j (s)g

∗
j (s), s ∈ S (7.4.19)

Adding (7.4.12) and (7.4.18) we get

θ∗s + φ∗
s −

N∑
s′=1

ns∑
j=1

v∗s′q
2
j (s, s

′)g∗j (s)−
N∑

s′=1

v∗s′q
1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S

(7.4.20)
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Therefore

θ∗s + φ∗
s −

N∑
s′=1

v∗s′
ns∑

j=1

[q2
j (s, s

′)g∗j (s) + q1
i (s, s

′)g∗j (s)] ≥ 0, i ∈ A(s), s ∈ S

(7.4.21)

Substituting v∗s for (θ∗s + φ∗
s) we get (7.2.1)

v∗s −
N∑

s′=1

ns∑
j=1

v∗s′qij(s, s
′)g∗j (s) ≥ 0, i ∈ A(s), s ∈ S (7.4.22)

Adding (7.4.13) and (7.4.19) we get (7.2.2)

η∗s + γ∗s −
N∑

s′=1

t∗s′ [
ns∑

j=1

q2
j (s, s

′) + q1
i (s, s

′)]g∗j (s)−
ns∑

j=1

[r2
j (s) + r1

i (s)]g
∗
j (s) ≥ 0,

i ∈ A(s), s ∈ S (7.4.23)

This implies

v∗s + t∗s −
N∑

s′=1

t∗s′
ns∑

j=1

qij(s, s
′)g∗j (s)− [R(s)g(s)]i ≥ 0, i ∈ A(s), s ∈ S (7.4.24)

Subtracting (7.4.16) from (7.4.14) and subtracting (7.4.17) from (7.4.15) we get

(7.2.3) and (7.2.5) respectively. Since f ∈ FS and g ∈ GS the variables satisfy

SYS1b and by Theorem 7.2.2, this yields an optimal solution to undiscounted

ARAT game.

To prove the converse, we show that any solution to SYS1b − which always

exists for these games, since they possess asymptotically stable optimal station-

ary strategies − can be used to derive a feasible solution for SYS3. Assume that

(v∗, t∗, f∗, g∗) be a feasible solution of the SYS1b. From (7.2.1), (7.2.2), (7.2.3),

(7.2.5) and using the definition of ARAT game we get

v∗s −
N∑

s′=1

ns∑
j=1

v∗s′q
2
j (s, s

′)g∗j (s)−
N∑

s′=1

v∗s′q
1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S (7.4.25)

v∗s + t∗s −
N∑

s′=1

ns∑
j=1

t∗s′q
2
j (s, s

′)g∗j (s)−
N∑

s′=1

t∗s′q
1
i (s, s

′)−
ns∑

j=1

r2
j (s)g

∗
j (s)
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−r1
i (s) ≥ 0, i ∈ A(s), s ∈ S (7.4.26)

−v∗s +
N∑

s′=1

ms∑
i=1

v∗s′q
1
i (s, s

′)f ∗
i (s) +

N∑
s′=1

v∗s′q
2
j (s, s

′) ≥ 0, j ∈ B(s), s ∈ S (7.4.27)

−v∗s − t∗s +
N∑

s′=1

ms∑
i=1

t∗s′q
1
i (s, s

′)f ∗
i (s) +

N∑
s′=1

t∗s′q
2
j (s, s

′) +
ms∑
i=1

r1
i (s)f

∗
i (s)

+r2
j (s) ≥ 0, j ∈ B(s), s ∈ S (7.4.28)

Take θ∗s , η
∗
s , φ

∗
s and γ∗s for s ∈ S as in (7.4.16) through (7.4.19). Adding

(7.4.16) and (7.4.18) we get

θ∗s + φ∗
s =

N∑
s′=1

v∗s′ [
ms∑
i=1

q1
i (s, s

′)f ∗
i (s) +

ns∑
j=1

q2
j (s, s

′)g∗j (s)]

= [P (f ∗, g∗)v∗]s = v∗s (7.4.29)

by Lemma 7.4.1 (i). Similarly, using Lemma 7.4.1 (ii) and from (7.4.17) and

(7.4.19) we get

η∗s + γ∗s = [P (f ∗, g∗)t∗ + r(f ∗, g∗)]s = v∗s + t∗s (7.4.30)

From (7.4.25), (7.4.29) and using the definition of θ∗s in (7.4.18) we get (7.4.1).

θ∗s + φ∗
s − θ∗s −

N∑
s′=1

(θ∗s′ + φ∗
s′)q

1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S (7.4.31)

From (7.4.26), (7.4.19), (7.4.29) and (7.4.30) we get (7.4.2) of SYS3. From

(7.4.27), (7.4.29) and the definition of φ∗ in (7.4.16) yields (7.4.3) of SYS3.

−θ∗s − φ∗
s +

N∑
s′=1

(θ∗s′ + φ∗
s′)q

2
j (s, s

′) + φ∗
s ≥ 0, j ∈ B(s), s ∈ S (7.4.32)

Similarly from (7.4.28), (7.4.29),(7.4.30) and (7.4.17) we get (7.4.4) of SYS3.

From (7.4.16) through (7.4.19), (7.4.29) and (7.4.30), we get (7.4.5) through

(7.4.8). Since, f ∈ FS and g ∈ GS, we obtain a feasible solution

(θ∗, η∗, φ∗, γ∗, f∗, g∗) which satisfies SYS3.
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Corollary 7.4.1 For an undiscounted, zero-sum, ARAT game, the values vs

for s ∈ S and optimal stationary strategies f(s) and g(s) for s ∈ S can be

computed by solving an LCP.

Proof. We shall show that SYS3 in Theorem 7.4.1 can be written as a linear

complementarity problem.

First we consider the inequalities (7.4.1) through (7.4.4). Let

w1(s, i) = φs −
N∑

s′=1

(θs′ + φs′)q
1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S

w2(s, i) = γs −
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
1
i (s, s

′)− r1
i (s) ≥ 0, i ∈ A(s), s ∈ S

w3(s, j) = −θs +
N∑

s′=1

(θs′ + φs′)q
2
j (s, s

′) ≥ 0, j ∈ B(s), s ∈ S

w4(s, j) = −ηs +
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
2
j (s, s

′) + r2
j (s) ≥ 0, j ∈ B(s), s ∈ S

Let w1
c (s, i) = w1(s, i)+w2(s, i) and w2

c (s, j) = w3(s, j)+w4(s, j). Now by im-

posing the complementarity condition fi(s)w
1
c (s, i) = 0, i ∈ A(s), s ∈ S implies

fi(s)w
1(s, i) = 0, fi(s)w

2(s, i) = 0 for i ∈ A(s), s ∈ S. Thus we obtain (7.4.5)

and (7.4.6) of SYS3. Similarly, by imposing the complementarity condition

gj(s)w
2
c (s, j) = 0, j ∈ B(s), s ∈ S implies gj(s)w

3(s, j) = 0, gj(s)w
4(s, j) = 0

for j ∈ B(s), s ∈ S. Thus we get (7.4.7) and (7.4.8) of SYS3.

Now we express each of the variables θs, ηs, φs, γs as difference of two non-

negative variables using the standard method of representing free variables, i.e.,

θs = θ̄s− θ̂s, ηs = η̄s− η̂s, φs = φ̄s− φ̂s, γs = γ̄s− γ̂s. The inequalities pertaining

to probability vectors are as follows.

w̄5(s) = −1 +
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S

ŵ5(s) = 1−
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S
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w̄6(s) = −1 +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S

ŵ6(s) = 1−
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S

The complementarity conditions involving inequality related to the probability

vector are θ̄sw̄5(s) = 0, θ̂sŵ5(s) = 0 η̄sw̄6(s) = 0, η̂sŵ6(s) = 0 for s ∈ S.

Now we introduce few dummy variables and inequalities in order to obtain

the standard LCP formulation. Consider

w̄7(s) = −k̄1(s) +
∑

i∈A(s)

ξ1(s, i) ≥ 0, s ∈ S,

ŵ7(s) = −k̂1(s) +
∑

i∈A(s)

ξ2(s, i) ≥ 0, s ∈ S,

w̄8(s) = −k̄2(s) +
∑

j∈B(s)

ξ3(s, j) ≥ 0, s ∈ S,

ŵ8(s) = −k̂2(s) +
∑

j∈B(s)

ξ4(s, j) ≥ 0, s ∈ S,

In the above inequalities k̄1(s), k̂1(s), k̄2(s) and k̂2(s) for s ∈ S are appropriate

constants.

The complementarity conditions for the above inequalities are given below.

φ̄sw̄7(s) = 0, φ̂sŵ7(s) = 0,

γ̄sw̄8(s) = 0, γ̂sŵ8(s) = 0, where s ∈ S

The complementarity relationship of the dummy variables which appears in

the above inequalities are

ξ1(s, i)w1(s, i) = 0, i ∈ A(s), s ∈ S, ξ2(s, i)w2(s, i) = 0, i ∈ A(s), s ∈ S,

ξ3(s, j)w3(s, j) = 0, j ∈ B(s), s ∈ S, ξ4(s, j)w4(s, j) = 0, j ∈ B(s), s ∈ S.

Finally, the LCP formulation of undiscounted ARAT game is as follows:

w1
c (s, i) = φs + γs −

N∑
s′=1

(ηs′ + γs′)q
1
i (s, s

′)− r1
i (s) ≥ 0, i ∈ A(s), s ∈ S (7.4.33)
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w2
c (s, j) = −θs − ηs +

N∑
s′=1

(ηs′ + γs′)q
2
j (s, s

′) + r2
j (s) ≥ 0, j ∈ B(s), s ∈ S

(7.4.34)

w1(s, i) = φs −
N∑

s′=1

(θs′ + φs′)q
1
i (s, s

′) ≥ 0, i ∈ A(s), s ∈ S (7.4.35)

w2(s, i) = γs −
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
1
i (s, s

′)− r1
i (s) ≥ 0, i ∈ A(s), s ∈ S

(7.4.36)

w3(s, j) = −θs +
N∑

s′=1

(θs′ + φs′)q
2
j (s, s

′) ≥ 0, j ∈ B(s), s ∈ S (7.4.37)

w4(s, j) = −ηs +
N∑

s′=1

(ηs′ + γs′ − θs′ − φs′)q
2
j (s, s

′) + r2
j (s) ≥ 0, j ∈ B(s), s ∈ S

(7.4.38)

w̄5(s) = −1 +
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S (7.4.39)

ŵ5(s) = 1−
∑

i∈A(s)

fi(s) ≥ 0, s ∈ S (7.4.40)

w̄6(s) = −1 +
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S (7.4.41)

ŵ6(s) = 1−
∑

j∈B(s)

gj(s) ≥ 0, s ∈ S (7.4.42)

w̄7(s) = −k̄1(s) +
∑

i∈A(s)

ξ1(s, i) ≥ 0, s ∈ S, (7.4.43)

ŵ7(s) = −k̂1(s) +
∑

i∈A(s)

ξ2(s, i) ≥ 0, s ∈ S, (7.4.44)

w̄8(s) = −k̄2(s) +
∑

j∈B(s)

ξ3(s, j) ≥ 0, s ∈ S, (7.4.45)

ŵ8(s) = −k̂2(s) +
∑

j∈B(s)

ξ4(s, j) ≥ 0, s ∈ S, (7.4.46)

fi(s)w
1
c (s, i) = 0, i ∈ A(s), s ∈ S (7.4.47)

gj(s)w
2
c (s, j) = 0, j ∈ B(s), s ∈ S (7.4.48)

ξ1(s, i)w1(s, i) = 0, i ∈ A(s), s ∈ S, (7.4.49)
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ξ2(s, i)w2(s, i) = 0, i ∈ A(s), s ∈ S, (7.4.50)

ξ3(s, j)w3(s, j) = 0, j ∈ B(s), s ∈ S, (7.4.51)

ξ4(s, j)w4(s, j) = 0, j ∈ B(s), s ∈ S (7.4.52)

θ̄sw̄5(s) = 0, s ∈ S (7.4.53)

θ̂sŵ5(s) = 0, s ∈ S (7.4.54)

η̄sw̄6(s) = 0, s ∈ S (7.4.55)

η̂sŵ6(s) = 0, s ∈ S (7.4.56)

φ̄sw̄7(s) = 0, s ∈ S (7.4.57)

φ̂sŵ7(s) = 0, s ∈ S (7.4.58)

γ̄sw̄8(s) = 0, s ∈ S (7.4.59)

γ̂sŵ8(s) = 0, s ∈ S (7.4.60)

fi(s) ≥ 0, i ∈ A(s), gj(s) ≥ 0, j ∈ B(s), θ̄s, θ̂s, η̄s, η̂s, φ̄s, φ̂s, γ̄s, γ̂s ≥ 0, s ∈ S

ξ1(s, i), ξ2(s, i) ≥ 0, i ∈ A(s), ξ3(s, j), ξ4(s, j) ≥ 0, j ∈ B(s), s ∈ S (7.4.61)

It is easy to deduce that by solving the above linear complementarity problem,

one can compute a solution to SYS3.

Example 7.4.1 Consider a two player zero-sum undiscounted ARAT game

with 2 states and m1 = m2 = n1 = n2 = 2. The rewards and transition

probabilities are as follows:

r1
1(1) = 4, q1

1(1, 1) = 1
2
, q1

1(1, 2) = 0,

r1
2(1) = 5, q1

2(1, 1) = 1
2
, q1

2(1, 2) = 0,

r1
1(2) = 3, q1

1(2, 1) = 0, q1
1(2, 2) = 1

2
,

r1
2(2) = 4, q1

2(2, 1) = 0, q1
2(2, 2) = 1

2
,
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r2
1(1) = 3, q2

1(1, 1) = 1
2
, q2

1(1, 2) = 0,

r2
2(1) = 6, q2

2(1, 1) = 0, q2
2(1, 2) = 1

2
,

r2
1(2) = 6, q2

1(2, 1) = 0, q2
1(2, 2) = 1

2
,

r2
2(2) = 2, q2

2(2, 1) = 1
2
, q2

2(2, 2) = 0.

The values and optimal stationary strategies f(1), f(2) and g(1), g(2) can be

computed by solving the following LCP(q, M).

Here the decision variable is z = [z1 z2 z3]
t where

z1 = [f1(1), f2(1), f1(2), f2(2), g1(1), g2(1), g1(2), g2(2), ξ
1(1, 1), ξ1(1, 2), ξ1(2, 1),

ξ1(2, 2), ξ2(1, 1), ξ2(1, 2), ξ2(2, 1), ξ2(2, 2), ξ3(1, 1), ξ3(1, 2), ξ3(2, 1), ξ3(2, 2),

ξ4(1, 1), ξ4(1, 2), ξ4(2, 1), ξ1(2, 2)]t, z2 = [θ̄1, θ̂1, θ̄2, θ̂2, η̄1, η̂1, η̄2, η̂2]
t,

z3 = [φ̄1, φ̂1, φ̄2, φ̂2, γ̄1, γ̂1, γ̄2, γ̂2]
t, θs = θ̄s − θ̂s,

ηs = η̄s − η̂s, φs = φ̄s − φ̂s, γs = γ̄s − γ̂s and vs = θs + φs for s = 1, 2.

The matrix M and q are shown in the following partitioned form.

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

, q =


q1

q2

q3


where M11 = [0]24×8, M12 = [0]24×16,
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M13 =



0 0 0 0 1 −1 0 0 −0.5 0.5 0 0 0.5 −0.5 0 0

0 0 0 0 1 −1 0 0 −0.5 0.5 0 0 0.5 −0.5 0 0

0 0 0 0 0 0 1 −1 0 0 −0.5 0.5 0 0 0.5 −0.5

0 0 0 0 0 0 1 −1 0 0 −0.5 0.5 0 0 0.5 −0.5

−1 1 0 0 0 0 0 0 −0.5 0.5 0 0 0.5 −0.5 0 0

−1 1 0 0 0 0 0 0 −1 1 0.5 −0.5 0 0 0.5 −0.5

0 0 −1 1 0 0 0 0 0 0 −0.5 0.5 0 0 0.5 −0.5

0 0 −1 1 0 0 0 0 0.5 −0.5 −1 1 0.5 −0.5 0 0

−0.5 0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0 0 0

−0.5 0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0 0 0

0 0 −0.5 0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0

0 0 −0.5 0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0

0.5 −0.5 0 0 0.5 −0.5 0 0 −0.5 0.5 0 0 0.5 −0.5 0 0

0.5 −0.5 0 0 0.5 −0.5 0 0 −0.5 0.5 0 0 0.5 −0.5 0 0

0 0 0.5 −0.5 0 0 0.5 −0.5 0 0 −0.5 0.5 0 0 0.5 −0.5

0 0 0.5 −0.5 0 0 0.5 −0.5 0 0 −0.5 0.5 0 0 0.5 −0.5

−0.5 0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0 0 0

−1 1 0.5 −0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0

0 0 −0.5 0.5 0 0 0.5 −0.5 0 0 0 0 0 0 0 0

0.5 −0.5 −1 1 0.5 −0.5 0 0 0 0 0 0 0 0 0 0

−0.5 0.5 0 0 −0.5 0.5 0 0 −0.5 0.5 0 0 0.5 −0.5 0 0

0 0 −0.5 0.5 0 0 −0.5 0.5 −1 1 0.5 −0.5 0 0 0.5 −0.5

0 0 −0.5 0.5 0 0 −0.5 0.5 0 0 −0.5 0.5 0 0 0.5 −0.5

−0.5 0.5 0 0 −0.5 0.5 0 0 −0.5 0.5 −1 1 0.5 −0.5 0 0



,

M21 =



1 1 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 −1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 −1 −1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 −1 −1


,

M32 =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1


,

M22 = [0]8×16, M23 = [0]8×16, M31 = [0]8×8, M33 = [0]8×16,

q1 = [−4 − 5 − 3 − 4 3 6 6 2 0 0 0 0 − 4 − 5 − 3 − 4 0 0 0 0 3 6 6 2]t,

q2 = [−1 1 −1 1 −1 1 −1 1]t and q3 = [−10 −20 −30 −40 −50 −60 −70 −80]t.
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7.5 Concluding Remarks and Areas of Further

Research

For switching controller and ARAT games, nice theoretical properties have been

observed by several researchers. In this chapter, we present a linear comple-

mentarity formulation for solving undiscounted switching controller and ARAT

games. This gives an alternative proof of the orderfield property for these two

classes games. Of course, more work can be done on algorithms for these two

classes of structured games. The applicability of Lemke’s algorithm for solv-

ing the LCP formulation presented should be explored. While implementing

available pivoting algorithms on these two formulations, a special initialization

scheme may be necessary and use of suitable degeneracy resolving mechanism

may be needed. Investigation for other formulations using the inequalities in

SYS1a, SYS1b, SYS2 and SYS3 as well as other solution methods are also areas

of further research.
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